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Sex-specific associations of infants’ 
gut microbiome with arsenic 
exposure in a US population
Anne G. Hoen1,2,3, Juliette C. Madan1,2,4, Zhigang Li3,8, Modupe Coker1, Sara N. Lundgren1, 
Hilary G. Morrison   5, Thomas Palys2, Brian P. Jackson6, Mitchell L. Sogin5, 
Kathryn L. Cottingham   2,7 & Margaret R. Karagas1,2

Arsenic is a ubiquitous environmental toxicant with antimicrobial properties that can be found in food 
and drinking water. The influence of arsenic exposure on the composition of the human microbiome in 
US populations remains unknown, particularly during the vulnerable infant period. We investigated the 
relationship between arsenic exposure and gut microbiome composition in 204 infants prospectively 
followed as part of the New Hampshire Birth Cohort Study. Infant urine was analyzed for total arsenic 
concentration using inductively coupled plasma mass spectrometry. Stool microbiome composition 
was determined using sequencing of the bacterial 16S rRNA gene. Infant urinary arsenic related to gut 
microbiome composition at 6 weeks of life (p = 0.05, adjusted for infant feeding type and urine specific 
gravity). Eight genera, six within the phylum Firmicutes, were enriched with higher arsenic exposure. 
Fifteen genera were negatively associated with urinary arsenic concentration, including Bacteroides and 
Bifidobacterium. Upon stratification by both sex and feeding method, we found detectable associations 
among formula-fed males (p = 0.008), but not other groups (p > 0.05 for formula-fed females and for 
breastfed males and females). Our findings from a US population indicate that even moderate arsenic 
exposure may have meaningful, sex-specific effects on the gut microbiome during a critical window of 
infant development.

Arsenic is a ubiquitous environmental toxicant found in food and water worldwide1–3, and is present almost 
exclusively as inorganic arsenic in water supplies4, and as inorganic or organic species including metabolites of 
inorganic arsenic in dietary staples such as rice5. Environmental contaminants undergo biotransformation by 
gut bacteria. Biotransformation likely occurs with arsenic6 and both absorption and toxicity of arsenic are highly 
dependent on its speciation4,7. A human in vitro gut microbiome model suggests that bacteria may methylate 
inorganic arsenic into highly toxic species, such as monomethylarsonous acid, which absorbs into the blood 
stream8. Thus, the relationship between arsenic and the human microbiome is bidirectional – direct by its antimi-
crobial effects on gut microbes, affecting gut permeability and immunity, and indirect by increasing the concen-
trations of microbial metabolites of arsenic capable of affecting human health1,4,6,8–10.

Fetuses, infants and young children are especially vulnerable to the effects of contaminants such as arsenic 
(reviewed in11). Early life also is a critical window for establishment of the gut microbiome, and, concomitantly, 
priming of the immune system12–21. While the infant gut microbiome may develop partially in fetal life, coloni-
zation chiefly occurs during birth, early feeding and beyond22–25. Immune maturation and programming involve 
interaction with gut microbes, and alteration in early life colonization patterns has been linked to lifelong disease 
risk, including allergy, asthma, and obesity24,26–33.
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Human arsenic exposure is a consequence of consumption of water and food containing arsenic. Infant for-
mula powder and drinking water have been identified as important sources of arsenic exposure in infants34,35. 
US drinking water has varying levels of arsenic contamination and concentrations exceeding Environmental 
Protection Agency limits are particularly problematic in rural communities where private, unregulated wells 
commonly provide drinking water13.

Arsenic exposure is associated with effects on human health mediated through altered immunity, including 
infection, cancer, diabetes, cardiovascular disease, and in young children, impaired neurodevelopment12,36–45. 
Accumulating evidence indicate these effects occur as a consequence of arsenic exposure levels lower than previ-
ously appreciated. Investigations by our group of levels of arsenic exposure common in the US, beginning in fetal 
life through well water and maternal diet, identified potential health impacts that included dose-related trends in 
risk of infection and wheezing, as well as fetal growth restriction12,13,42,46. Immune profiling from this cohort has 
identified T cell decreases in cord blood18, increased placental gene expression of proinflammatory marker IL1B 
and developmental gene Gli348, and DNA methylation changes in cord blood and placenta20,48.

