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Gravitational origin of the weak interaction’s
chirality

Stephon Alexander∗, Antonino Marcianò†
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Wilder Lab, Dartmouth College, Hanover, NH 03755, USA

Lee Smolin‡

Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, Ontario N2J 2Y5, Canada

June 5, 2018

Abstract

We present a new unification of the electro-weak and gravitational interactions based
on the joining the weak SU(2) gauge fields with the left handed part of the space-
time connection, into a single gauge field valued in the complexification of the local
Lorentz group. Hence, the weak interactions emerge as the right handed chiral half of
the space-time connection, which explains the chirality of the weak interaction. This
is possible, because, as shown by Plebanski, Ashtekar, and others, the other chiral
half of the space-time connection is enough to code the dynamics of the gravitational
degrees of freedom.

This unification is achieved within an extension of the Plebanski action previously
proposed by one of us. The theory has two phases. A parity symmetric phase yields,
as shown by Speziale, a bi-metric theory with eight degrees of freedom: the massless
graviton, a massive spin two field and a scalar ghost. Because of the latter this phase
is unstable. Parity is broken in a stable phase where the eight degrees of freedom
arrange themselves as the massless graviton coupled to an SU(2) triplet of chirally
coupled Yang-Mills fields. It is also shown that under this breaking a Dirac fermion
expresses itself as a chiral neutrino paired with a scalar field with the quantum num-
bers of the Higgs.

∗stephon.alexander@dartmouth.edu
†antonino.marciano@dartmouth.edu
‡lsmolin@perimeterinstitute.ca
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1 Introduction

The ambition of unifying gravity with the other interactions faces three big obstacles:

1. Gravity is described by a dynamical metric while the other interactions are de-
scribed by connection fields. Consequently the Einstein action is linear in curvature
while the Yang-Mills action is quadratic in gauge field strength.

2. The standard model can be quantized perturbatively, because its action is a polyno-
mial of dimension four terms, while the Einstein-Hilbert action, being non-polynomial,
is challenging to quantize.

3. The standard model of particle physics is chiral, while gravity, at least at the classical
level, is not. Any unification must explain why parity is broken only for the weak
interactions.

The first two challenges are addressed by the Ashtekar-Plebanski formulations of gen-
eral relativity in which gravity is described by a gauge field [1, 2], while the metric is
emergent [3, 4]. These connection formulations of gravity are drastically simpler than
Einstein’s original metric formulation, as the action and hamiltonian formulations are

2



based on cubic polynomials in the basic fields, which is a much better situation for quan-
tization than Einstein’s non-polynomial formulation. Indeed these theories are as simple
as non-linear theories can be, with purely quadratic field equations.

Remarkably, these connection formulations of gravity address the issue of chirality
as well. There are a range of these Ashtekar-Plebanski formulations, which differ in the
value of a complex parameter-the Immirzi parameter, γ. When γ takes complex values the
action for gravity is chiral. At the classical level this chirality is hidden in the gravitational
sector and affects only four fermion interactions that arise from their couplings to the
torsion of the connection. But the chirality emerges in the quantum theory [5, 6] where it
can cause parity breaking in the production of tensor modes in inflation [7]. This could
be detected as correlations of B mode polarization with temperature fluctuations [8].

The gravitational action is maximally chiral when γ is purely imaginary in the sense
that the gravitational action is then just a function of the left handed part of the space-time
connection. Hence the connection and curvature that arise in the gravitational action and
field equations are valued only in SU(2)L. Any dependence on SU(2)R drops out. The
parity invariance of the classical Einstein equations arise from the fact that the complex
conjugate of the left handed part can be inserted into the expressions of the equations of
motion without changing their on shell solutions.

The fact that the Einstein equations can be generated by an action which involves only
the chiral SU(2)L half of the space-time connection [9] opens the door to an idea about
unification: perhaps the initial action for gravity is parity symmetric, but there is a phase in
which parity is broken so that one chiral half, SU(2)L, of the space-time connection codes the
gravitational interactions, while the other chiral half, SU(2)R, emerges with the dynamics of a
Yang-Mills field propagating on a space-time described by the left half of the connection. There
might then also be a phase in which parity is restored so that both chiral halves carry
gravitational dynamics.

