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ARTICLE

Feature-based learning improves adaptability
without compromising precision
Shiva Farashahi1, Katherine Rowe 1, Zohra Aslami1, Daeyeol Lee 2,3,4,5 & Alireza Soltani 1

Learning from reward feedback is essential for survival but can become extremely challenging

with myriad choice options. Here, we propose that learning reward values of individual

features can provide a heuristic for estimating reward values of choice options in dynamic,

multi-dimensional environments. We hypothesize that this feature-based learning occurs not

just because it can reduce dimensionality, but more importantly because it can increase

adaptability without compromising precision of learning. We experimentally test this

hypothesis and find that in dynamic environments, human subjects adopt feature-based

learning even when this approach does not reduce dimensionality. Even in static,

low-dimensional environments, subjects initially adopt feature-based learning and gradually

switch to learning reward values of individual options, depending on how accurately objects’

values can be predicted by combining feature values. Our computational models reproduce

these results and highlight the importance of neurons coding feature values for parallel

learning of values for features and objects.
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Human behavior is marked by a sophisticated ability to
attribute reward outcomes to appropriate choices and
events with surprising nuance. Learning from reward

feedback is essential for survival but can be extremely challenging
in natural settings because choices have many features (e.g., color,
shape, and texture), each of which can take different values,
resulting in a large number of options for which reward values
must be learned. This is referred to as the “curse of dimension-
ality,” because the standard reinforcement learning (RL) models
used to simulate human learning do not scale up with the
increasing dimensionality1–4.

An increase in dimensionality creates two main difficulties for
humans and the standard RL models that attempt to directly
learn the value of individual options. First, such learning is too
slow because a large amount of reward feedback is needed for an
accurate estimate of all reward values, resulting in imprecise
estimates of reward value if reward contingencies quickly change
over time. For example, a child naturally learns the tastes of
various fruits she consumes throughout her life (e.g., green crispy
apples, red crispy apples, yellow mushy bananas, etc.), but it
would take a long time to acquire preferences for all different
types of fruits. Second, the value of unexperienced options cannot
be known; for example, how should the child approach a green,
mushy avocado never encountered before?

A few approaches are proposed for how we overcome the curse
of dimensionality. One approach is to construct a simplified
representation of the stimuli and therefore, to learn only a small
subset of features and ignore others5, 6. However, there are
behavioral and neural data suggesting that in order to make
decisions in multi-dimensional tasks, humans process all features
of each option simultaneously, rather than focus on any single
feature7. Moreover, ignoring certain features could be detrimental
in dynamic environments where previously non-informative
features can suddenly become informative. Another approach is
to combine multiple environmental states or actions, thereby
reducing the number of states or actions to be learned8, 9. Finally,
one could infer the structure of the task and create rules to
estimate reward values of options based on their features, which
requires a much smaller set of values to be learned10–13.

A simple form of this rule-based approach is feature-based
learning, in which the reward values of all features are learned in
parallel, and then combined according to a specific rule for
estimating the reward values for individual options. For example,
a child could evaluate fruits based on their color and texture and
learn about these features when she consumes them. This heur-
istic feature-based learning is only beneficial if a generalizable set
of rules exist to construct the reward value of all options accu-
rately by combining the reward values of their features. Unfor-
tunately, this is often not the case; for example, not all green fruits
are tasty. So, could the benefits of feature-based learning over-
come a lack of generalizable rules and still make this learning
approach a viable heuristic? Currently, there is no single, unified
framework for describing how such properties of the environ-
ment influence learning strategy (e.g., feature based vs. object
based).

An important aspect of feature-based learning is that reward
values of all features of the selected option can be updated based
on a single reward feedback, as opposed to updating only the
value of the selected option in object-based learning. This makes
feature-based learning faster and more adaptable, without being
noisier, than object-based learning. This is important because
simply increasing the learning rates in object-based learning can
improve adaptability but also adds noise in the estimation of
reward values, which we refer to as the adaptability-preci-
sion tradeoff14, 15. Therefore, the main advantage of heuristic
feature-based learning might be to mitigate the adaptability-

precision tradeoff. To test this hypothesis, we propose a general
framework for understanding the advantages of feature-based
learning and design a series of experiments to characterize how
multiple factors encourage the adoption of feature-based vs.
object-based learning. These factors include: dimensionality, or
the number of options or features to be learned; and general-
izability, or how well reward values of options can be estimated
from the values of their features. Moreover, we construct and test
two alternative network models to elucidate neural mechanisms
consistent with our experimental observations.

We found that in dynamic environments, humans adopted
feature-based learning even when this approach did not reduce
dimensionality, namely, when the same numbers of options and
features have to be learned. Even in static, low-dimensional
environments where dimensionality reduction due to feature-
based learning was small, subjects initially adopted feature-based
learning and only gradually switched to learning individual
option/object values. The degree of switching to object-based
learning, however, was much smaller with higher dimensionality,
or when objects’ values could be more accurately predicted by
combining the reward values of their features (i.e., higher gen-
eralizability). Overall, these results confirm our hypothesis and
suggest feature-based learning as a powerful heuristic for learning
in dynamic, multi-dimensional environments. Finally, we found
that our experimental results can be better captured by a model
that has separate systems for estimating reward values of objects
and features, and uses the output of the system that carries a
stronger singal to make a decision on a given trial and accordingly
adjusts the weight of this system based on reward feedback.

Results
Feature-based learning mitigates adaptability-precision trade-
off. To test our hypothesis that feature-based learning is mainly
adopted to mitigate the adaptability-precision tradeoff, we first
developed a general framework for learning in dynamic, multi-
dimensional environments (see Methods for more details). If
options/objects contain m features, each of which can have n
instances, there would be nm possible objects in the environment.
The decision maker’s task is to learn the reward values of options/
objects via reward feedback in order to maximize the total reward
when choosing between two alternative options on each trial. To
examine the advantages of object-based and feature-based
approaches, we simulated this task using two different model
learners. The object-based learner directly estimates the reward
values of individual objects via reward feedback, whereas the
feature-based learner estimates the reward values of all feature
instances, such as red, blue, square, or triangle. The latter is
achieved by updating the reward values associated with all fea-
tures of the object for which reward feedback is given. The
feature-based learner then combines the reward values of features
to estimate the reward values of individual objects. To examine
how the performance of the two learners depends on the reward
statistics in the environment, we varied the relationship between
the reward value of each object and the reward values of its
features in order to generate multiple environments, each with a
different level of generalizability. In a fully generalizable envir-
onment, the estimated reward probabilities based on features
deviate from the actual reward probabilities by only a small
degree (Supplementary Fig. 1), but more importantly, the rank
order of estimated and actual reward probabilities, which deter-
mines preference between objects, is also similar.

Feature-based learning might be faster than object-based
learning with the same learning rate because reward values of
all features of the selected option can be updated after each
reward feedback. In contrast, only the value of the selected option
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is updated in the object-based learning model. Given a sufficient
amount of time, the object-based learner can accurately estimate
all option values, whereas the accuracy of the feature-based
learner is limited by the generalizability of the environment. By
comparing the time course of information acquired by the object-
based and feature-based learners when reward values are fixed
and using the same learning rate, we computed the time at which
the object-based learner acquires more information than the
feature-based learner (the ‘cross-over point’; Methods section).

We found that for sufficiently large values of generalizability
(>0.5), the feature-based learner acquires more information early
on, but ultimately, the object-based learner reaches the same level
of information as the feature-based learner and later surpasses it.
Thus, object-based learning will be ultimately more useful in a
stable environment. On the other hand, feature-based learning
might be more beneficial in volatile environments where reward
contingencies change often. Moreover, the cross-over point
occurs later for smaller learning rates, indicating that slowing
down learning to increase precision would favor feature-based
learning (Fig. 1a). The advantage of feature-based over object-
based learning increases with the dimensionality of the

environment, as the number of value updates per reward
feedback increases with the number of features in each object
(Fig. 1b). Finally, an environment with randomly assigned reward
probabilities tends to be more generalizable as the dimensionality
increases (Fig. 1b, inset). This property further increases the
advantage of adopting feature-based learning in high-dimensional
environments.

These simulations demonstrate how the adaptability-preci-
sion tradeoff might favor the adoption of feature-based over
object-based learning in certain environments. Because only the
value of the selected option is updated after each reward feedback,
object-based learning in a volatile environment requires a higher
learning rate, which comes at the cost of lower precision. Feature-
based learning can mitigate this problem by speeding up the
learning via more updates per feedback, instead of increasing the
learning rate.

Our simple framework also provides clear predictions about
how different factors such as dimensionality reduction, general-
izability, and volatility might influence the adoption of feature-
based learning. Frequent changes in reward contingencies and
high dimensionality should force the decision maker to adopt
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Fig. 1 A framework for understanding model adoption during learning in dynamic, multi-dimensional environments. a Cross-over point is plotted as a
function of the generalizability index of the environment for different values of the learning rate. The cross-over point increases with generalizability and
decreases with the learning rate. The larger learning rate, however, comes at the cost of more noise in estimation (lower precision). The arrow shows zero
cross-over point indicating that the object-based learning is always superior for certain environments. b Cross-over point is plotted as a function of
generalizability separately for environments with different values of dimensionality (for α = 0.05). The advantage of feature-based over object-based
learning increases with larger dimensionality. The inset shows the distribution of the generalizability index in randomly generated environments for three
different dimensionalities. c The object-based approach for learning multi-dimensional options/objects requires learning nm values, where there are m
possible features and n instances per feature in the environment, whereas the feature-based approach requires learning only n×m values resulting in a
dimensionality reduction equal to (nm−n×m). A feature-based approach, however, is beneficial if there are generalizable rules for estimating the reward
values of options based on the combination of features’ values. A lack of generalizability should encourage using the object-based approach. Finally,
frequent changes in reward contingencies (dynamic environment) should increase the use of feature-based learning because it allows update of multiple
features based on a single feedback and thus increases adaptability without compromising precision
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feature-based learning (Fig. 1c). On the other hand, lack of
generalizability of the reward values of features to all object values
should encourage adopting more accurate object-based learning.
But immediately after changes in reward values, feature-based
learning should still be favored since it acquires reward
information more quickly. We tested these predictions in four
experiments.

