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Inflation and the Measurement Problem

Stephon Alexander,1, ∗ Dhrubo Jyoti,2, † and João Magueijo3, ‡

1Department of Physics, Brown University, Providence, RI, 02912, USA
2Center for Cosmic Origins, Wilder Laboratory, Dartmouth College, Hanover, NH, USA

3Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ, United Kingdom
(Dated: March 3, 2016)

We propose a solution to the quantum measurement problem in Inflation. Our model treats Fourier
modes of cosmological perturbations as analogous to particles in a weakly-interacting Bose gas.
We generalize the idea of a macroscopic wavefunction to cosmological fields, and construct a self-
interaction Hamiltonian that focuses that wavefunction. By appropriately setting the coupling
between modes, we obtain the standard adiabatic, scale-invariant power spectrum. Because of
Central Limit Theorem (CLT), we recover a Gaussian Random Field, consistent with observations.

PACS numbers: 98.80.Cq,04.60.-m,04.20.Cv
Keywords: quantum fluctuations, Central Limit Theorem, functional Schrödinger equation, squeezed state,
Copenhagen interpretation, pointer basis, weakly-interacting Bose gas, non-local theory

Introduction – Inflation is a very successful paradigm,
solving the Horizon, Flatness and Monopole problems.
But perhaps its most interesting aspect is that, it traces
the origin of structure in the Universe to quantum zero-
point fluctuations [1, 2]. We believe that the Universe
had a quantum mechanical beginning, but how exactly
did the classical universe we are familiar with emerge?
While the mechanism has been studied for decades [3–
5], a number of authors have pointed out important
gaps in our understanding [6–8] (for a review, see [9]).
Proponents of the mechanism assume a “quantum non-
demolition measurement” [10], and acknowledge that the
current description is only “pragmatic” and needs even-
tually to be fully justified [5].

We propose a solution to this cosmological quan-
tum measurement problem (8). Our approach is an
effective wavefunction collapse mechanism arising from
a novel interaction between Fourier modes, inspired
by a two-dimensional weakly-interacting Bose gas, to
be contrasted with fundamental modifications to the
Schrödinger equation [11–13]. Our mechanism is not a
replacement but rather an add-on to the standard de-
scription. An alternative approach to the problem is
Bohmian mechanics, which interprets the wavefunction
as an actual field and avoids the notion of an observer
collapsing the wavefunction [14].

The CMB has an average temperature of 2.7 K, but
has small variations of order one part in 105. These are
signatures of slight variations in the gravitational field
in different regions of the Universe at the surface of last
scattering (Sachs-Wolfe effect). This primordial curva-
ture perturbation field ζ(x), which eventually lead to the
formation of large scale structures (LSS) such as galaxies,
is analyzed as follows [11],

alm =
1

(2π)3/2

∫
dΩe dk

1

5
ζk Y

∗
lm(e) e−ik.e (1)

where we defined the Fourier modes ζk(η) ≡

1
(2π)3/2

∫
d3x ζ(x, η) eik·x , where k is the wave-vector

co-moving with expansion of space (working in natural
units, ~ = c = kB = 1). For a given l, the alm’s fit a
normal distribution with mean zero and standard devia-
tion

√
Cl. The standard deviation is independent of m,

dubbed statistical isotropy of the Universe.

The alm’s are essentially a weighted sum over ζk’s.
But if the latter are independently-distributed random
variables, then CLT states that, as long as the standard
deviation of each variable ζk is finite, the probability
distribution for each alm will approach a normal distri-
bution in the limit of large number of ζk’s. Interestingly,
this means that each ζk can be drawn from any distribu-
tion. It need not be normally distributed as it is in the
standard description, originating from the ground-state
Gaussian wavefunction of the harmonic oscillator. In
other words, because of CLT, classical gaussianity of
alm’s does not imply quantum gaussianity of ζk’s; it
is not an if-and-only-if relationship. CLT essentially
washes out the underlying distribution, and generically
yields a Gaussian Random Field. This is in concord
with observations since non-Gaussianity appears to be
small [15]. We will utilize this flexibility in our solution
to the cosmological measurement problem.

