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Abstract

 

CD40 signaling in B cells and dendritic cells (DCs) is critical for the development of humoral

 

and cell-mediated immunity, respectively. Nuclear factor 

 

k

 

B (NF-

 

k

 

B)–inducing kinase (NIK)
has been implicated as a central transducing kinase in CD40-dependent activation. Here, we
show that although NIK is essential for B cell activation, it is dispensable for activation of DCs.
Such data provide compelling evidence that different intermediary kinases are used by different
cellular lineages to trigger NF-

 

k

 

B activation via CD40.

Key words: CD40 signaling • nuclear factor 

 

k

 

B–inducing kinase • dendritic cell • nuclear 

 

factor 

 

k

 

B activation • 

 

alymphoplasia

 

 mice

 

Introduction

 

CD40 is a member of the TNFR family and plays a central
role in the regulation of both humoral and cell-mediated

 

immunity (1). Engagement of CD40 on B lymphocytes trig-
gers the clonal expansion and differentiation of these cells
and is an essential signal in the regulation of thymus-depen-
dent humoral immunity (2–4). Furthermore, stimulation of
APCs through CD40 promotes their differentiation and
maturation into effective inducers of cell-mediated immu-

 

nity, as manifested by enhanced production of cytokines and
chemokines and expression of costimulatory molecules (5–7).

Although the functional significance of CD40–CD154 in-
teractions in immunity has been studied extensively, the mo-
lecular components of the CD40 signal transduction cascade
are still not thoroughly understood. One of the downstream

 

events in CD40 signaling is activation of nuclear factor 

 

k

 

B
(NF-

 

k

 

B [8]), a transcription factor that promotes expression
of genes involved in immune and inflammatory responses.
The CD40-proximal event in NF-

 

k

 

B activation is recruit-
ment of adaptor proteins called TNFR-associated factors
(TRAFs) to the CD40 receptor complex; five of the six
known TRAFs (TRAF1, 2, 3, 5, and 6 [9–14]) associate
with CD40 upon stimulation by its ligand, CD154 (15). Af-
ter recruitment to the receptor complex, one or more of the
TRAFs activate NF-

 

k

 

B (10, 11, 16) via the I

 

k

 

B kinase
(IKK) complex (17), a process that probably involves an in-

 

termediate kinase (18–20). The IKK complex then phosphor-
ylates I

 

k

 

B, which triggers degradation of I

 

k

 

B via ubiquitin-
mediated proteolysis (for a review, see reference 21).

Degradation of I

 

k

 

B releases NF-

 

k

 

B, and NF-

 

k

 

B then
translocates to the nucleus and initiates transcription of genes
involved in immune and inflammatory responses. Two serine/
threonine kinases have been implicated as intermediary ki-
nases between TRAF recruitment to TNFRs and activa-
tion of the IKK complex: NF-

 

k

 

B–inducing kinase (NIK)
and mitogen-activated protein kinase/extracellular signal
regulatory kinase kinase (MEKK1 [18–20]). However, most
of the available data on the role of NIK and MEKK1 in
NF-

 

k

 

B activation were derived from experiments using
transfected cell lines.

Evidence that NIK is an important kinase in mediating
TNFR family signal transduction in vivo has recently been
deduced using 

 

alymphoplasia

 

 (

 

aly

 

) mice. 

 

aly

 

 mice are charac-
terized by the absence of Peyer’s patches and LNs, as well
as by a loss of lymphoid organization in the spleen (22).

 

Furthermore, 

 

aly

 

 mice have a severely reduced level of
serum Ig, particularly IgA. This phenotype resembles the
phenotype of the lymphotoxin (LT)

 

b

 

R (23) and LT

 

a

 

knockout mice (24). However, the 

 

aly

 

 mice have a more
severe reduction in serum IgM levels than either the LT

 

a

 

or LT

 

b

 

R knockout mice. It has been demonstrated that
the genetic lesion in the 

 

aly

 

 mouse is a point mutation that
results in a single amino acid substitution in the COOH
terminus of NIK, and that wild-type NIK expressed in
transgenic (Tg) mice can restore a normal phenotype in
these mice (25). The similarity between the phenotypes of
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the 

 

aly

 

, LT

 

a

 

 knockout, and LT

 

b

 

R knockout mice suggests
that the 

 

aly

 

 mutation interferes with LT

 

b

 

R signal transduc-
tion, but an involvement of other signal transduction cas-
cades through other TNFR family members is likely. The
studies described here were undertaken to determine whether
or not NIK has a direct role in the CD40 signal transduction
cascade by analyzing the biological responses of B cells and
DCs from 

 

aly

 

 mice to stimulation through CD40.