Feature-based learning in dynamic environments. To test our
hypothesis and explore different factors influencing model
adoption in dynamic multi-dimensional environments, we
designed four experiments in which human subjects learned the
reward values of different objects through reward feedback. In all
experiments, subjects chose between a pair of dissimilar objects
associated with different reward probabilities, but the relationship
between the reward probabilities of objects and those of their
features (color, shape, etc.) was varied.

In Experiment 1, the pair of objects in each trial consisted of
colored shapes with associated reward probabilities that unpre-
dictably changed over time (between blocks of 48 trials;
Supplementary Fig. 2). Importantly, the feature-based and
object-based approaches required learning the same number of
reward values: four objects (red square, red triangle, blue square,
and blue triangle) and four feature instances (red, blue, square,
and triangle). Therefore, adopting feature-based learning did not
reduce dimensionality in Experiment 1. Moreover, reward

probabilities assigned to different objects, which we collectively
refer to as the reward schedule, could be reliably estimated by
combining the reward values of their features if the environment
was generalizable. By examining choice behavior during Experi-
ment 1, we aimed to study specifically how adaptability required
in a dynamic environment influences the adoption of a model
used for learning and decision making (Fig. 1c). Experiment 2
was similar to Experiment 1, except that reward probabilities
assigned to different objects were not generalizable and could not
be estimated accurately by combining the reward values of their
features. Therefore, choice behavior in Experiment 2 could reveal
how the adaptability required in a dynamic environment and a
lack of generalizability both influence model adoption (Fig. 1c).
Finally, in Experiments 3 and 4, we increased the dimensionality
of the environment to examine the effect of a small and moderate
dimensionality reduction by feature-based learning. Reward
probabilities, however, were fixed throughout both of these
experiments and reward values assigned to features were not fully
generalizable to objects. This design allowed us to study the
influence of dimensionality reduction and lack of generalizability
on model adoption (Fig. 1c).

Overall, most subjects (64 out of 92) performed above the
statistical chance level in both Experiments 1 and 2, indicating
that they learned the values of options as they changed over time
(Fig. 2a). To examine the time course of learning, we computed
the average probability of reward as well as the probability of
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Fig. 2 Dynamic reward schedules promote feature-based learning whereas a lack of generalizability promotes object-based learning. a Performance or the
average reward harvested by subjects during Experiments 1 (generalizable environment) and 2 (non-generalizable environment). Dashed lines show the
mean performance and solid lines show the threshold used for excluding subjects whose performance was not distinguishable from chance (0.5). b Plotted
is the Bayesian information criterion (BIC) based on the best feature-based or object-based models, separately for each environment. The insets show
histograms of the difference in BIC from the two models for the generalizable (blue) and non-generalizable (red) environments. The dashed lines show the
medians and the stars indicate significant difference from zero (two-sided rank-sum, P< 0.05). Subjects were more likely to adopt a feature-based
approach in the generalizable environment and an object-based approach in the non-generalizable environment. c, d Time course of learning during each
block of trials in Experiments 1 and 2. Plotted are the average harvested reward (c) and probability of selecting the better option (d) in a given trial within a
block across all subjects (the shaded areas indicate s.e.m.). The dashed line shows chance performance. The solid blue and red lines show the maximum
performance based on the feature-based approach in the generalizable and non-generalizable environments, respectively, assuming that the decision
maker selects the more rewarding option based on this approach on every trial. The maximum performance for the object-based approach was similar in
the two environments, and equal to that of the feature-based approach in the generalizable environment

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01874-w

4 NATURE COMMUNICATIONS | 8:  1768 |DOI: 10.1038/s41467-017-01874-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


selecting the more rewarding option in a given trial during each
block of trials (when probabilities were fixed). The latter quantity
measured how well the subjects discriminated between the four
options based on their associated reward probabilities. This
analysis revealed that on average, it took approximately 15 trials
for a subject to reach maximum performance (Fig. 2c) or
discrimination (Fig. 2d) after a reversal. Examining choice
behavior and performance in different super-blocks of the
experiments did not reveal any significant change in achieving
this performance over the course of the experiment (Supplemen-
tary Fig. 3a–d) but showed an overall decrease in learning in the
last super-block of Experiment 2 (Supplementary Fig. 3a–d).
Altogether, these results indicate that subjects did not use
information from early reward schedules to predict future
changes in reward schedules, a challenging task given that reward
values for all four options changed between blocks.

To identify the learning model adopted by each subject, we fit
the experimental data in each environment using six RL models
that relied on either an object-based or a feature-based approach
(Methods). To ensure that this fitting procedure can actually
detect a specific learning approach adopted by individual
subjects, we generated choice data using each of the six models
over a wide range of model parameters and fit the resulting data
with all the models (Methods section). This analysis demonstrates
that our fitting method is able to distinguish between the
alternative models used for generating the data (Supplementary
Fig. 4) and to estimate underlying parameters accurately
(Supplementary Fig. 5).

By fitting subjects’ choice data, we found that the coupled
feature-based RL (coupled indicates that values of both chosen

and unchosen options are updated in each trial) and feature-
based RL with decay provided the best overall fits for the data in
the generalizable environment (Experiment 1; Supplementary
Table 1). More importantly, all feature-based models provided a
better overall fit than their object-based counterparts. We also
compared the goodness-of-fit based on the best feature-based and
object-based models for each individual and found that feature-
based models provided significantly better fits in the generalizable
environment (BIC (best feature-based)−BIC (best object-based)
(mean±s.d.)= −34.61± 47.55; two-sided sign-rank test, P=
3.2×10−5, N= 43, d= 0.73; Fig. 2b). By contrast, in the non-
generalizable environment (Experiment 2), the object-based
models provided significantly better fits than feature-based
models (BIC (best feature-based)−BIC (best object-based)
(mean±s.d.)= 29.77± 71.07, two-sided sign-rank test, P= 0.030,
N= 21, d= 0.42). We found consistent results when we
considered each of the four super-blocks separately, indicating
that the observed pattern of model adoption was not due to the
use of different strategies early and late in the experiments
(Supplementary Fig. 6a–d). Finally, we analyzed choice behavior
of the excluded subjects but did not find any evidence that those
subjects adopted a unique strategy. These subjects did not favor
feature-based or object-based learning, nor did they change their
approach over the course of experiments. Instead, they likely did
not engage in the experiment due to task difficulty, especially
during Experiment 2 (Supplementary Figs. 6e–h and 7a–c).

Together, these results illustrate that subjects tended to adopt
feature-based learning in the generalizable environment and
object-based learning in the non-generalizable environment.
Therefore, a dynamic reward schedule encouraged subjects to
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use feature-based learning, which improves adaptability without
compromising precision, whereas a lack of generalizability led
them to switch (as a group) to slower but more accurate object-
based learning.

Shift from feature-based to object-based learning. Our frame-
work predicts that feature-based learning should be adopted
initially until the acquired information derived from the object-
based approach becomes comparable to information derived
from the feature-based approach. To test this prediction, we
designed two additional experiments (Experiments 3 and 4) in
which human subjects learned the values of a larger set of objects
in a static, non-generalizable environment (Methods section and
Supplementary Fig. 8). The purpose of the static environment was
to isolate the influence of generalizability and dimensionality
reduction on model adoption in the absence of changes in reward
schedules studied in Experiments 1 and 2. Moreover, in order to
assess the temporal dynamics of model adoption more directly,
we asked subjects to provide their estimates of reward prob-
abilities for individual objects during five or eight estimation
blocks throughout the experiment. The reward assignment was
such that one of the two features was partially informative about
the reward value, while the other feature did not provide any
information by itself, resulting in non-generalizability of the
environments. More specifically, the average reward values for
instances of the non-informative feature were identical (Experi-
ment 3) or very similar (Experiment 4) but the same average
values for the informative feature were distinct (compare the
average of values in individual columns or rows in Supplementary
Fig. 8a).

Overall, the subjects were able to learn the task in Experiment
3, and the average performance across all subjects monotonically
increased over time and plateaued at about 100 trials (Fig. 3a).
Examination of the estimated reward probabilities for individual
objects also showed an improvement over time, but more
importantly, suggested a transition from a feature-based to an
object-based approach as the experiment progressed. We utilized
general linear regression and correlation to identify the model
adopted by the subjects over the course of the experiment from
their reward probability estimates (Methods section). The fit of
subjects’ estimates revealed that the weight of the object-based
approach relative to the sum weights of the object-based and
feature-based approaches was much smaller than 0.5 during the
first estimation block but gradually increased over time (relative
weight= 0.32, 95% CI (0.27 0.36) and 0.62, 95% CI (0.57 0.66) for
the first two and last two estimates, respectively; Fig. 3b). In
addition, the percentage of variance in estimates explained by
object-based and feature-based approaches (R2) gradually
increased over the course of the experiment. Similarly, correlation
analysis revealed that during early estimation blocks, the
estimates of only a small fraction of subjects were more correlated
with actual reward probabilities than reward probabilities
estimated based on features, but this fraction increased over time
(comparison of fractions in first two estimates vs. last
two estimates: χ2 (1)= 17.14, P= 3.5×10−5, N= 38) (Fig. 3c).
The results of these two analyses illustrated that in Experiment 3,
subjects initially adopted feature-based learning and gradually
switched to object-based learning.