In our comprehensive, molecular epidemiology study of over 1,500 pregnant women and subsequently, their 
offspring, we are investigating the effects of arsenic on pregnant women, their fetuses and infants. We are con-
ducting the study in two regions of New Hampshire, including an area we previously determined has arsenic con-
centrations in well water that exceed 10 μg/L, the Environmental Protection Agency maximum contaminant level 
for drinking water. Here, we hypothesized that infant arsenic exposure is associated with perturbations to the 
infant gut microbiome at 6 weeks of age and that these differences would be sex-dependent and most pronounced 
in formula-fed infants. Clarifying and quantifying human exposure and ultimate health impacts, including those 
that may be mediated by shifts in the composition of the microbiome, can lead to policy changes for protection of 
human health, especially in our most vulnerable populations.

Results
As of June 17, 2016, 1,572 pregnant women had been enrolled in the NHBCS, and 1,544 NHBCS infants had 
reached 6 weeks of age. Inclusion criteria for the current study required the availability of infant urine and stool 
samples collected at 6 weeks of age and information on infant diet during the first 6 weeks of life. We began col-
lecting 6-week stool samples on August 15, 2012, and of the enrolled infants, 205 met inclusion criteria for the 
current study; of these, one sample was removed due to sequencing failure, resulting in a final sample size of 204.

Selected subject characteristics are shown in Table 1. The mean urinary arsenic concentration among 204 
infants aged 6 weeks was 0.6 μg/L with a median of 0.4 μg/L and range of below the limit of detection (<0.05 μg/L) 
to 4.8 μg/L. Three infants had urinary arsenic levels below the limit of detection. As we have demonstrated pre-
viously in this cohort, infant urinary arsenic levels were lowest among those who were exclusively breast fed34. 
Among the subjects included in the current study, infants who were exclusively breast fed had a mean urinary 
arsenic level of 0.5 μg/L compared with a mean of 0.9 μg/L for those fed both breast milk and formula and 
1.2 μg/L for those who were fed only formula.

Sequencing of the V4-V5 regions of the bacterial 16 S rDNA present in DNA extracted from infant stool sam-
ples collected at the same time yielded a total of 19,099,004 (mean: 93,623, range: 10,818–630,397) bacterial DNA 
reads that passed quality filtering procedures (details in49).

Relationship between urinary arsenic concentration and infant stool microbiome composition 
at 6 weeks of age.  Among the 204 infants in our study, natural log-transformed urinary arsenic concen-
tration was associated with infant stool microbiome adjusted for infant diet and urine specific gravity: pseudo 
F statistic: 1.85, p = 0.05; adjusted for urine specific gravity only: pseudo F statistic: 1.88, p = 0.05; Fig. 1a). We 
identified several associations between natural log-transformed infant urinary arsenic concentration and the 
relative abundance of individual bacterial taxa (Supplementary Table S1 and Fig. 2). Adjusting models for feeding 
status and urine specific gravity, we identified 8 OTUs with positive associations with natural log-transformed 

Variable

All subjects (N = 204) Males (N = 118) Females (N = 81)

Mean (Range) or N(%) Mean (Range) or N(%) Mean (Range) or N(%)

Gestational age, wk 39.3 (30.0–43.4) 39.3 (32.6–43.4) 39.6 (34.4–42.1)

Delivery mode

   Vaginal 140 (69) 82 (69) 58 (72)

   Cesarean 55 (27) 34 (29) 17 (21)

   Not reported 9 (4) 2 (2) 6 (7)