Quantum Fluctuations: Standard Description –

Inflation is said to generate adiabatic perturbations ζ(x)
as follows. This is a standard calculation [2, 11, 16].
Consider a massless scalar field minimally coupled to
gravity, S =

∫
d4x
√
−g 1

2

[
Mp

2R− ∂µφ ∂µφ
]
. The

generalization to any single-field, slow-roll model of
inflation with effective potential V (φ) is lengthy but
straightforward. Inflation can be characterized by the
scale factor a(η) = −1

Hη , with conformal time η ∈ [η0, 0)
and Hubble parameter H. Perturbing the action
to second order, we obtain in conformal coordinates
gµν = a(η)2 diag(−1, 1, 1, 1), (originally worked out in
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[17]), δ(2)S = 1
2

∫
dη d3x

[(
∂v
∂η

)2

− δij ∂iv ∂jv + 2
η2 v

2

]
where v is the Mukhanov-Sasaki variable [18],

v ≡ a(η) ζ . (2)

Using the Fourier transform defined earlier, we recover
the Hamiltonian

H =

∫
d3k

[
pkp
∗
k + vkv

∗
k

(
k2 − 2

η2

)]
(3)

where pk ≡ δL/δv∗k
′ = v′k, where ′ is ∂

∂η . This looks
like the Hamiltonian of a scalar field, but with a time-
dependent mass. We quantize in the Schrödinger for-
malism. It has been shown to yield results identi-
cal to the operator or Heisenberg formalism, see [4]
for the inflationary scenario, and [19] for a general
discussion. Quantization can be done by promoting
vk and pk to operators obeying [vRk , p

R
q ] = i δ(k −

q) and [vIk, p
I
q] = iδ(k − q) where the superscripts indi-

cate real and imaginary parts. There is a natural choice
of initial state, which is the ground-state of the oscilla-
tors in the short-wavelength limit |kη| � 1, known as the
Bunch-Davies (BD) vacuum. Since the Fourier modes
are non-interacting, the functional Schrödinger equation
i ∂∂ηΨ[v(η,x)] = HΨ[v(η,x)] can be easily solved by the

Ansatz Ψ[v(η,x)] ≡
∏

k ψ
R
k

(
vRk , η

)
ψIk
(
vIk, η

)
. We re-

cover a Schrödinger equation for each Fourier mode,[
i
∂

∂η
+

1

2

∂2

∂(vRk )2
− 1

2

(
k2 − 2

η2

)(
vRk
)2]

ψRk = 0 (4)

and an identical one for vIk. We solve with the Ansatz,
Ψk(vk, η) = Nk(η) exp(−Ωk(η)2|vk|2). Applying the BD
initial condition, Ωk(kη → −∞) = k

2 , we find

Ωk =
k

2

(kη)2 + i/(kη)

(kη)2 + 1
. (5)

The largest length-scales observable on the CMB today
correspond to |kη| � 1,

|Ψk(ζk)|2 → k3

πH2
exp

[
−k3|ζk|2/H2

]
, (6)

It is a time-independent solution of the harmonic oscil-

lator equation i ∂∂ηΨk = − 1
2

∂2

∂|ζk|2 Ψk + k6

2H4 |ζk|2Ψk. We

can easily compute the two-point correlation function,

〈Ψ|ζkζ∗p|Ψ〉 =
2π2

k3
Pζ(k) δ(k− p) ; Pζ(k) =

(
H

2π

)2

. (7)

The delta function comes from the assumption of non-
interaction of Fourier modes; any two modes are uncor-
related. The random field ζ(x) is completely character-
ized by this two-point function. Pζ being independent
of k is the renowned Harrison-Zel’dovich scale-invariant
power-spectrum.

The inflationary paradigm provides a profound quan-
tum mechanical origin of ζ(x), and completes the story of
LSS formation [20]. However, a deep question remains:
how exactly did quantum fluctuations during inflation
become classical perturbations? In Weinberg’s words,
“the field configuration must become locked into one of
an ensemble of classical configurations... It is not ap-
parent just how this happens...” [6, pg. 476]. Sym-

bolically, Ψ[ζ(x)]
?−→ ζ(x), where quantum fluctuations

are described by a wave-functional Ψ[ζ(x)] over classical
configurations ζ(x).