This result indicates a transition from feature-based to object-
based learning. In Experiment 4, however, feature-based RL with
decay provided the best overall fit (Supplementary Table 1) and
the fit of this model was better than the corresponding object-
based learning model throughout the experiment (Fig. 3h).
Overall, the results based on fitting choice behavior were
consistent with the results based on subjects’ reward estimates.

Finally, we performed similar analyses for choice behavior and
estimation of the excluded subjects but did not find any evidence
that those subjects adopted a strategy qualitatively different from
the one used by the remaining subjects (Supplementary Fig.
7d–i). We increased dimensionality of the environment in
Experiment 4 in relation to Experiment 3 to further examine
the influence of dimensionality reduction on model adoption.
The performance again plateaued at about 100 trials (Fig. 3e).
Moreover, the fit of subjects’ estimates revealed that the relative
weight of the object-based approach only slightly increased over
time and plateaued at a small value (relative weight= 0.17, 95%
CI (0.13 0.21) and 0.24, 95% CI (0.21 0.27) for the first two and
last two estimates, respectively; Fig. 3f). Correlation analysis
revealed a very similar pattern when the fraction of subjects using
object-based learning did not significantly increase over time
(comparison of fractions in first two estimates vs. last
two estimates: χ2 (1)= 2.27, P= 0.13, N= 50); Fig. 3g). All of
these results suggest stronger feature-based learning compared to
object-based learning when dimensionality or generalizability
increased, because both these quantities increased in Experiment
4 relative to Experiment 3 (for Experiments 3 and 4, D= 9 and 16
and generalizability = 0.57 and 0.76, respectively).

We also fit the data from Experiments 3 and 4 using various RL
models in order to identify the model adopted by the subjects. In
Experiment 3, object-based RL with decay provided the best overall
fit (Supplementary Table 1). Importantly, this model provided a
better fit than its corresponding feature-based RL. Examination of
the goodness-of-fit over time illustrated that the object-based
learning model provided a better fit, particularly later in the
experiment (Fig. 3d). The difference between the quality of the fit
of the object-based and feature-based models in early (1–100) and
late (100–280) trials ( �LLobject�based þ LLfeature�based

� �
early� �LLobject�based þ LLfeature�based

� �
late (mean±s.d.)= 0.023±

0.050) was significantly different from zero (two-sided sign-
rank test; P= 0.029, d= 0.46, N= 27). We note that the boundary
for early vs. late trials (at 100) was selected based on the time
course of performance (Fig. 3a) but that the reported difference
was significantly larger than zero (P< 0.05) for any boundary
values between 60 and 130 as well.

Together, we found that during both Experiments 3 and 4,
subjects first adopted feature-based learning. In Experiment 3,
they subsequently transitioned to object-based learning. Such a
transition was not evident in Experiment 4 due to higher
dimensionality and larger generalizability in Experiment 4, both
of which would encourage feature-based learning.

Testing the behavioral predictions of feature-based learning.
Feature-based learning assumes that reward feedback on a given
object is attributed to all features of that object and thus, predicts
that the reward value of all objects that share a feature with the
object for which reward feedback was received should be updated.
To test this prediction, we computed the feature-based ‘differential
response’ to reward feedback that measures the differential change
in the value of features of the object selected on the previous trial
for when it was rewarded vs. when it was not rewarded (Methods
section). We predicted that this measure would be positive for
subjects who adopted feature-based learning. For comparison, we
also calculated the object-based differential response equal to the
difference between the probability of selecting an object that was
selected and rewarded on the previous trial and the same prob-
ability when the previous trial was not rewarded. This measure is
equivalent to the difference between win–stay and lose-stay strat-
egy and should be positive for all subjects independently of their
adopted model. We used goodness-of-fit to determine whether a
subject adopted feature-based or object-based learning in a given
experiment.
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The feature-based differential response was overall positive for
subjects who adopted feature-based learning in all four experi-
ments, but this effect was more difficult to observe in
Experiments 2 and 3 due to the small sample size, since most
subjects adopted object-based learning in these experiments (one-
sided sign-rank test; Experiment 1: P= 1.3×10−7, d= 1.48, N=
38; Experiment 2: P= 0.031, d= 0.97, N= 5; Experiment 3:
P= 0.012, d= 1.07, N= 8; Experiment 4: P= 0.0065, d= 1.004,
N= 19; Fig. 4a–d). In contrast, feature-based differential response
was overall negative or undistinguishable from 0 for subjects who
adopted object-based learning (one-sided sign-rank test, Experi-
ment 1: P= 0.16, d= 0.70, N= 5; Experiment 2: P= 0.01,
d= 0.62, N= 16; Experiment 3: P= 0.015, d= 0.49, N= 19;
Experiment 4: P= 0.078, d= 0.97, N= 6; Fig. 4e–h). As expected,
all subjects were more likely to choose an object when it was
rewarded compared to when it was not rewarded on the previous
trial (red bars in Fig. 4).

Finally, to further validate the models used for fitting, we
simulated choice data using the estimated model parameters for
individual subjects and computed the feature-based and object-
based differential responses for the simulated data. The similarity
between the average differential responses based on simulated
and actual choice (dashed and solid lines in Fig. 4) indicated the
success of our models in capturing behavior. Together, these
results confirm the prediction of feature-based learning that
reward values of all objects that share a feature with the selected
object are updated based on the reward feedback.

Influence of attention on feature-based learning. Although the
main goal of our study was to identify factors influencing how
humans adopt feature-based vs. object-based learning, our design
also allowed us to examine how attention may influence learning.
In all our experiments, the two features of options provided

different amounts of information. In principle, subjects could
differentially attend to relevant features, resulting in assigning
different weights to these features when learning or making
decisions16. Therefore, we examined possible attentional effects
by fitting choice behavior with a feature-based model with decay
that has two separate learning rates for the less and more infor-
mative features (for subjects who adopted feature-based learning).
By design, this model can also assign different weights to the two
features. We expected that attention would result in a larger
learning rate and/or weight for the more informative relative to
the less informative feature. However, because the estimated
learning rates and assigned weights for individual subjects were
correlated and only their product captured the amount of change
in choice behavior due to reward feedback, we used this product
to measure difference between the two features. Moreover, we
also computed feature-based differential response for the two
features in order to compare how changes in the value of features
of the object selected on the previous trial depend on how
informative those features were.

First, we found a larger product of the learning rate and the
assigned weight for the more informative than the less
informative feature (one-sided sign-rank test; Experiment 1: P
= 0.044, d= 0.23, N= 38; Experiment 2: P= 0.031, d= 1.07,
N= 5; Experiment 3: P= 0.0028, d= 0.90, N= 8; Experiment 4:
P= 0.00075, d= 0.76, N= 19; Fig. 5a–d). This indicates that
subjects who adopted feature-based learning incorporated reward
feedback (in terms of a combination of the learning rate and
weights) from the more informative feature more strongly.
Consistently, we found a larger feature-based differential response
for the more informative feature in all experiments but this effect
was not significant in Experiments 2 and 3 due to the small
sample size (one-sided sign-rank test; Experiment 1:
P= 1.1×10−4, d= 0.72, N= 38; Experiment 2: P= 0.094, d=
0.89, N= 5; Experiment 3: P= 0.19, d= 0.20, N= 8; Experiment
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adopted feature-based learning in a given experiment. The dashed lines show the median values across subjects and a star indicates significant difference
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4:
P= 4.2×10−5, d= 1.2, N= 19; Fig. 5e–h). This result illustrates
that subjects updated their behavior to a greater extent for the
more informative feature. The qualitative match between the
analysis based on the product of estimated learning rates and
feature weights and the analysis based on the differential response
demonstrates the usefulness of model fitting in revealing
important aspects of learning in our experiments. Overall, these
results indicate that in dynamic or high-dimensional environ-
ments, subjects’ choice behavior and learning were more strongly
influenced by the information in the more informative feature,
which could be due to deployment of attention on this feature.

To summarize our experimental results, we found that human
subjects adopted feature-based learning in dynamic environments
even when this approach did not reduce dimensionality. Subjects
switched to object-based learning when the combination of
features’ values could not accurately predict all objects’ values due
to the lack of generalizable rules. Finally, in low-dimensional,
static environments without generalizable rules, subjects still
adopted feature-based learning first before gradually adopting
object-based learning. Overall, these results demonstrate that
feature-based learning might be adopted mainly to improve
adaptability without compromising precision.

Plausible mechanisms for learning and model adoption. To
understand neural mechanisms underlying model adoption in a
multi-dimensional decision-making task, we examined two
alternative network models that could perform such tasks
(Fig. 6a, b). Because of their architectures, we refer to these
models as the parallel decision-making and learning (PDML)
model and the hierarchical decision-making and learning
(HDML) model. Both models have two sets of value-encoding
neurons that learn the reward values of individual objects (object-
value-encoding neurons, OVE) or features (feature-value-

encoding neurons, FVE). Learning occurs in the synapses onto
the value-encoding neurons that undergo reward-dependent
plasticity, enabling these neurons to represent and update the
values of presented objects or their features (see Methods section
for more details). Despite this common rule of synaptic plasticity,
there are many ways to combine signals from the OVE and FVE
neurons and adjust the influence of these neurons on the final
choice (arbitration mechanism). The PDML model makes two
additional decisions using the output of an individual set of value-
encoding neurons (OVE or FVE) which are then compared with
the choice of the final decision-making (DM) circuit, which is
based on the combination of output from both OVE and FVE
neurons (Fig. 6a). If the final choice is rewarded (not rewarded),
the model increases (decreases) the strength of connections
between the set (or sets) of value-encoding neurons that produced
the same choice as the final choice and the final decision-making
circuit. This increases or decreases the influence of the set of
value-encoding neurons that was more likely responsible for
making the final correct or incorrect choice, respectively. By
contrast, the HDML model utilizes a signal-selection circuit to
determine which set of the value-encoding neurons contains a
stronger signal, and updates connections from the OVE and FVE
neurons to their corresponding signal-selection accordingly. In
this model, signal strength is defined as the difference between the
reward values of the two options based on the output of OVE or
FVE neurons. The model uses only the output of the set with a
stronger signal to make the final decision on a given trial
(Fig. 6b). Subsequently, only the strength of connections between
the set of value-encoding neurons producing the ‘selected’ signal
and the corresponding neurons in the signal-selection circuit is
increased or decreased depending on whether the final choice was
rewarded or not rewarded, respectively (see Methods section for
more details).