Infant birth weight, g** 3474 (1910–4689) 3496 (1910 4565) 3434 (2296 4689)

Feeding at 6 wk

   Exclusively breastfed 146 (72) 85 (72) 58 (72)

   Combination fed 49 (24) 27 (23) 20 (25)

   Exclusively formula-fed 9 (4) 6 (5) 3 (4)

Urinary arsenic concentration at 6 wk, μg/L 0.63 (<LOD – 4.8) 0.60 (<LOD – 3.9) 0.67 (<LOD – 4.8)

Home tap water arsenic concentration, μg/L 1.5 (<LOD – 57.0) 1.8 (<LOD – 57.0) 1.3 (<LOD – 23.1)

Table 1.  Selected characteristics of participants overall and by sex*. LOD: limit of detection (0.05 μg/L); *sex 
not reported for N = 5; **birth weight missing for n = 7 subjects.
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infant urinary arsenic concentrations at six weeks of age, including a strong positive association between natu-
ral log-transformed infant urinary arsenic and the relative abundance of bacteria in the genus Ruminococcus. 
We also identified 14 OTUs that were negatively associated with natural log-transformed infant urinary arse-
nic concentration, among them, OTUs assigned to the family Clostridiaceae and to the genera Bacteroides and 
Bifidobacterium. Overall, positively associated OTUs were largely from the phylum Firmicutes, while the majority 
of negatively associated OTUs were from the phyla Firmicutes or Bacteroidetes. Different OTUs representing 
bacteria of the genera Lactobacillus and Dorea were found to be both positively and negatively associated with 
natural log-transformed urinary arsenic concentration.

Sex-specific relationships between urinary arsenic concentration and infant stool microbiome 
composition at 6 weeks of age in formula-fed infants.  We stratified study subjects by sex to iden-
tify sex-specific effects given that sex-specific perturbations to gut microbiome community structure by arsenic 
exposure through drinking water have been observed in mice50. In addition, our previous research in the NHBCS 
indicated clear associations between the infant gut microbiome at 6 weeks of age and infant feeding and we also 
previously reported in this cohort that breast milk fed infants have lower urinary arsenic than formula-fed infants 
and is not a likely source of dietary arsenic15,34. Therefore, to address the potential for confounding or modifica-
tion of the relationship between arsenic exposure and the infant microbiome by feeding method, we also stratified 
based on infant feeding, analyzing infants who did and did not receive formula separately. Thus, we analyzed four 
groups: formula-fed males, formula-fed females, exclusively breastfed males and exclusively breastfed females.

We found strong associations between natural log-transformed urinary arsenic concentration and infant 
stool microbiome composition among exclusively or partially formula-fed male infants (n = 33, adjusted for for-
mula exclusivity vs breast milk with formula supplementation and urine specific gravity: pseudo F statistic: 2.30, 
p = 0.008; adjusted for urine specific gravity only: pseudo F statistic: 1.87, p = 0.03; Fig. 1b). No such association 
was observed in formula-fed females (n = 23, adjusted for formula exclusivity vs breastfed with formula supple-
mentation and urine specific gravity: pseudo F statistic: 0.54, p = 0.93; adjusted for urine specific gravity only: 
pseudo F statistic: 0.56, p = 0.92; Fig. S1A); exclusively breastfed males (n = 85, adjusted for urine specific gravity: 
pseudo F statistic: 0.58, p = 0.83; Fig. S1B); or exclusively breastfed females (n = 58, adjusted for urine specific 
gravity: pseudo F statistic: 1.14, p = 0.39; Fig. S1C).

To further investigate sex-specific differences among formula-fed infants, we compared mean UniFrac dis-
tances between pairs of samples in extreme quartiles of urinary arsenic among all formula-fed babies and, for 
male and female formula-fed babies only. In this analysis, we observed that males in extreme quartiles of urinary 
arsenic concentration had microbiome profiles that were more dissimilar than their female counterparts (Fig. 3).