Note that this idea requires doubling the degrees of freedom initially, for in general
relativity, applied to real, Lorentzian metrics, the left and right halves of the space-time
connection are complex conjugates of each other. To free them up these reality conditions
have to be lifted, and replaced by alternative reality conditions which allow the left and
right halves of the connection to be independent of each other, but in a way which still re-
alizes the reality of the metric. We have a proposal for these alternative reality conditions,
but before introducing them we have to introduce the degrees of freedom that make it
possible to realize our scenario.

Our starting point is a gauge theory of the complexified Lorentz group, SL(2,C)C
on a four dimensional manifold M. The space-time connection Aab = −Aba is a one
form, valued in sl(2,C)C the Lie algebra of SL(2,C)C. That Lie algebra is represented by
complex antisymmetric, 4 × 4 matrices, Mab = −M ba, where a, b, c = 0, 1, 2, 3 are internal
Lorentz indices. Because we want the metric to be emergent, we do not include it as a
fundamental degree of freedom. Instead, we write dynamics of Aab making use of two
auxiliary fields, a two form Bab, also valued in the Lie algebra of SL(2,C) and a scalar
field which provides a map Ψ : sl(2,C)C → sl(2,C)C , which is written as Ψabcd with the
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following symmetries and constraints,

Ψabcd = Ψcdab = −Ψbacd, εabcdΨabcd = 0 (1)

To specify the dynamics we choose the most general parity symmetric1 polynomial of
dimension four and less:

S =

∫

1

8πG

{

εabcdB
ab ∧ F cd − 1

2
ΨabcdB

ab ∧Bcd

}

+

(

Λ

16πG
− g2

2
Ψ2

abcd

)

εefghB
ef ∧ Bgh +

α

2
εabcd F

ab ∧ F cd , (2)

where F ab is a two form which is the field strength of Aab, G is Newton’s constant and
Λ is the cosmological constant. Aab then naturally has dimensions of inverse length, Bab

is dimensionless and Ψabcd has dimensions of inverse length squared. Ψ2
abcd = Ψabcd Ψ

abcd,
εabcd is the Levi-Civita symbol and g is a new dimensionless coupling constant. Note that
there is no Immirzi parameter as we restrict the action to parity even terms.

The last term is a topological invariant. Apart from that there is only a single term
with a derivative in it, which is the first term.

This action has been studied in several forms. Without the terms in Ψ, it describes BF
theory, a topological theory [10]. With g2 = 0 it is a form of the Plebanski action for general
relativity [1]. The full action gives an extended dynamics for the gravitational field as
discussed in [11]. It has been studied by Alexandrov and Krasnov [12] and Speziale [13]
and is known to have eight degrees of freedom. Alexandrov and Krasnov and Speziale
studied the symmetric phase and found a bi-metric theory with a massless graviton, a
massive spin two field and a scalar ghost (8 = 2+ 5+ 1). The presence of the scalar ghost
might have been suspected from results of Berezhiani, Comelli, Nesti and Pilo in [14],
which show it bedevils a large class of bi-metric theories.

The phenomena of spontaneous gravitational symmetry breaking were discussed ear-
lier in [11] where it was shown that an extended Plebanski action of the form of (2),
for a gauge group G which contains the Lorentz group, SO(3, 1), suffers spontaneous
symmetry breaking to an Einstein-Yang-Mills theory with a Yang-Mills gauge group in
G/SO(3, 1). The same phenomena were demonstrated by Torres-Gomez and Krasnov for
the chiral SU(2)L subgroup of the Lorentz group [15]. Krasnov also had earlier origi-
nated the notion of extending the Plebanski action in [16], with G taken to be the chiral
left handed space-time connection valued in SU(2)L. He has also explored a closely re-
lated set of theories whose actions are purely functions of connections, and demonstrated
the phenomena of gravitational spontaneous symmetry breaking there [17].