To show how these two different arbitration and learning
mechanisms work, we first examined the simulated behavior of
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the two models during Experiment 1. The strength of connections
from the OVE and FVE neurons to the final DM circuit in the
PDML model or to the signal-selection circuit in the HDML
model increased initially but at a much faster rate for FVE
neurons (Fig. 6c). This occurred because on each trial, both
features of a selected object were updated and thus, synapses onto
FVE neurons were updated twice as frequently as those onto OVE
neurons. These faster updates enabled the FVE neurons to signal
a correct response more often than the OVE neurons following
each change in reward probabilities (Fig. 6d). We also computed
the overall weight of the feature-based and object-based
approaches on the final choice, WF and WO, respectively
(Methods section). The difference between these two weights,
(WF−WO), was positive in both models even though it decreased
after each reversal, indicating that both models assigned a larger
weight to feature-based than to object-based reward values.
However, this effect was greater in the HDML than in the PDML
model (Fig. 6e).

Next, we examined how well the PDML and HDML models
can account for the observed choice behaviors in our experiments
by simulating the behaviors in all four experiments using these
models and analyzing the simulated and experimental data
similarly. For Experiment 1, the simulated data using the PDML
model were equally fit by the feature-based and object-based
models (Fig. 7a) indicating that PDML could not adopt feature-
based learning in a volatile, generalizable environment. In
contrast, choice behavior of the PDML model during Experiment
2 was better fit by the object-based model similarly to the

experimental data (Fig. 7a). Choice behavior of the HDML model
was consistent with our results in both Experiments 1 and 2
(Fig. 7f). For Experiment 3, both models adopted feature-based
learning first and slowly transitioned to object-based learning
(Fig. 7b, g) and, moreover, their choice behavior was better fit by
object-based learning later in the experiment (Fig. 7c, h). Both
models also adopted feature-based learning first during Experi-
ment 4 but showed only a small transition toward object-based
learning (Fig. 7d, i) such that their choice behavior was still better
fit by feature-based learning even toward the end of the
experiment (Fig. 7e, j). These patterns were consistent with those
of experimental data during Experiments 3 and 4. Overall, choice
behavior of the HDML model qualitatively matched the pattern
of data in all experiments whereas the PDML model failed to
capture choice behavior during Experiment 1.

We also tested the overall performance and the ability of
HDML and PDML in adopting feature-based vs. object-based
approach in a large set of environments, and examined how
interactions between generalizability, frequency of changes in
reward probabilities (volatility), and dimensionality affect the
behavior of these models (Supplementary Note 1 and Supple-
mentary Figs. 9 and 10). Overall, these simulations and
accompanying analyses revealed that although both models were
able to perform the task successfully, the HDML model exhibited
higher performance and stronger adjustment of connections from
the value-encoding neurons to the next level of computation.
That is, the HDML was overall more successful in assigning more
graded weights to different learning approaches according to
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reward statistics in the environment. Therefore, hierarchical
decision-making and learning might be more advantageous for
adopting the model for learning in dynamic, multi-dimensional
environments.

Discussion
The framework proposed in this study for learning reward values
in dynamic, multi-dimensional environments provides specific
predictions about different factors that influence how humans
adopt feature-based vs. object-based learning to tackle the curse
of dimensionality. Our experimental results confirmed these
predictions and demonstrated that dynamic environments tend
to favor feature-based learning because this learning not only
reduces dimensionality but also improves adaptability without
compromising precision. When precision is compromised due to
non-generalizability of the rules assumed for feature-based
learning, object-based learning is adopted more frequently.
Importantly, feature-based learning is initially adopted, even in
the presence of non-generalizable rules that only slightly reduce
dimensionality and when reward contingencies do not change
over time. These results suggest that the main driver for adopting
heuristic feature-based learning is increasing adaptability without
compromising precision; that is, to overcome the adaptability-
precision tradeoff (APT).

The APT sets an important constraint on learning reward
values in a dynamic environment where they change over time.
One solution to mitigate the APT is to adjust learning over time
via metaplasticity14, 15. Nevertheless, even with adjustable learn-
ing, the APT still persists and becomes more critical in multi-
dimensional environments, since the learner may never receive
reward feedback on many unchosen options and feedback on
chosen options is limited. Importantly, adopting heuristic feature-
based learning enables more updates after each reward feedback,
which can enhance the speed of learning without adding noise, as
with other heuristic learning mechanisms17. Moreover, such

learning allows estimation of reward values for options which
have never been encountered before18, 19.

Our results could explain why learning in young children,
which is limited by the small number of feedback, is dominated
by attending to individual features (e.g., choosing a favorite color)
to such an extent that it prevents them from performing well in
simple tasks such as the dimension-switching task20. Interest-
ingly, this inability has been attributed to failing to inhibit
attention to the previously relevant or rewarding feature21. Here
we propose an alternative possibility that by focusing on a single
feature such as color, children could evaluate reward outcomes of
chosen options based on color and thus increase their learning
speed. Moreover, by choosing a favorite color, they can further
reduce dimensionality by decreasing the number of feature
instances/categories to just two: favorite and non-favorite color.
Thus, our results explain that choosing a favorite color not only
reduces dimensionality but also increases adaptability without
compromising precision.

Although rules used for the heuristic feature-based approach
are only partially generalizable in the real world, this lack of
generalizability may not prevent humans from adopting feature-
based learning for a few reasons. First, simply due to chance, the
level of generalizability is larger for a higher dimensionality if
there is at least one informative feature in the environment.
Second, reward values of features can be learned separately for
different domains (e.g., color of fruits and color of cars). Thus, the
actual values of dimensionality and generalizability in the real
world depend on how an individual separates learning for dif-
ferent domains. Finally, it might be practically difficult to detect
non-generalizability due to a very large number of features and
options (or domains of learning) in the real world. Accordingly,
feature-based learning could provide a “fast and frugal way” for
learning in the real world22.

Heuristic feature-based learning is computationally less
expensive and more feasible than object-based learning, since it
can be achieved using a small number of value-encoding neurons
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Fig. 7 Replicating the pattern of experimental data using the PDML and HDML models. a Comparison of the goodness-of-fit in for the data generated by
the PDML model in Experiments 1 (generalizable) and 2 (non-generalizable) using the object-based and feature-based RL models with decays. The insets
show histograms of the difference in the negative log likelihood (-LL) based on the fits of the two models. In contrast to the experimental data, choice
behavior of the PDML model in Experiment 1 was equally fit by the object-based and feature-based models. b The time course of model adoption in the
PDML model. Plotted is the relative weight of object-based to the sum of the object-based and feature-based weights, and explained variance in estimates
(R2) over time in Experiment 3. Dotted lines show the fit of data based on an exponential function. c Transition from feature-based to object-based learning
in the PDML model. Plotted are the average negative log likelihood based on the best feature-based model, best object-based RL model, and the difference
between object-based and feature-based models in Experiment 3. Shaded areas indicate s.e.m., and the dashed line shows the measure for chance
prediction. d, e The same as in b, c, but for simulations of Experiment 4. f–j The same as in a–e, but for the HDML model. Although both models
qualitatively replicated the pattern of experimental data in Experiments 2–4, only the behavior of HDML model was consistent with data in Experiment 1
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with pure feature selectivity, namely neurons that represent the
reward value in a single dimension, such as color or shape. By
comparison, object-based learning requires myriad-mixed selec-
tivity neurons tuned to specific combinations of various features.
Thus, in contrast to recent theoretical work that has highlighted
the advantage and importance of non-linear, mixed selectivity
representation for cognitive functions23, 24, our work points to the
importance of pure feature selectivity for reward representation.
The advantage of mixed selectivity representation could be spe-
cific to tasks with low dimensionality (in terms of reward struc-
ture) or when information does not change over time such as in
object categorization tasks25–28.

Our computational and experimental results also provide a few
novel neural predictions. First, they predict that learning about
reward in dynamic environments could depend more strongly on
value-encoding neurons with pure feature selectivity, since
activity or representation of such neurons can be adjusted more
frequently over time due to more updates per feedback. Second,
considering that neurons with pure feature selectivity are also
crucial for saliency computations29, modulations of these neurons
by reward could provide an effective mechanism for the mod-
ulation of attentional selection by reward30, 31. Third, they predict
larger learning rates for neurons with highly mixed selectivity;
otherwise, the information in these neurons would lag the
information in pure feature-selective neurons and become obso-
lete. Fourth, the complexity of reward value representation should
be directly related to the stability of reward information in the
environment. As the environment becomes more stable, learning
the reward value of conjunctions of features and objects becomes
more feasible and thus, more complex representation of reward
values will emerge. Finally, updates of reward values for different
objects and features necessitate separate reward prediction error
(RPE) signals. This predicts different roles for multiple RPE
signals observed in areas other than striatum and midbrain
dopaminergic system (substantia nigra and ventral tegmental
area), such as the anterior cingulate and medial prefrontal cor-
tices (see ref. 32 for a review). These novel predictions could be
tested in future experiments.