Among males who were exclusively or partially formula-fed, natural log-transformed urinary arsenic con-
centration related to the relative abundance of 9 individual OTUs after adjusting for any breastfeeding and urine 
specific gravity—2 OTUs positively and 7 negatively (Fig. 2 and Supplementary Table S2). Microbes negatively 
associated with higher urinary arsenic in this subset included Bifidobacterium, Bacteroides, and Lactobacillus, 
whereas an OTU of the family Lachnospiraceae and another of the genus Streptococcus were positively associ-
ated. Associations between natural log-transformed urinary arsenic concentration and the relative abundance of 
individual OTUs for other stratification groups (formula-fed females, exclusively breastfed males, and exclusively 
breastfed females) are provided in the Supplementary Information (Supplementary Tables S3–S5).

Figure 1.  Principal coordinate plot of generalized UniFrac distance matrix comparing microbiome community 
profiles according to urinary arsenic concentration. (a) All N = 204 infants in the study; (b) N = 33 formula-
fed males. Corresponding plots for other groups are presented in the supplementary information (Fig. S1). 
Statistical testing was performed using a continuous measure of arsenic exposure, the natural log of urinary 
arsenic concentration; however, for visualization purposes, here subjects were divided at the median urinary 
arsenic concentration of 0.36 μg/L.
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Discussion
To our knowledge this is among the first studies of arsenic exposure and the human microbiome. In our analysis 
of 204 infants from our pregnancy cohort, we identified associations between urinary arsenic in 6-week-old 
infants and the early intestinal microbiome, both in terms of overall microbiome community composition and 
among bacterial taxa that are critical for immune training in infancy. We observed that male formula-fed infants 
may be more susceptible to the effects of arsenic on the microbiota than their female counterparts.

The range of arsenic exposure in well water in our US cohort study in New Hampshire is low in comparison 
to studies of arsenic exposure in other cohorts such as in Bangladesh38. Well water used by the mothers in this 
cohort had total arsenic concentrations ranging from below the limit of detection to 57.0 μg/L (mean: 1.5 μg/L; 
median: 0.1 μg/L), with 2% above the EPA maximum contaminant level of 10 μg/L. The infants in our study had 
urinary arsenic concentrations of ranging from below the limit of detection to 4.8 μg/L (mean: 0.6 μg/L; median: 
0.4 μg/L). At these exposure levels, we identified an association with the developing intestinal microbiome, alter-
ations of which associate with major health outcomes12.

We found an overall marginal association between infant urinary arsenic and microbiome composition 
among all infants in the study after adjustment for feeding method and urine specific gravity. Breast milk is 
known to be low in arsenic in our population and others15,34,35,51–55 and exclusively breastfed babies had lower 
urinary arsenic concentrations than formula or mixed fed infants in our cohort34. Previous research by our group 
showed that this is to the contamination of both formula powder and drinking water used to mix formula34, with 
popular brands of formula containing from 2.2–12.6 ng/g of arsenic, most of it inorganic56.

In our study, we identified associations with overall microbiome community composition among formula-fed 
males but not among breastfed infants or among formula-fed females. Chi and colleagues50 reported recently 
on sex-specific effects of arsenic on the microbiome in mice. In contrast to our finding in humans, female mice 
exhibited greater susceptibility to microbiome perturbation in association with exposure to arsenic-contaminated 
drinking water than males50. The bacterial communities that colonize mice and humans are distinct, a factor 
which may explain the different patterns of sex-specific associations between arsenic exposure and microbiome 