There is discussion in the literature of a so-called
quantum-to-classical transition during inflation [1–3].
The quantum state of each Fourier mode vRk become
“squeezed.” The two-dimensional Wigner function, a
generalization of a classical probability distribution in
phase space to quantum variables, becomes elongated in
one direction, becoming a cigar-like shape. The bivariate
probability distribution effectively reduces to a probabil-
ity distribution of a single variable. The squeezing hap-
pens approximately in the direction of the canonical mo-
mentum operator pk [11]; in this sense, it approximately
becomes a c-number, and hence commutes with vk. It is
easy to show this by computing expectation values [3],

〈vRk pRk 〉 =
i

2

(
1 + i

ImΩk

ReΩk

)
; 〈pRk vRk 〉 =

i

2

(
1 + i

ImΩk

ReΩk

)
−i

When the physical wavelength λphys ≡ 2πa(η)/k be-
comes much larger than 1/H, that is, when |kη| � 1,

we have ImΩk/ReΩk ' (1/kη)
3 � 1. That is, the ex-

pectation value of each product becomes large compared
to the commutator.

However, even though the commutator becomes small
in this sense, vk is not a c-number. It is assumed that
vk somehow becomes a c-number after leaving the hori-
zon [7, 8]. The justification provided is that, when λphys
becomes larger than the causal length-scale, which is of
order 1/H, its physics should cease and the mode should
“freeze.” But technically, we are replacing an operator
by a c-number, which is akin to making a measurement
in standard quantum mechanics. It is further assumed
that, after this measurement, vk remains frozen until it
re-enters the horizon during the radiation era after in-
flation, upon which it begins to oscillate classically, and
subsequent evolution of the mode is purely classical.

The Wigner function is also connected to the density
matrix, whose off-diagonal elements can vanish due
to various interactions with environments, known as
decoherence [21–23]. While decoherence proposals are in-
teresting in that they effectively “erase” various quantum
correlations, they do not solve the measurement problem.

Measurement Problem In Quantum Mechanics –
Let us do a brief review; the basic idea and notation will
carry over to the cosmological case. Consider

|ψ〉 = I|ψ〉 =

∫
dx |x〉〈x|ψ〉 =

∫
dx cx|x〉 ,
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the quantum state of a particle. We inserted a complete-
ness relation and defined the coefficient cx ≡ 〈x|ψ〉. For
example, the particle could be prepared in the laboratory
to be in a Gaussian state, cx = e−x

2/2/π1/4. The particle
is in a superposition of all position eigenstates {|x〉}. If
a measurement of the particle’s location is made (e.g. by
shining a laser), then in the standard Copenhagen inter-
pretation the state is said to collapse,

|ψ〉 =

∫
dx cx|x〉

?−→ |xcol〉 ,

where xcol is the outcome of the measurement. This is
said to happen instantaneously, and so is distinct from
smooth, unitary time-evolution. Collapse of the wave-
function is taken as a postulate – quantum mechanics
does not explain how it happens, i.e. its dynamics.

Cosmological Measurement Problem – Con-
sider a Fock space expansion of our field ζ(x) in
the field-amplitude basis. |Ψ〉 =

⊗
k |Ψk〉. Using

I =
⊗

k

∫
dζk|ζk〉〈ζk|, and defining cζk ≡ 〈ζk|Ψk〉 and∫ ∏

k

dζk ≡
∫
D[ζ] ;

∏
k

cζk ≡ c[ζ] ;
⊗
k

|ζk〉 ≡ |[ζ]〉 ,

where [ζ] is a specific configuration of the field in Fourier
space, and

∫
D[ζ] represents integration over all such con-

figurations, we can express the Problem formally as,

|Ψ〉 =

∫
D[ζ] c[ζ] |[ζ]〉 ?−→ |[ζ]col〉 , (8)

where [ζ]col is the collapsed configuration. We already
calculated the coefficients c[ζ] in (6), |cζk |2 = |Ψk(ζk)|2.