Our framework for understanding model adoption has a few
limitations. First, it does not address the influence of what has
been learned on learning strategy and future model adoption31.
Second, it does not determine the intermediate steps for transi-
tion from feature-based to object-based learning, for example,
what “conjunctions” of features are constructed and learned over
time. Third, it does not address how model adoption depends on
the ability of the decision maker to discriminate between feature
values (e.g., colors of objects). Future model development and
experiments are required to explore these questions.

As our computational modeling suggests that learning based
on feature-based and object-based approaches occurs simulta-
neously in two separate circuits, arbitration between the two
forms of learning might be required33, 34. Our modeling results
show that such arbitration could happen via competition between
two circuits based on the strength of signals in each circuit.
Although we could not directly fit experimental data using these
two models due to the over-fitting problem and large between-
subject variability, our experimental results are qualitatively more
compatible with a hierarchical decision-making and learning
(HDML) model, since the parallel decision-making and learning
model does not show the sensitivity to experimental factors
observed in our human subjects. In the HDML model, the best
sources of information were identified to make decisions, and
weights associated with the selected sources were successively
updated according to reward feedback. The hierarchical structure
allows the HDML model to reduce noise in decision making by
ignoring the less informative value-coding network on each trial.

Our results imply that reward feedback alone can correctly adjust
behavior toward a more object-based or a more feature-based
approach, without any explicit optimization or knowledge of the
environment. This does not contradict the need for arbitration
but instead provides a simple mechanism for arbitration based on
the same reward feedback used to learn reward values of objects
and features. Interestingly, competition through stages of hier-
archy has also been suggested as an underlying mechanism
behind multi-attribute decision making35, 36. The HDML model
proposed in this study shares some components with the model
of Hunt et al. (2014)35, namely competition between different
attribute values before they are combined, though our model
includes learning as well. Similar to Wunderlich et al. (2011)7, we
also suggest that the brain should learn values and weights for all
possible informative dimensions and update these weights on
every trial.

Despite the fact that naturalistic learning from reward feedback
entails options with overlapping features, only recently have some
studies used multi-dimensional experimental paradigms to study
learning from reward feedback and explored possible solutions
for the curse of dimensionality5–7, 35, 37, 38. A few of these studies
have found that learning in a multi-dimensional environment
relies on constructing a simplified representation of the stimuli
via attending to one feature and ignoring others5, 37. Similarly, we
found the evidence for attentional bias on one of the two features,
whereas no feature was completely ignored. Interestingly, a recent
study has shown that attention, guided by ongoing learning, can
bias both value computation and update, and thus results in more
efficient learning in multi-dimensional environments16. Finally,
attending to only a subset of “relevant” features is both inevitable
and crucial for learning and decision making in high-dimensional
environments39, 40. However, in order to identify the relevant
features in dynamic environments, values of multiple features
should be updated in parallel over time.

In conclusion, we show that a tradeoff between adaptability
and precision could explain why humans adopt feature-based
learning, especially in dynamic environments. Moreover, our
results suggest that neurons with pure selectivity could be crucial
for learning in dynamic environments and could provide a
missing framework for understanding how heterogeneity in
reward representation emerges41, 42.

Methods
Framework for adoption of feature-based vs. object-based learning. We first
developed a general framework for understanding model adoption during learning
in dynamic, multi-dimensional environments. The decision maker’s task is to learn
the reward values of a set of options via reward feedback after selecting one of two
alternative options on each trial. We simulated the behavior of two contrasting
learners in this task: object-based and feature-based learners. The object-based
learner directly estimates the value of individual objects via reward feedback. By
contrast, the feature-based learner estimates the reward values of all feature
instances (e.g., red, blue, square, or triangle) by updating the reward values asso-
ciated with all the features of the object for which reward feedback is given. This
learner then combines the reward values of feature instances to estimate the overall
reward value of individual objects.

Assuming that options/objects have m features, each of which can have n
different instances, there are nm possible objects in the environment. For example,
if an object has two features (m= 2), color and shape, and there are three colors
and three shapes (n= 3), there would be nine (32) possible objects in the
environment. We first constructed an environment by assigning a probability of
reward to each object based on the feature instances of that object. More
specifically, n feature instances were assigned with a set of equally-spaced (in log
scale) odds ratios (OR) in all m dimensions. The minimum and maximum values
of ORs were set to 1/x and to x (x > 1), respectively. For example, for n= 3, OR
(Fij)= {1/2, 1, 2} where Fij is the feature instance j (j= 1,…,n) of feature i (i= 1,…,
m). The OR for a given object a, OR(Oa), was determined by multiplying the ORs
of all features of that object: OR Oað Þ ¼ Qm

i¼1; for Fij present in Oa
OR Fij

� �
. Finally, the

probability of reward on each object was then computed by transforming the
object’s LR to the probability of reward: pr Oað Þ ¼ OR Oað Þ= 1þ OR Oað Þð Þ. These
reward probabilities are referred to collectively as the fully generalizable reward
matrix.
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Although each object is assigned a reward value, the feature-based learner could
instead use the reward value for each feature instance (e.g., red, blue, triangles, and
squares) to estimate reward values of objects in two steps. First, the reward value
for a given feature instance (e.g., red) can be computed by averaging the reward
values of all objects that contain that feature instance (e.g., all red objects):
pr Fij
� � ¼ 1=nm�1ð ÞPOa contains Fij

pr Oað Þ. Second, an estimated reward value,
~pr Oað Þ, can be generated by combining the reward values of features using the
Bayes theorem:

~pr Oað Þ ¼ pr F1j
� �

´ pr F2kð Þ´ ¼
� �

= pr F1j
� �

´ pr F2kð Þ ´ ¼
�

þ 1� pr F1j
� �� �

´ 1� pr F2kð Þð Þ ´ ¼
�

forOa containing of F1j; F2k; etc:

ð1Þ

These estimated reward probabilities constitute the estimated reward matrix
based on features. The rank order of probabilities in the estimated reward matrix,
which determines preference between objects, is similar to that of the fully
generalizable reward matrix, whereas the exact values may differ slightly (diamonds
in Supplementary Fig. 1).

By randomly shuffling the elements of the fully generalizable reward matrix in
all feature dimensions except one, which we call the informative feature, we
generated environments with different levels of generalizability. We used the
correlation between the ‘shuffled’ reward matrix and estimated reward matrix (i.e.,
correlation between the actual reward value of options and the estimated reward
value of options based on their features) to define a generalizability index. On the
basis of this definition, the generalizability index can take on any value between −1
and 1. Without any shuffling, we get a fully generalizable environment
(generalizability index equal to 1) where the rank order of the estimated reward
values of options based on their features is identical to the rank order of actual
objects’ values. With less generalizability, the rank order is not the same (reflected
in a smaller generalizability index) and the difference between the estimated reward
values based on features and actual objects’ values increases (Supplementary Fig. 1).

The task for the decision maker is to learn the reward value of options/objects
via reward feedback in order to choose between two alternative options in each
trial. To illustrate how learning strategy influences performance in this task, we
considered two alternative learners: object-based and feature-based. We assumed
that the object-based learner directly estimates the reward value of all objects using
reward feedback in each trial based on the following equations:

VOa t þ 1ð Þ ¼ VOa tð Þ þ α 1� VOa tð Þð Þ; if r tð Þ ¼ 1

VOa t þ 1ð Þ ¼ VOa tð Þ � α VOa tð Þð Þ; if r tð Þ ¼ 0
ð2Þ

where t represents the trial number, VOa ðtÞ is the reward value of the chosen object
a, rðtÞ is the trial outcome (1 for rewarded, 0 for unrewarded), and α is the learning
rate. The value of the unchosen object is not updated. By contrast, the feature-
based learner estimates the reward value of individual feature instances (e.g., red,
blue, triangles, and quares), VFij ðtÞ, using the same update rule as in Equation 2,
but applying to all features of the chosen object. This learner then combines the
reward values of feature instances to compute reward values of each option (Eq. 1).
Therefore, the object-based learner only updates one value function after each
feedback, whereas the feature-based learner updates the reward value of all feature
instances of the selected object.

To measure how well a learner that uses the object-based approach can
differentiate between different options at a given point in time, we defined the
differential signal, SO(t), in the object-based learning model as follows:

SOðtÞ ¼ 1
nm ´ nm � 1ð Þ

Xnm

a¼1

Xnm

b¼1
VOa ðtÞ � VOb ðtÞð Þsign pr Oað Þ � pr Obð Þð Þ

ð3Þ

where prðOaÞ is the probability of reward on object a. The differential signal for the
feature-based learning model, SF(t), was computed by replacing VOa ðtÞ in the above
equation with the estimated reward value ~VOa tð Þ;which was computed by replacing
pr Fij
� �

in Equation 1 with VFij ðtÞ. Therefore, the differential signal measures how
reward values estimated by a given model correctly differentiate between actual
reward values of objects.

By comparing the time courses of the differential signal for the object-based and
feature-based learners (using the same learning rate and similar initial conditions),
we computed the time at which the object-based learner carries a stronger
differential signal than the feature-based learner (the ‘cross-over point’). A larger
cross-over point indicates the superiority (better performance) of feature-based
relative to object-based learning for a longer amount of time, whereas a zero cross-
over point indicates that object-based learning is always superior.