 

Materials and Methods

 

B Cell Activation Studies. aly

 

/

 

aly

 

 and 

 

aly

 

/

 

1

 

 mice were ob-
tained (Clea Japan) and bred in the Dartmouth College Animal
Resource Center. B cells were isolated from spleens of 

 

aly

 

/

 

aly

 

and 

 

aly

 

/

 

1

 

 mice, cultured in vitro, and assayed for their ability to
proliferate, produce Ig, and upregulate cell surface markers in re-
sponse to CD40 stimulation as described (26). Induction of pro-
liferation by anti-CD40 (10 

 

m

 

g/ml FGK115 [27]), LPS (50 

 

m

 

g/
ml), and anti-IgM (goat anti–mouse IgM) was measured by the
incorporation of [

 

3

 

H]thymidine from 66 to 72 h after initation of
culture. All cultures contained 10 ng/ml of IL-4. Induction of Ig
secretion was performed using soluble, recombinant CD154 (28)
or LPS in combination with IL-4 (10 ng/ml) and IL-5 (10 ng/
ml). Ig secretion was measured using an isotype-specific ELISA, as
described (4). Expression of cell surface molecules on splenic B
cells was measured by flow cytometry as described previously (15).

 

Phospho-I

 

k

 

B

 

a

 

 Immunoblotting.

 

10 

 

3

 

 10

 

6

 

 cells/ml were left
unstimulated or stimulated with the optimal dose of CD8–CD154
(COS cell supernatant) or TNF-

 

a

 

 (PeproTech) for the indicated
times. After stimulation, cells were lysed in lysis buffer containing
1% IGEPAL, 50 mM Hepes (pH 7.4), 150 mM NaCl, 10 mM
NaF, 0.4 mM EDTA, 10 

 

m

 

g/ml aprotinin, 10 

 

m

 

g/ml leupeptin,

 

and 1 mM PMSF. Lysates were spun to remove nuclei and cell
debris. Proteins were separated by SDS-PAGE and transferred to
nitrocellulose. Phosphorylation of I

 

k

 

B

 

a

 

 was assessed by immu-
noblotting with a phospho-specific anti-I

 

k

 

B

 

a

 

 antibody (New
England Biolabs) according to the manufacturer’s instructions.
Goat anti–rabbit horseradish peroxidase (HRP; Vector Laborato-
ries) was used to detect the bound phospho-I

 

k

 

B

 

a

 

 antibodies, fol-
lowed by incubation with Supersignal Chemiluminescence sub-
strate (Pierce Chemical Co.).

 

DC Assays.

 

DCs were purified from the spleens of Flt3L-Ig–
treated 

 

aly/

 

1

 

 or 

 

aly

 

/

 

aly

 

 mice by negative selection using mag-
netic beads, as described previously (29). DCs were cultured at 2 

 

3

 

10

 

6

 

 cells/ml in complete RPMI with GM-CSF/IL-4 (PeproTech),
both at 10 ng/ml, with or without anti-CD40 (10 

 

m

 

g/ml). Cul-
ture supernatant was assayed for IL-12 on day 3 by commercial
ELISA kit (PharMingen).

DCs purified as described above were pulsed with OVA pep-
tide (323–339) for 90 min, washed extensively, and then plated
with 10

 

5 

 

OTII cells (30) at various DC densities as indicated. At
48 h, culture supernatants were assayed for the presence of IL-2
by commercial ELISA kit (PharMingen).

 

Results and Discussion

 

To investigate the function of NIK in CD40-mediated B
cell activation, B cells from 

 

aly

 

/

 

1

 

 and 

 

aly/aly 

 

mice were
assessed for their ability to proliferate, produce Ig, and up-
regulate costimulatory molecules in response to soluble
(s)CD154 and other polyclonal activators. B cells from 

 

aly/
aly

 

 mice displayed a significant reduction in proliferative
capacity in response to CD40, LPS, and anti-Ig activation
relative to B cells from 

 

aly

 

/

 