Equation (8) shows explicitly that during inflation, the
curvature perturbation field is in a linear superposition of
all possible field configurations {|[ζ]〉}. We believe that
the collapse happened in this field-amplitude basis be-
cause it is the pointer basis for cosmology [10]; the field-
amplitude operator ζk commutes with standard interac-
tion Hamiltonians such as ζ4 and ζ2χ2. This means that,
once the collapse to some field-amplitude eigenstate has
taken place, further interaction of the field with itself and
any environment will preserve the eigenstate.

We are faced with two logical possibilities. Either
there is an issue with Copenhagen interpretation – there
were obviously no observers in the early Universe who
could have made the measurement, as any observer,
such as ourselves, would owe their existence to the
primordial density perturbations – or there is some
unknown dynamics that “selects” one field configuration
[ζ]col. Let us discuss what this dynamics could have been.

A Solution – We begin with the discrete
case. The Fourier transform is defined as

v(x, η) =
∑

k vk(η) e−ik·x , with “grid-spacing” ks,
that is, |k − q| ≥ ks for distinct modes k and q. We
will discuss the continuum limit ks → 0 shortly. Instead
of the Hamiltonian (3), we have H = H0 + Hint, where

H0 =
∑

k

[
pkp
∗
k + vkv

∗
k

(
k2 − 2

η2

)]
and we propose the

following two-body interaction between modes,

Hint =
1

2π

∑
k

∑
q : |q−k|<∆

γ (k, η) δ(Rk−Rq) , (9)

where we have absolute value Rk ≡ |ζk|, coupling
strength γ, and “interaction window” ∆.

0 1 2 3
0

1

2

3

X

|ψ
(X

,
t)
|2

 

 

t = 0
t = 0.3
t = 0.6
t = 0.9

FIG. 1: (Color online) Numerical solution of (12), with Γ =
−20. For simplicity, we used co-moving time t here instead
of T . The effective non-linear term modifies the traditional
Gaussian profile |ψ|2 (Black), into an arbitrarily sharp spike
(Blue). We found the shape of the spike to be asymptotically
Gaussian. See Fig. 2 for the full wavefunction |Ψ|2 .

Our interaction is inspired by the renowned “hard-
sphere” model in a two-dimensional weakly-interacting
Bose gas [24], with identification of k and ζk to a Bose
particle with label j and position rj , respectively. It is
easy to check consistency; ζk and rj have the same units
(setting mass of Bose particle to unity).

Since there is explicit k-dependence in our Hamiltonian
(as if there was label-dependence in a Bose gas), we need
to assume ks � ∆ � k. The physical meaning of this
is that, every “particle” (i.e. Fourier mode) within that
window is equivalent, and every two-body interaction be-
tween those pairs of particles is, on average, equivalent
(Hartree-Fock approximation). That is, we assume

Ψ(ζk1 , ζk2 , ..., ζkN
, η) ' [Ψ (ζk, η)]

N
, (10)

where N , the number of modes in that window, scales as
(∆/ks)

3. We will further assume,

Ψ(ζk, η) ≡ ψ(Rk) Θ(θk) , (11)

and integrate out the angular part. This is valid
since the real and imaginary parts of ζk can be
quantized independently as described before, and the
BD initial condition is such that there is no angu-
lar dependence. We have the normalization condition∫∞

0
dRk Rk

∫ 2π

0
dθk |Ψ (ζk, η)|2 = 1.
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It has been shown [25] that the HF approximation
(10) is valid for a two-dimensional Bose gas with any
radially-symmetric interaction in the limit of large N and
correspondingly small coupling γ, just as it is for a three-
dimensional Bose gas. Physically, this limit means that
any two given modes are weakly coupled, i.e. they are
uncorrelated to a good approximation.