Subjects. Subjects were recruited from the Dartmouth College student population
(ages 18–22 years). In total, 59 subjects were recruited (34 females) to perform the
choice task in Experiment 1 and/or 2 (18 in Experiment 1 only, 8 in Experiment 2
only, and 33 in both experiments). This produced behavioral data from 51 and
41 subjects for Experiments 1 and 2, respectively. A general linear model for
predicting performance did not reveal any effects of previous participation or the

order of experiments for those who performed in both Experiments 1 and 2. To
exclude subjects whose performance was not significantly different from chance
(0.5), we used a performance threshold of 0.5406 (equal to 0.5 plus 2 times s.e.m.,
based on the average of 608 trials after excluding the first 10 trials of each block in
Experiment 1 or 2). This resulted in the exclusion of data from 8 of 51 subjects in
Experiment 1, and 19 of 41 subjects in Experiment 2. An additional subject was
excluded from Experiment 2 for submitting the same response throughout the
entire experiment. The remaining 64 datasets (N= 43 and 21 for Experiments 1
and 2, respectively) were used for the main analyses but the excluded data sets were
analyzed as well. For Experiment 3, 36 additional subjects were recruited (20
females) and a performance threshold of 0.5447 (equal to 0.5 plus 2 times s.e.m.,
based on the average of 500 trials after excluding the first 30 trials of each session)
was used to exclude subjects whose performance was indistinguishable from chance
(N= 9). In total, only two subjects participated in all three experiments, and this
occurred over 4 months. For Experiment 4, 36 new subjects were recruited (22
females) and a performance threshold of 0.5404 (equal to 0.5 plus 2 times s.e.m.,
based on the average of 612 trials after excluding the first 30 trials of each session)
was used to exclude subjects whose performance was indistinguishable from chance
(N= 11). No subject had a history of neurological or psychiatric illness. Subjects
were compensated with a combination of money and “t-points,” which are extra-
credit points for classes within the Department of Psychological and Brain Sciences
at Dartmouth College. The base rate for compensation was $10/h or 1 t-point/h.
Subjects were then additionally rewarded based on their performance by up to $10/
h. All experimental procedures were approved by the Dartmouth College Institu-
tional Review Board, and informed consent was obtained from all subjects before
participating in the experiment. Finally, all experiments were written in MATLAB,
using the Psychophysics Toolbox Version 3 extensions43 and presented using an
OLED monitor.

Experiments 1 and 2. In each of these experiments, subjects completed two ses-
sions (each session composed of 384 trials and lasting about half an hour) of a
choice task during which they selected between a pair of objects on each trial
(Supplementary Fig. 2a). Objects were one of four colored shapes: blue triangle, red
triangle, blue square, and red square. Subjects were asked to choose the object that
was more likely to provide a reward in order to maximize the total number of
reward points, which would be converted to monetary reward and/or t-points at
the end of the experiment.

In each trial, the selection of an object was rewarded only according to its
reward probability and independently of the reward probability of the other object.
This reward schedule was fixed for a block of trials (block length, L= 48), after
which it changed to another reward schedule without any signal to the subject.
Sixteen different reward schedules consisting of some permutations of four reward
probabilities, (0.1, 0.3, 0.7, and 0.9), were used. In eight of these schedules, a
generalizable rule could be used to predict reward probabilities for all objects based
on the combinations of their feature values (Supplementary Fig. 2b). In the other
eight schedules, no generalizable rule could be used to predict reward probabilities
for all objects based on the combinations of their feature values (Supplementary
Fig. 2c). For example, the schedule notated as ‘Rs’ indicates that red objects are
much more rewarding than blue objects, square objects are more rewarding than
triangle objects, and color (uppercase ‘R’) is more informative than shape (lower
case ‘s’). In this generalizable schedule, red square was the most rewarding object
whereas blue triangle was the least rewarding object. For non-generalizable
schedules, only one of the two features was on average informative of reward
values. For example, the ‘r1’ schedule indicated that, overall, red objects were
slightly more rewarding than blue objects, but there was no generalizable
relationship between the reward values of individual objects and their features (e.g.,
red square was the most rewarding object, but red triangle was less rewarding than
blue triangle). In other words, the non-generalizable reward schedules were
designed so that a rule based on feature combination could not predict reward
probability on all objects. For example, learning something about a red triangle did
not necessarily tell the subject anything about other red objects or other triangle
objects.

The main difference between Experiments 1 and 2 was that their environments
were composed of reward schedules with generalizable and non-generalizable rules,
respectively (Supplementary Fig. 2d, f). In both experiments, as the subjects moved
between blocks of trials, reward probabilities for the informative features were
reversed without any changes in the average reward probabilities for the less
informative and non-informative feature in Experiments 1 and 2, respectively. For
example, going from Rs to Bs changes the more informative feature instance from
red to blue. Reward probabilities changed without any cue to the subject and
created dynamic environments. In addition, the average reward probabilities for
the less informative or non-informative feature changed (e.g., from Bs and Rs to Bt
and Rt) every four blocks (super-blocks; Supplementary Fig. 2e, g). Each subject
performed the experiment in each environment once, where either color or shape
was consistently more informative. The more informative feature was randomly
assigned and counter-balanced across subjects to minimize the effects of intrinsic
color or shape biases. The order of experiments was randomized for subjects who
performed both Experiments 1 and 2.

Experiment 3. In this experiment, subjects completed two sessions, each of which
included 280 choice trials interleaved with five or eight short blocks of estimation
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trials (each block with eight trials). On each trial of the choice task, the subject was
presented with a pair of objects and was asked to choose the object that they
believed would provide the most reward. These objects were drawn from a set of
eight objects, which were constructed using combinations of three distinct patterns
and three distinct shapes (Supplementary Fig. 8a; one of nine possible objects with
a reward probability of 0.5 was excluded to shorten the duration of the experi-
ment). The three patterns and shapes were selected randomly for each subject from
a total of eight patterns and eight shapes. The two objects presented on each trial
always differed in both pattern and shape. Other aspects of the choice task were
similar to those in Experiments 1 and 2, except that reward feedback was given for
both objects rather than just the chosen object, in order to accelerate learning.
During estimation blocks, subjects provided their estimates of the probability of
reward for individual objects. Possible values for these estimates were from 5 to
95%, in 10% increments (Supplementary Fig. 8c). All subjects completed five blocks
of estimation trials throughout the task (after trials 42, 84, 140, 210, and 280 of the
choice task), and some subjects had three additional blocks of estimation trials
(after trials 21, 63, and 252) to better assess the estimations over time. Each session
of the experiment was about 45 min in length, with a break before the beginning of
the second session. The second session was similar to the first, but with different
sets of shapes and patterns.

Selection of a given object was rewarded (independently of the other presented
object) based on a reward schedule with a moderate level of generalizability such
that reward probability of some individual objects could not be determined by
combining the reward values of their features. Because of the larger number of
objects, the reward schedule was more complex than that used in Experiment 1, but
did not change over the course of the experiment. Non-generalizable reward
matrices can be constructed in many ways. In Experiment 3, one feature (shape or
pattern) was informative about reward probability while the other was not.
Although the informative feature (e.g., pattern and shape in left and right panels of
Supplementary Fig. 8a, respectively) was on average predictive of reward, this
prediction was not generalizable. That is, some objects that contained the most
rewarding feature instances were still less rewarding than objects that did not
contain these feature instances. For example, S1P3 in the left panel of
Supplementary Fig. 8a was less rewarding than S1P2. Finally, the average reward
probability of the objects with the same non-informative feature instances (e.g.,
S1P1, S1P2, and S1P3 in Supplementary Fig. 8a, left panel) was always 0.5. This
reward schedule ensured that subjects would not be able to predict reward
probability accurately for all objects based on the combination of their feature
values. Similar to Experiments 1 and 2, the informative feature was randomly
assigned and counter-balanced across subjects to minimize the effects of intrinsic
pattern or shape biases.

Experiment 4. This experiment was similar to Experiment 3, except that we used
four feature instances for each feature (shape and pattern) resulting in an envir-
onment with a higher dimensionality. Each subject completed two sessions, each of
which included 336 choice trials interleaved with five or eight short blocks of
estimation trials (each block with eight trials). The objects in this experiment were
drawn from a set of twelve objects, which were combinations of four distinct
patterns and four distinct shapes (Supplementary Fig. 8b; four of sixteen possible
objects with reward probability 0.5 were removed to shorten the duration of the
experiment). The four patterns and shapes were selected randomly for each subject.
The probabilities of reward on different objects (reward matrix) were set such that
there was one informative feature, and the minimum and maximum average
reward values for features were similar for Experiments 3 and 4.

Data analysis. We utilized the information subjects provided during estimation
trials of Experiments 3 and 4 to examine how they determined the reward values of
objects using two alternative methods. First, we used linear regression to fit the
estimates of reward probabilities as a function of the following variables: actual
reward probabilities assigned to each object (object-based term); the reward
probabilities estimated based on the combination of the reward values of features
(feature-based term) using the Bayes theorem (Eq. 1); and a constant. The constant
(bias) in this regression model quantifies subjects’ overall bias in reporting prob-
abilities. Second, to determine whether subjects’ estimates were closer to estimates
based on the feature-based or object-based approach, we computed the correlation
between subjects’ estimates and the actual reward probabilities assigned to each
object, or subjects’ estimates and the reward probabilities estimated using the
reward values of features (Eq. 1). Unless otherwise mentioned, the statistical
comparisons were performed using Wilcoxon signed rank test in order to test the
hypothesis of zero median for one sample or the difference between paired sam-
ples. The reported effect sizes are Cohen’s d values. All behavioral analyses, model
fitting, and simulations were done using MATLAB 2015a (MathWorks, Inc.,
Natick, MA).

Testing the behavioral predictions of feature-based learning. To measure the
direct effect of feature-based learning on choice behavior, we defined the feature-
based ‘differential response’ to reward feedback equal to the difference between
the probability of selecting an object that contains only one of the two features of
the object selected and rewarded on the previous trial (i.e., rewarded object) when

this object was paired with an object that did not share any feature with the
previously rewarded object minus the same probability when the previous trial was
not rewarded. For example, denoting the probability of choosing X when it is
presented together with Y in trial t given that choosing Z was rewarded and
unrewarded in the previous trial as
p(X≻Y(t)| Z(t−1)+) and p(X≻Y(t)| Z(t−1)−), p(□≻△(t)| ■(t−1)+)−p(□≻△(t)|
■(t−1)−) measures the change in the value of features of the object selected on the
previous trial. For comparison, we also calculated the object-based differential
response to reward feedback equal to the difference between the probability of
selecting the object that was selected and rewarded on the previous trial and the
same probability when the previous trial was not rewarded (e.g., p(choose■ in trial
t| ■(t−1)+)−p(choose ■ in trial t| ■(t−1)−)). The object-based differential
response measures the change in preference for an object due to reward feedback
and is equivalent to the difference between win-stay and lose-stay strategy for a
particular object.