Figure 2.  Cladogram showing bacterial OTUs with differential relative abundances based on arsenic levels. 
Color-shaded areas of the cladogram delineate the most abundant phyla in the infant gut microbiota, with the 
size of corresponding nodes proportional to the abundance level of the clades. Several OTUs were significantly 
associated with arsenic levels; bars in the outer rings identified individual OTUs that were positively (blue 
bars) and negatively (red bars) correlated with urine arsenic concentrations. Rings correspond to all infants in 
the study (N = 204), male formula-fed infants only (N = 33), female formula-fed infants only (N = 23), male 
exclusively breastfed infants only (N = 85) and female exclusively breastfed infants only (N = 58).
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composition; however, taken together, this experimental work in mice and our observational human study sug-
gests that arsenic is one of many factors shaping the gut microbiome of exposed infants and that its effect may be 
different in males and females. In arsenic-exposed populations in Bangladesh, Mexico, and central Europe, sex 
has been implicated as a factor influencing the efficiency of inorganic arsenic metabolism57–59. In experimental 
gut simulation models, gut microbes are capable of metabolizing, thiolating and methylating arsenic into more 
or less toxic forms prior to absorption into the blood stream4,6,10. The underlying dynamics of any interactions 
between arsenic exposure, the gut microbiome and sex are therefore likely complex, as the composition of the 
gut microbiome may be both a driver and consequence of arsenic exposure, with sex hormones potentially influ-
encing both arsenic metabolism and gut microbiome composition1,4,6,8–10,50,60. Metabolomic profiling may offer 
mechanistic clues.

Arsenic exposure is a risk factor for a range of diseases that are also associated with gut microbial community 
composition. Numerous epidemiological studies support associations between arsenic exposure and diabetes risk 
(reviewed in61). We found that genera from the phylum Firmicutes and the family Lachnospiraceae were enriched 
with higher arsenic exposure. In obese mice, intestinal colonization with Lachnospiraceae has been implicated in 
the development of diabetes62. Arsenic has also been shown to have determinantal effects on immune function, 
even in low doses63–66. In our study, Clostridiaceae and the genera Bacteroides and Bifidobacterium, in particular, 
were inversely related to arsenic exposure. Bacteroides species play a critical role in the maturation of the immune 
system and help induce regulatory T-cells67,68. Bifidobacterium also is implicated in immune training in early 
infancy, and decreases are associated with occurrence of allergy and atopy69–71. Studies linking the neonatal gut 
microbiome composition to development of asthma, identified a depletion of Bifidobacterium, Faecalibacterium, 
and Akkermansia as being associated with greater risk of asthma at age four71,72. Among male infants, negative 
associations were observed between infant urinary arsenic and Bifidobacterium, Bacteroides and Lactobacillus. 
The presence of these particular microbes in early life has been implicated in association with complex immune 
training of the adaptive and innate immune system; absence is associated with decreased immune responsive-
ness73, early onset allergy27,74 and asthma and atopy71.

The differential abundance of many bacterial taxa along an arsenic exposure gradient that we observed is con-
sistent with the antimicrobial effects of arsenic. For instance, diamino dihydroxy arsenobenzol (arsphenamine) 
known as Salvarsan was used as an antibiotic to treat syphilis prior to the introduction of penicillin4,6,10. Future 
studies should evaluate a potential role for gut microbiome in a causal pathway linking arsenic with immune 
function and health outcomes such as respiratory and gastrointestinal disease.

Our study benefited from the careful characterization of arsenic exposure during infancy using advanced 
methods in arsenic detection and next generation sequencing of the gut microbiome. Nonetheless, findings are 
limited by the analysis of one time point in infancy at six weeks of life in a single US cohort in New Hampshire. 
Thus, our results may not be generalizable to other populations, groups with higher levels of arsenic exposure, or 
at later time points in development. In addition, our observational study design limits our ability to make causal 
inferences. However, our study draws on one of the largest birth cohorts in the US, with ongoing longitudinal 
sampling of infants and young children. With ongoing accrual and future collaborations efforts, we hope larger, 
multi-center studies and prospective analysis of additional time points in infancy can be achieved.
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Figure 3.  Mean UniFrac distances between pairs of samples that are in extreme quartiles of urinary arsenic for 
all babies who were formula-fed, for formula-fed males only and for formula-fed females only. Bars represent 
bootstrapped 95% confidence intervals around the means.
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In conclusion, we have identified potential impacts of infant arsenic exposure and differences in overall intes-
tinal microbiome composition and in key taxa that are critical to proper immune training in early life. Our data 
suggest sex specific differences among formula-fed, arsenic exposed young infants, with male infants experienc-
ing differences in the microbiome with increasing arsenic exposure. Clarifying the impact of low level arsenic 
exposure on the developing infant microbiome and determining the impact on immune function and health 
outcomes affords opportunity to alter exposures and impact lifelong health.