1

 

 mice (Fig. 1 A). Similarly,

Figure 1. Role of NIK in acti-
vation of B cells. aly/aly and aly/1
splenic B cells were cultured in
vitro and assayed for their ability
to proliferate (A), produce Ig (B),
and upregulate cell surface markers
(C) in response to CD40 stimula-
tion. (A) Induction of prolifera-
tion by anti-CD40 (10 mg/ml),
FGK115, LPS (50 mg/ml), and
anti-IgM (goat anti–mouse IgM)
was measured by the incorpora-
tion of [3H]thymidine from 66 to
72 h after initiation of culture. All
cultures contained 10 ng/ml of
IL-4. (B) Induction of Ig secretion
was performed using sCD154 or
LPS in combination with IL-4 (10
ng/ml) and IL-5 (10 ng/ml). Ig
secretion was measured using an
isotype-specific ELISA. (C) Ex-
pression of cell surface molecules
on splenic B cells from aly/1 (top)
or aly/aly (bottom) mice after cul-
ture with (purple histogram) or
without (green outline histogram)
sCD154 for 48 h was measured by
flow cytometry.
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the capacity of B cells from 

 

aly

 

/

 

aly

 

 mice to produce IgM
and IgG in response to sCD154 and LPS was also reduced
(Fig. 1 B). In contrast to the diminished proliferation and
Ig production observed in the 

 

aly

 

/

 

aly

 

 B cells, upregulation
of several surface molecules (MHC class II, intercellular
adhesion molecule 1 [ICAM-1], CD23, and B7.2) that are
hallmarks of B cell activation in response to CD40 stimula-
tion appeared intact. However, upregulation of one surface
marker, B7.1, was impaired by the 

 

aly

 

 mutation (Fig. 1 C).
To further elucidate the molecular basis of the defects in

biological responses of 

 

aly/aly

 

 B cells to CD40 stimulation,
phosphorylation of I

 

k

 

Ba in response to CD40 stimulation
was analyzed as an indicator of NF-kB activation. B cells
from spleens of aly/1 and aly/aly mice were stimulated in
vitro with sCD154, LPS, or PMA plus ionomycin and as-
sayed for phosphorylation of IkBa by Western blot analysis
(Fig. 2). A significant reduction in CD40-stimulated phos-
phorylation of IkBa was observed in B cells from aly/aly
mice relative to B cells from aly/1 animals. Interestingly,
LPS-induced NF-kB activation was similar in B cells from

aly/aly mice, even though the aly mutation did impact the
biological responses to LPS. Finally, no difference in phos-
phorylation of IkBa was observed when B cells from aly/aly
mice were pharmacologically activated with PMA plus
ionomycin.

The direct effects of the aly NIK mutation on CD40-
dependent B cell proliferation and Ig production indicate
that NIK is an important intermediary of B cell activation.
Since the aly NIK mutation did not have a noticeable effect
on upregulation of several surface proteins, other signaling
cascades such as c-Jun NH2-terminal kinase (JNK)- or ty-
rosine kinase–mediated pathways (31, 32) may be necessary
for complete B cell activation. Alternatively, the aly muta-
tion may have left some aspects of NIK function intact.

Given that the aly mutation exerted a severe biological
phenotype in B cells, the impact of the aly mutation in an-
other CD40-responsive cell type was evaluated. It is known
that the APC capacity of DCs is influenced by CD40 liga-
tion, as is the capacity of DCs to produce cytokines (IL-12
[33]) and chemokines (regulated on activation, normal T
cell expressed and secreted [RANTES]) (34). To evaluate
whether DC responses were impaired by the aly mutation,
DCs from the spleens of aly/aly and aly/1 mice were as-
sayed in vitro for their ability to produce IL-12 and present
antigen in response to CD40 engagement. DCs from both
aly/aly and aly/1 mice produced IL-12 at comparable lev-
els in response to CD40 triggering (Fig. 3 A). To assess DC
maturation, DCs from aly/aly mice and aly/1 mice were
used as a source of APCs for Tg T cells that express a TCR
that specifically recognizes a peptide (amino acids 323–339)
from OVA. DCs were pulsed with OVA peptide and cul-
tured with OVA-specific Tg T cells for 2 d, and release of
IL-2 into the culture medium was measured by ELISA.
DCs from aly/aly and aly/1 mice were equally effective at
stimulating IL-2 release from Tg T cells (Fig. 3 B). Fur-
thermore, the CD40-induced upregulation of B7.1, B7.2,
ICAM-1, and MHC class II by aly/1 and aly/aly DCs was
indistinguishable (data not shown). To evaluate if the
CD40-stimulated NF-kB activation pathway in DCs is im-
paired as a result of the aly mutation, DCs from aly/aly and
aly/1 were stimulated in vitro with sCD154 and assayed
for phosphorylation of IkBa by Western blot analysis (Fig. 4).
Phosphorylation of IkBa in response to sCD154 was indis-
tinguishable in DCs from both aly/aly and aly/1 mice.
Since TNF-a is a known inducer of NF-kB, and NIK has
been implicated in TNFR signaling, we evaluated whether
the activation of NF-kB by TNF-a in aly/aly DCs was im-
paired. As observed with CD40 activation, the activation of
NF-kB by TNF-a was indistinguishable between the aly/
aly and aly/1 DCs. These results indicate that NIK is not
essential for CD40-induced IL-12 production or matura-
tion or for NF-kB activation in DCs. It further shows that
NIK is dispensable for activation of NF-kB in DCs by
TNF-a.