Model fitting procedure. To capture subjects’ learning and choice behavior, we
used seven different reinforcement learning (RL) models based on object-based or
feature-based approaches. These models were fit to experimental data by mini-
mizing the negative log likelihood of the predicted choice probability given dif-
ferent model parameters using the ‘fminsearch’ function in MATLAB
(MathWorks, Inc.). To avoid finding local minima for the fit of experimental data
or simulated choice behavior, we repeated fitting of each dataset with at least 10
different initial conditions and picked the best fit among all those fits. Based on the
examination of the outcome fits, we found that 10 initialization to be enough to
avoid local minima. We computed three measures of goodness-of-fit in order to
determine the best model to account for the behavior in each experiment: average
negative log likelihood (-LL), Akaike information criterion (AIC), and Bayesian
information criterion (BIC). The smaller value for each measure indicates a better
fit of choice behavior.

Object-based RL models. In this group of models, the reward value of each object
is directly estimated from reward feedback on each trial using a standard RL
model4. For example, in the uncoupled object-based RL, only the reward value of
the chosen object is updated on each trial. This update is done via separate learning
rates for rewarded or unrewarded trials using the following equations, respec-
tively42:

VchoO t þ 1ð Þ ¼ VchoO tð Þ þ αrew 1� VchoO tð Þð Þ; if r tð Þ ¼ 1

VchoO t þ 1ð Þ ¼ VchoO tð Þ � αunr VchoO tð Þð Þ; if r tð Þ ¼ 0
ð4Þ

where t represents the trial number, VchoO is the estimated reward value of the
chosen object, rðtÞ is the trial outcome (1 for rewarded, 0 for unrewarded), andαrew
and αunr are the learning rates for rewarded and unrewarded trials. The value of the
unchosen object is not updated in this model.

In the coupled object-based RL, the reward values of both objects presented on
a given trial are updated, but in opposite directions (assuming that reward
assignments on the two objects are anti-correlated). That is, while the value of
chosen object is updated based on Equation 4, the value of unchosen object is
updated based on the following equation:

VuncO t þ 1ð Þ ¼ VuncO tð Þ � αrew VuncO tð Þð Þ; if r tð Þ ¼ 1

VuncO t þ 1ð Þ ¼ VuncO tð Þ þ αunr 1� VuncO tð Þð Þ; if r tð Þ ¼ 0
ð5Þ

where t represents the trial number and VuncO is the estimated reward value of the
unchosen object.

The estimated value functions are then used to compute the probability of
selecting between the two objects on a given trial (O1 and O2) based on a logistic
function:

logitPO1 tð Þ ¼ VO1 tð Þ � VO2 tð Þð Þ=σ þ bias ð6Þ

where PO1 is the probability of choosing object 1, VO1 and VO2 are the reward
values of the objects presented to the left and right, respectively, bias measures a
response bias toward the left option to capture the subject’s location bias, and σ is a
parameter measuring the level of stochasticity in the decision process.

Feature-based RL models. In this group of models, the reward value (probability)
of each object is computed by combining the reward values of the features of that
object, which are estimated from reward feedback using a standard RL model. The
update rules for the feature-based RL models are identical to the object-based ones,
except that the reward value of the chosen (unchosen) object is replaced by the
reward values of the features of the chosen (unchosen) object. In Experiments 3
and 4, the two alternative objects were always different in both features. In
Experiments 1 and 2, however, the two alternative objects could have a common
feature instance (e.g. both are blue) and updating the reward value of this common
feature could be problematic. Indeed, we found that the fit of choice behavior based
on a feature-based model which always updates the reward values of both features
of the selected object on each trial was worse than that of all other tested models
(data not shown). Therefore, in the feature-based models presented here, only the
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reward value of the unique feature is updated when the two alternative options
have a common feature on a given trial.

As with the object-based RL models, the probability of choosing an object is
determined based on the logistic function of the difference between the estimated
values for the objects presented

logit PO1ðtÞ ¼ wshape VshapeO1 tð Þ � VshapeO2 tð Þ� �þ wcolor VcolorO1 tð Þ � VcolorO2 tð Þð Þ þ bias

ð7Þ

where VshapeO1 VcolorO1ð Þ and VshapeO2 VcolorO2ð Þ are the reward values associated
with the shape (color) of left and right objects, respectively, bias measures a
response bias toward the left option to capture the subject’s location bias, and
wshape and wcolor determine the influence of the two features on the final choice.
Note that these weights can be assumed to be learned over time through reward
feedback (as in our models; see below) or could reflect differential processing of the
two features due to attention.

RL models with decay. Additionally, we investigated the effect of ‘forgetting’ the
reward values of unchosen objects or feature(s) by introducing decay of value
functions (in the uncoupled models), which have been shown to capture some
aspects of learning44, 45, especially in multi-dimensional tasks5. More specifically,
the reward values of unchosen objects or feature(s) decay to 0.5 with a rate of d, as
follows:

V t þ 1ð Þ ¼ V tð Þ � d ´ V tð Þ � 0:5ð Þ ð8Þ

where t represents the trial number and V is the estimated reward probability of an
object or a feature.

Validation of fitting procedure for detecting learning approach. To investigate
whether our fitting procedure can be used to distinguish between alternative
models and to accurately estimate model parameters, we simulated the afore-
mentioned six models over a range of parameters in the four experiments. The
simulated data were generated using the learning rate ðqÞ ranging from 0.05 to 0.4,
the decay rate ðdÞ ranging from 0.005 to 0.04, and the stochasticity in choice ðσÞ
ranging from 0.05 to 0.4. Parameters outside these ranges did not result in an
appropriate model behavior in our experiments. We then fit the simulated data
with all of the models to compute the goodness-of-fit and to estimate model
parameters. The goodness-of-fit and the error in the estimated model parameters
(the absolute difference between the actual and estimates) were computed by
averaging over all fits based on all sets of parameters.

Estimating attentional effects. Attention could influence how reward values of
two features determine choice and how they are updated over time. Therefore, in
order to distinguish these two roles of attention, we estimated learning rates as well
as the ‘attentional’ weights separately for the less and more informative features. By
design, the feature-based models assign two different weights to the two features
before combining them to make a choice (Eq. 7). We also extended the feature-
based model with decay to include separate learning rates for the less and more
informative features. For fitting of choice behavior in Experiments 3 and 4, we
adopted two sets of weights for the first and second session of the experiments
since two different sets of stimuli were used in these two sessions.

Computational models. To gain insight into the neural mechanisms underlying
multi-dimensional decision-making, we examined two possible network models
that could perform such a task (Fig. 6a, b). Both models have two sets of value-
encoding neurons that learn the reward values of individual objects (object-value-
encoding neurons, OVE) or features (feature-value-encoding neurons, FVE). More
specifically, plastic synapses onto value-encoding neurons undergo reward-
dependent plasticity (via reward feedback), which enables these neurons to
represent and update the values of presented objects or their features. Namely,
reward values associated with individual objects and features are updated by
potentiating or depressing plastic synapses onto neurons encoding the value of a
chosen object or its features depending on whether the choice was rewarded or not
rewarded, respectively.

The two network models differ in how they combine signals from the OVE and
FVE neurons and how the influence of signals from these neurons on the final
choice is adjusted based on reward feedback. More specifically, the parallel
decision-making and learning (PDML) model makes two additional decisions
using the output of an individual set of value-encoding neurons (OVE or FVE) and
compares them with the choice of the final decision-making (DM) circuit, which is
based on the combination of output from both OVE and FVE neurons(Fig. 6a). If
the final choice is rewarded (not rewarded), the model increases (decreases) the
strength of connections between the set or sets of value-encoding neurons that
produced the same choice as the final choice. This increases or decreases the
influence of the set of value-encoding neurons that was more likely responsible for
making the final correct or incorrect choice, respectively. By contrast, the
hierarchical decision-making and learning (HDML) model updates connections
from the OVE and FVE neurons to the corresponding neurons in the signal-

selection circuit by determining which set of the value-encoding neurons contains a
stronger signal (the difference between the values of the two options) first, and uses
only the outputs of that set to make the final decision on a given trial (Fig. 6b).
Subsequently, only the strengths of connections between the set of value-encoding
neurons responsible for the ‘selected’ signal and the corresponding neurons in the
signal-selection circuit are increased or decreased depending on whether the final
choice was rewarded or not rewarded, respectively.

Learning rule. We assumed that plastic synapses undergo a stochastic, reward-
dependent plasticity rule (see refs. 46,47 for details). Briefly, we assumed that plastic
synapses are binary and could be in potentiated (strong) or depressed (weak) states.
On every trial, plastic synapses undergo stochastic modifications (potentiation or
depression) depending on the model’s choice and reward outcome (see below).
During potentiation events, a fraction of weak synapses transition to the strong
state with probability q+. During depression events, a fraction of strong synapses
transition to the weak state with probability q−. These modifications allow a given
set of plastic synapses to estimate reward values associated with an object or fea-
ture46–49.