Methods
The New Hampshire Birth Cohort Study.  The New Hampshire Birth Cohort Study (NHBCS) recruited 
pregnant women ages 18–45 from New Hampshire prenatal clinics beginning at approximately 24 to 28 weeks 
gestation as previously described75,76. Women were eligible if they used a private, unregulated well at the res-
idence occupied since their last menstrual period and were not planning to move. Institutional review board 
approval was obtained from the Center for the Protection of Human Subjects at Dartmouth, and participants 
provided written informed consent. All methods were performed in accordance with the relevant guidelines and 
regulations.

Infant urine and stool samples.  A subset of mothers enrolled in the NHBCS provided infant stool sam-
ples collected at the time of regularly scheduled maternal postnatal follow-up visits conducted at approximately 
6 weeks post-partum. Infant urine samples were collected using provided diapers (Pampers) containing cotton 
pads (Shiseido) according to a protocol adapted from Fängström et al.35. Urine-saturated pads were placed in an 
acid washed specimen cup and sealed in a polyethylene bag. Stool was collected in provided diapers, sealed in a 
separate polyethylene bag and frozen in home freezer until transport. Urine and stool samples were transported 
in a cooler with ice packs and brought to the post-partum visit within 24 hours of collection. Urine samples were 
maintained at 4 °C and processed within 24 hours. During processing urine was removed from pads, aliquoted 
into acid washed tubes and frozen at −80 °C. Stool was maintained frozen and thawed at 4 °C prior to processing. 
Using sterile applicators, 0.5–1 g of stool was aliquoted into cryovial tubes containing 3 ml of RNAlater stabilizer, 
homogenized by vortexing to create a slurry, maintained at 4 °C for 24 hours and then frozen at −80 °C.

Urine sample analysis for infant arsenic exposure.  Urine samples were analyzed for total arsenic 
concentration using inductively coupled plasma mass spectrometry at the Dartmouth Trace Metal Analysis 
Laboratory as described previously34. The limit of detection for total urinary arsenic was 0.05 μg/L, and sam-
ples with measured arsenic levels below this limit were assigned values of half of the limit of detection, or 
0.025 μg/L. Though total urinary arsenic includes arsenobetaine, an organoarsenic compound considered rela-
tively non-toxic, human exposure to arsenobetaine is primarily through the consumption of fish and seafood. In 
young infants who have not yet been introduced to complementary foods, total arsenic is therefore a reasonable 
surrogate for exposure to toxic arsenic species.

Stool sample analysis for infant gut microbiome composition.  We performed microbiome char-
acterizations of stool samples as described previously49. Briefly, DNA was extracted using the Zymo Research 
ZR Fecal DNA Mini-prep extraction kit with 0.5 mm bashing beads and sequenced with Illumina tag sequenc-
ing of the 16S rRNA gene V4-V5 hypervariable region at the Marine Biological Laboratories in Woods Hole, 
Massachusetts using established methods77,78. Details of sequencing methods, quality control and filtering are 
described elsewhere79.