Under these assumptions, we recover a Schrödinger
equation with a new effective non-linear term,

i ∂∂ηψ(Rk, η) = − 1
2

∂2ψ
∂(Rk)2 +

k6R2
k

2H4 ψ + Nγ Rk |ψ|2ψ .
We assume our interaction is negligible at the beginning
of inflation, by appropriate choice of γ [26]. This means
the BD vacuum with Gaussian wavefunction is still the
natural initial state, but the non-linear term becomes
important after a few e-folds. Upon a-dimensionalizing,

i
∂

∂T
ψ(X,T ) = −1

2

∂2ψ

∂X2
+

1

2
X2ψ + ΓX|ψ|2ψ , (12)

we have the dimensionless variables

X ≡ Rk k
3/2/H , (13)

and T ≡ η k3/H2, and the lone free parameter
Γ ≡ γ N k9/2/H3. (Fig. 1). The location of the peak
for |ψ(Rk)|2 needs to scale as 1/k3/2 in order to have a
scale-invariant power spectrum. This can be achieved by
adjusting the k-dependence and time-dependence of γ,
as follows. We set γ ∝ k−9/2, and the time dependence
of γ such that the length of time our interaction term
is switched on is proportional to k3/H2. This choice of
behavior of γ would effectively make ψ(X, η) indepen-
dent of k, and hence |ψ(Rk, η)|2 will have the desired
1/k3/2 scaling. Finally, since θk is a random variable
uniformly distributed over [0 2π), we will recover the
classical Gaussianity of alm’s via CLT. The amplitude
and duration of γ also controls the precision of collapse.

Discussion – Let us elaborate on (9). Since the
HF approximation is valid in the N →∞ limit, we may
consider taking ks → 0 and replacing

∑
k with

∫
d3k ,

Hint =

∫
d3k

∫ k+∆

k−∆

d3q γ̄ δ(Rk −Rq) =

∫
d3k

γ̄

|∇kRk|

where γ̄ is some modification of γ for the continuum limit.
It is easy to see that this is distinct from traditional λφ4

types of interactions. One way is to write the delta func-
tion as a limiting case of a narrow Gaussian, and Taylor
expand. The term RkRq and all higher powers will be
non-negligible, unlike a λφ4 theory. In addition, our the-
ory is non-local; consider the Schwinger expansion,

1

|R′k|
=

∫ 1

0

e−ξ |R
′
k| dξ =

∫ 1

0

dξ

[
1− ξ|R′k|+

1

2
ξ2|R′k|2 + ...

]
where ′ is short-hand for ∇k. This formula allows us to
express the Hamiltonian in real space; the terms look
like Hint =

∫
d3x R(x)

∫
d3x̃ x̃2R(x̃)2 + ... . Interestingly,

in standard quantum field theories, position is a label
and Lagrangians are usually label-free. Ours has label

dependence; we may call it the “eye of God.” Further
investigation into its physical meaning is ongoing. [27]

Conclusion – Thanks to CLT, our interaction
Hamiltonian can reproduce the standard Gaussian
predictions for alm, while attempting a solution of
the Measurement problem in Inflation (Fig. 2). This
Problem and our solution is relevant for other scenarios
in cosmology as well, such as cyclic or bounce universes,
and modified dispersion relation theories [28].

Re ζk

I
m

ζ k

 

 

−3 −1.5 0 1.5 3

−3

−1.5

0

1.5

3 0

0.2

0.4

Re ζk

I
m

ζ k

 

 

−3 −1.5 0 1.5 3

−3

−1.5

0

1.5

3 0

1

2

FIG. 2: The initial (BD) and final wavefunction |Ψ(ζk)|2 ,

setting k3/2/H = 1. Essentially, we reduced the dimension-
ality of the wavefunction manifold from two (amplitude and
phase, Rk and θk, respectively) to one (just θk). This re-
maining stochasticity of θk is less disturbing than that of Rk

implicit in the traditional description.

θk is responsible for the transition from the perfect
rotational and translational symmetry of the quantum
state (BD vacuum) to the (slightly) inhomogeneous and
anisotropic universe that we live in [29]. It is the complex
phase of ζk; it corresponds to translations in physical
space, and is a random variable both in the standard
description [3] and in our model. It is distinct from the
phase of standing waves that lead to Sakharov oscillations
in the CMB, discussed in [30]. It will be interesting to
further investigate the origin and behavior of θk, which
we shall address elsewhere.

The cosmological measurement problem is a rich
and compelling arena for both foundational issues of
quantum mechanics as well as a deep understanding of
early universe cosmology, and may potentially teach us
about aspects of quantum gravity.
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