For binary synapses, the fraction of plastic synapses that are in the strong state
(which we call ‘synaptic strength’) determines the firing rate of afferent neurons.
We denote the synaptic strength of plastic synapses onto a given population of
value-encoding neurons ‘v’ by FvðtÞ, where v= {R, B, s, t, Rs, Bs, Rt, Bt} represents
a pool of neurons encoding the value of a given feature or a combination of features
(in Experiments 1 and 2), and t represents the trial number. In Experiments 3 and
4, the number of feature instances was three and four, respectively, instead of two,
resulting in six and eight sets of FVE neurons and nine and sixteen sets of OVE
neurons, respectively. Similarly, we denote the synaptic strength of plastic synapses
from value-encoding neurons to the final DM circuit in the PDML model, or to the
signal-selection circuit in the HDML model, by CmðtÞ where m= {O, F} represents
general connections from OVE and FVE neurons, respectively.

The changes in the synaptic strengths for synapses onto value-encoding
neurons depend on the model’s choice and reward outcome on each trial. More
specifically, we assumed that synapses selective to the chosen object or features of
the chosen object undergo potentiation or depression depending on whether the
choice was rewarded or not, respectively:

Fv chð Þ t þ 1ð Þ ¼ Fv chð Þ tð Þ þ qþ 1� Fv chð Þ tð Þ� �
; if r tð Þ ¼ 1

Fv chð Þ t þ 1ð Þ ¼ Fv chð Þ tð Þ � q�Fv chð Þ tð Þ; if r tð Þ ¼ 0
ð9Þ

where t represents the trial number, Fv chð ÞðtÞ is the synaptic strength for synapses
selective to the chosen object or features of the chosen object, r(t) is the reward
outcome, and qþ and q� are potentiation and depression rates, respectively. The
rest of plastic synapses transition to the weak state, according the following
equation

Fv unchð Þ t þ 1ð Þ ¼ Fv unchð Þ tð Þ � qd ´ Fv unchð Þ tð Þ � 0:5
� � ð10Þ

where Fv unchð ÞðtÞ is the synaptic strength for synapses selective to the unchosen
object or features of the unchosen object, and qd is the depression rate for the rest
of plastic synapses. Note that similarly to the models used for fitting, only the
reward value of the unique feature of the selected object was updated when the two
alternative objects had a common feature.

We used similar learning rules for plastic synapses from value-encoding
neurons to the final DM circuit in the PDML model as we did from value-encoding
neurons to the signal-selection circuit in the HDML model. In the PDML model,
plastic synapses from value-encoding neurons to the final DM circuit are updated
depending on additional decisions based on the signal in an individual set of value-
encoding neurons (OVE or FVE), the final choice, and the reward outcome as
follows:

Cm t þ 1ð Þ ¼ Cm tð Þ þ qþ 1� Cm tð Þð Þ; if r tð Þ ¼ 1; and pool m choice ¼ final choice

Cm t þ 1ð Þ ¼ Cm tð Þ � q�Cm tð Þ; if r tð Þ ¼ 0; and pool m choice ¼ final choice

Cm t þ 1ð Þ ¼ Cm tð Þ � qd ´ ðCm tð Þ � 0:5Þ; if pool m choice≠ final choice

ð11Þ

where t represents the trial number, CmðtÞ is the synaptic strength of connections
from object-value-encoding (m=O) or feature-value-encoding neurons (m = F), qd
is the depression rate for the pool with a choice different than the final choice, and
qþ and q� are potentiation and depression rates, respectively.

As we have shown before, the decision only depends on the overall difference in
the output of the two value-encoding pools46–49. This difference is proportional to
the difference in the overall fraction of strong synapses in the two pools, since we
assumed binary values for synaptic efficacy. Therefore, the probability of the final
choice in the PDML model depends on the difference between the sum of the
output of the value-encoding neurons selective for the presented objects or their
features (shape and color):

logit P O1ð Þ ¼ CO FO1 � FO2ð Þ þ CF FshapeO1 � FshapeO2
� �þ FcolorO1 � FcolorO2ð Þ� �

=2σ

ð12Þ
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where FshapeOiðtÞ and FcolorOi tð Þ are the synaptic strengths for synapses onto FVE
neurons selective to shape and color, respectively. The probabilities of additional
decisions (in DM circuits 1 and 2) based on the signal in an individual set of value-
encoding neurons (OVE or FVE) are computed by setting CO or CF in the above
equation to zero.

In the HDML model, a signal-selection circuit determines which set of the
value-encoding neurons (OVE or FVE) contains a stronger signal first, and uses
only the output of that set to drive the final DM circuit on a given trial. The
probability of selecting the signal from OVE neurons, P(OVE), is computed using
the following equation:

logit P OVEð Þ ¼ CO FO1 � FO2ð Þ � CF FshapeO1 � FshapeO2
� �þ FcolorO1 � FcolorO2ð Þ� �

=2σ

ð13Þ

Therefore, the final decision in the HDML model depends on the difference
between the outputs of subpopulations in the set of value-encoding neurons which
is selected as the set with stronger signal:

logitP O1ð Þ ¼ FO1 � FO2ð Þ=σ; if OVE signal is selected
logitP O1ð Þ ¼ FshapeO1 � FshapeO2 þ FcolorO1 � FcolorO2

� �
=2σ; if FVE signal is selected

ð14Þ

Finally, only plastic synapses from the value-encoding neurons with the
stronger (hence chosen) signal to the signal-selection circuit are updated depending
on the final choice and the reward outcome while the strength of the other set of
plastic synapses decays to 0.5:

Cm t þ 1ð Þ ¼ Cm tð Þ þ qþ 1� Cm tð Þð Þ; if r tð Þ ¼ 1

Cm t þ 1ð Þ ¼ Cm tð Þ � q�Cm tð Þ; if r tð Þ ¼ 0

Cn t þ 1ð Þ ¼ Cn tð Þ � qd ´ ðCn tð Þ � 0:5Þ
ð15Þ

where m and n denote the pools with the selected and unselected signals,
respectively. It is worth noting that although the synaptic plasticity rule in our
models relies on a single binary reward feedback to update reward values for
different objects and features, the equivalent RL models based on reward prediction
error (RPE) require separate RPE signals for updating different features.

Models simulations. In order to study the response of the PDML and HDML
models to generalizability and frequency of changes in reward probabilities
(volatility), we simulated each model over various environments (similar to those
used in Experiments 1 and 2) with different levels of generalizability and volatility
(Supplementary Fig. 9). More specifically, we linearly morphed a generalizable
environment to a non-generalizable environment while modulating the level of
volatility by changing the block length, L. To examine the interaction between
dimensionality reduction and generalizability in adopting a model of the envir-
onment, we simulated various environments similar to those used in Experiments 3
and 4 (Supplementary Fig. 10). We changed the levels of generalizability by ran-
domly shuffling some of the elements of the fully generalizable reward matrices
with two values of dimensionality (32 and 42). The reward probabilities were fixed
over the course of these simulations, as in Experiments 3 and 4.

Models parameters. We used the following parameter values for all simulations of
the PDML and HDML models presented in the paper, except otherwise mentioned
(both models have six parameters): potentiation and depression rates for plastic
synapses onto value-encoding neurons (q+= q−= 0.15), potentiation and depres-
sion rates for plastic synapses onto the final DM circuit in the PDML model or
signal-selection circuit in the HDML model (q+= q−= 0.075), the depression rate
for the rest of plastic synapses (qd= 0.015), and the level of stochasticity in choice
(σ = 0.1). Only for the simulations of the Experiment 4 presented in Fig. 7, the
depression rate was set to a larger value (qd= 0.03) in order to mimic greater
forgetting of reward values in the experiment with a larger number of objects.
Although we chose these specific parameter values for model simulations, the
overall behavior of the models did not qualitatively depend on the exact values
of these parameters.

Assessment of models’ response to different environments. We assessed how
the two models responded to properties of the environment, in terms of general-
izability, volatility, and dimensionality, in three different ways. First, we measured
performance, defined as the average harvested reward in a given environment.
Second, we measured the difference in connection strengths from value-encoding
neurons to the final DM circuit in the PDML model or to signal-selection circuit in
the HDML model. The connection strengths from the OVE/FVE neurons to the
final DM circuit in the PDML model or signal-selection circuit in the HDML
model were equated with the synaptic strength (CO tð Þ and CF tð Þ) in the respective
models. Finally, we measured the difference in the overall weights that object-based
and feature-based reward values exert on the final choice in each model.

In the PDML model, the strength of connections between each of the value-
encoding neurons and the final DM circuit represents how strongly those neurons
drive the final DM circuit. Similarly, the strength of connections between each of
the value-encoding neurons and the signal-selection circuit represents how strongly
those neurons drive the final DM circuit in the HDML model. In both models,
however, the overall influence of the object-based or feature-based values on choice
also depends on how signals encoded in plastic synapses onto the OVE and FVE
neurons can differentiate between objects reward values. We computed such a
‘differential signal’ (S) for the object-based reward values by replacing VOi ðtÞ in
Equation 3 with FOiðtÞ, which is the synaptic strength for synapses onto a pool i of
OVE neurons. Similarly, the differential signal for the feature-based reward values
was computed by using the estimated reward values for objects based on the
synaptic strengths for synapses onto FVE neurons selective to shape and color
(Fshape; iðtÞ and Fcolor; i tð Þ) and Equation 1.

Finally, the overall weight of the object-based and feature-based values on the
final choice was computed using the product of the differential signal represented
in a given set of value-encoding neurons and the strength of connections between
those neurons and the final DM circuit in the PDML model or the signal-selection
circuit in the HDML model. More specifically, the overall weight that the model
assigned to the object-based reward value, WO(t), was set equal to COðtÞ ´ SOðtÞ
and the overall weight assigned to the feature-based reward value, WF(t), was set
equal to CFðtÞ ´ SFðtÞ.

Code availability. Computer codes that support the findings of this study are
available from the corresponding author upon request.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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