Infant feeding.  We have previously reported associations between infant feeding method (breast milk vs. 
formula vs. a combination of breast milk and formula) and infant gut microbiome composition49 in the NHBCS. 
In the present analysis, therefore, we took care to ensure that observed associations between infant arsenic expo-
sure and microbiome composition were not confounded by infant feeding by both adjusting models for infant 
feeding and by stratification by feeding group. We ascertained infant diet from birth until the time of stool collec-
tion by telephone questionnaires that included questions regarding the duration of breastfeeding and the timing 
of formula introduction, if any. Infants who up until the time of urine and stool collection were fed breastmilk 
and who had never been given formula were given the dietary status of exclusive breastmilk feeding; infants who 
had not been breastfed and who had been fed formula only were assigned the status exclusively formula-fed; 
and infants who had received both breastmilk and formula were identified as having a diet of a combination 
of breastmilk and formula. Adjusted models included these three dietary categories. Stratified analyses evalu-
ated formula-fed (i.e. exclusively formula-fed and combination fed) subjects as a group and exclusively breastfed 
subjects as a group. Sample size considerations precluded us from analyzing exclusively formula-fed subjects 
separately from combination fed subjects; however, our previous research on this cohort indicated that breastfed 
infants supplemented with formula have microbiome compositions more similar to those fed formula exclusively 
than to those fed breast milk exclusively49.

Data analysis.  We implemented the UCLUST algorithm80 in QIIME version 1.9.181 to group sequences 
of ≥97 percent similarity into open reference operational taxonomic units (OTUs). Bacterial taxonomy was 
assigned using PyNAST alignment82 to the Greengenes reference database83–85.

We evaluated the associations between infant urinary arsenic concentration and stool microbiome commu-
nity composition using generalized UniFrac analysis86. To avoid sequencing depth bias, the OTU table was rar-
efied to the minimum sequencing depth of 10,818 reads in the data set prior to analysis. The phylogenetic tree 
required for UniFrac analysis was computed using FastTree87 and was midpoint rooted. Phylogenetic distances 
between the microbiome community composition of pairs of infant stool samples were characterized using gen-
eralized UniFrac analysis, and relationships between pairwise generalized UniFrac distance matrices and natural 
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log-transformed infant urinary arsenic concentration were evaluated with a permutational multivariate analysis 
of variance (PERMANOVA) performed with 10,000 permutations. All PERMANOVA models were adjusted for 
urine specific gravity to control for the effects of urine concentration. While statistical analyses were performed 
on continuous measures of urinary arsenic concentrations, generalized UniFrac distances were visualized in 
two-dimensional space using principal coordinates analysis with points colored according to group membership 
defined by separating subjects at the median urinary arsenic concentration for all subjects of 0.36 μg/L. To fur-
ther visualize relationships, samples were divided according to infant urinary arsenic concentration quartile, and 
mean pairwise generalized UniFrac distances were computed for pairs in extreme (first and fourth) quartiles. 95 
percent confidence intervals around mean pairwise generalized UniFrac distances were computed using the bias 
correction with acceleration method.

Associations between infant urinary arsenic concentration and specific OTU relative abundance were mod-
eled by a zero-inflated logistic normal (ZILN) model88. We regressed the log-ratio transformations of the OTUs 
relative abundance on the arsenic exposure adjusting for specific gravity and feeding method. Zero relative abun-
dance values were handled by the zero part of ZILN distribution in the regression model. Estimating-equations 
approach was employed for the estimation procedure to address the complicated inter-taxa correlations induced 
by the hierarchical phylogenetic tree structure. The minimax concave penalty89 was used to select OTUs and min-
imize bias in parameter estimation in the regression model. Beta estimates from this model were aggregated based 
on the lowest taxonomic rank, annotated into a phylogenetic tree and visualized using GraPhlAn v0.9.7 (http://
huttenhower.sph.harvard.edu/graphlan)90.

Data availability.  The datasets generated during and/or analyzed during the current study are available in 
GENBANK http://www.ncbi.nlm.nih.gov/genbank/ under accession number PRJNA296814 and/or from the cor-
responding author on reasonable request.
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