Although experiments with transfected cell lines have
suggested that NIK is involved in CD40 signaling, the data
presented in this report demonstrate that NIK plays an es-
sential role in vivo in CD40-dependent biological responses

Figure 2. Activation of NF-κB by NIK and aly NIK. Effect of aly NIK
expression on IkBa phosphorylation in primary B cells. B cells from aly/
aly and aly/1 mice were stimulated in vitro for 2, 5, or 15 min with
sCD154, or for 5 min with LPS (50 mg/ml) or PMA (10 ng/ml) plus ion-
omycin (25 nM), and were assayed for phosphorylation of IkBa by West-
ern blot with a phospho-specific anti-IkBa.

Figure 3. Responses of DCs in aly/aly and aly/1 mice. (A) The NIK
mutation does not affect CD40-induced IL-12 production by DCs. aly/1
or aly/aly DCs were cultured at 2 3 106 cells/ml in cRPMI with GM-
CSF/IL-4 (both at 10 ng/ml) with or without anti-CD40 (10 mg/ml).
Culture supernatant was assayed for IL-12 on day 3 by ELISA. (B) The
NIK mutation does not affect the antigen-presentation capacity of DCs.
DCs were purified as in A and were pulsed with OVA peptide (323–339)
for 90 min, washed extensively, and then plated with 105 OTII cells
(OVA-specific Tg T cells) at various DC densities as indicated. At 48 h,
culture supernatants were assayed for the presence of IL-2 by ELISA.
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of B cells, but not in DCs. B cells from aly mice were largely
unresponsive to CD40-induced proliferation, Ig produc-
tion, and NF-kB activation. However, induced expression
of several early activation molecules (e.g., CD23, B7.2) was
not impaired by the aly mutation. In contrast, DCs from
aly/aly mice were indistinguishable from aly/1 mice in
their capacity to produce IL-12 in response to CD40. Fur-
thermore, aly/aly-derived DCs were able to present anti-
gen as efficiently as DCs from aly/1 mice. Direct assess-
ment of NF-kB activation in aly-derived DCs demonstrated
that NF-kB was intact. Hence, the function of NIK as a
mediator of NF-kB activation via CD40 is lineage re-
stricted, and it is likely that another mitogen-activated pro-
tein kinase (MAPK) is critical for NF-kB activation via
CD40 in DCs. Since MEKK1 has also been shown to be an
IKK, it is possible that DCs may utilize MEKK1 to trigger
CD40-dependent responses.

Responses to LPS and anti-Ig were also significantly re-
duced, suggesting that NIK plays a role in these biological
responses as well. The role of NIK as a kinase involved in
signal transduction through non-TNFR family members
has been suggested by studies showing that NIK may regu-
late CD28-induced IL-2 production (35). Hence, NIK
may have multiple roles in the regulation of lymphocyte
activities that are not directly related to its ability to associ-
ate with TRAFs.

Interestingly, the aly mutation that has been reported in
mice bears a striking resemblance to a mutation observed in
humans. Although most hyper-IgM (HIM) patients have a
mutation in the CD154 gene, there is a cohort of HIM pa-
tients that have an autosomal recessive mutation that mani-
fests as a defect in CD40 signaling (36, 37). One such pa-
tient (38) was shown to have defective responses in B cell
activation, but normal responses within the DC compart-
ment in response to CD40 signaling. In addition, these pa-

tients do not exhibit an overt enhanced susceptibility to
opportunistic infections, unlike HIM patients with muta-
tions in the CD154 gene. It is possible that mutations in
NIK may account for the selective loss of CD40-depen-
dent immunity in the humoral, but not cellular, compart-
ments of the immune system.
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