In [18], within the framework of left and right-handed gravi-weak unification models,
namely SL(4,C)L×SL(4,C)R and its extension GL(4,C)L×GL(4,C)R, Nesti has studied
a parity breaking coupling of gravitons with combination of opposite helicities to mat-
ter. Nesti and Percacci have discussed issues related to the Higgs phenomenon and the

1With parity transformations applied simultaneously to space-time and internal Lorentz indices.
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electro-weak symmetry breaking in [25], and elaborated those topics for the gravi-GUT
unification model they have presented in [19]. The latter work develops a different per-
spective that the one addressed in [18], in that the gravi-weak and color gauge sectors
have been accounted separately in [18].

To discuss the dynamics in more detail, as well as to specify the modified reality con-
ditions it is convenient to change to two component spinor indices [20, 21]. A,B = 0, 1 are
left handed spinor indices while A′, B′ = 0′, 1′ are right handed spinor indices. This al-
lows us to easily distinguish the left and right handed fields. The connection decomposes
into

Aab = AAA′BB′

= εABAA′B′

+ AABεA
′B′

(3)

and the two forms Bab similarly decompose. The scalar fields Ψabcd decompose into pure
spin two fields represented by ΨABCD and ΨA′B′C′D′ , both totally symmetric, and mixed
components ΨABA′B′ on symmetric pairs of indices. Thus,

ΨABCD = Ψ(ABCD) (4)

and the same for primed indices represents the spin two field.
The action now takes the form,

S =

∫

ı

4πG

{

BAB ∧ FAB − BA′B′ ∧ FA′B′ +
λ

6G
(BAB ∧ BAB −BA′B′ ∧ BA′B′

)

−1
2
ΨABCDB

(AB ∧ BCD) +
1

2
ΨA′B′C′D′B(A′B′ ∧BC′D′) −ΨA′B′ABB

A′B′ ∧BAB

}

+
ıg2

2
(Ψ2

ABCD +Ψ2
A′B′C′D′ +Ψ2

ABA′B′)(BAB ∧BAB − BA′B′ ∧ BA′B′

) , (5)

where λ = GΛ is the dimensionless cosmological constant.
To describe the real world we have to impose reality conditions, which restrict the

solutions of the theory to those in which the metric is real. This can be done directly, in
spite of the fact that the metric is not a fundamental field in the action. Instead, we make
use of the remarkable fact that a densitized metric can be constructed which is cubic in
the B fields. In fact, two metrics can be built, out of the left and right parts of B, which
we call the left and right Urbantke metrics [22, 23]

g̃Lµν = εγδρσBB
µγAB

A
νδCB

C
ρσB , (6)

g̃Rµν = εγδρσBB′

µγA′BA′

νδC′BC′

ρσB′ , (7)

in which εαβγδ is the Levi-Civita symbol and over tildes label tensor densities of weight
−1, i.e. tensor densities transforming like a covariant tensor times

√−g, gµν being the
space-time metric. Note that in the symmetric solution these are equal to each other while
in the asymmetric solution they differ. The reality conditions we propose are that both
left and right handed Urbantke metrics are real.

To summarize, we make four physical hypotheses:
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• The SU(2) of the weak interactions is unified with the chiral representation of grav-
ity in a single SL(2,C) connection. This was proposed earlier by Alexander [24] and
by Nesti and Percacci [25]. A toy-model in 3D was presented in [26] by Alexander,
Marcianò and Tacchi, together with its spin-foam quantization.

• The chirality of the standard model arises from a spontaneous breaking of parity
in the gravitational dynamics. It is the weak interactions that break parity because
the weak SU(2) gauge connection is in fact a chiral half of what is originally the
space-time connection.

• This mechanism also explains why parity is maximally violated in the weak inter-
actions. The parity mirror of the coupling of weak isospin to matter is the coupling
of the left handed part of the space-time connection to left-handed spinors.

• Under the symmetry breaking, right handed space-time spinors become internal
isospinors. More specifically, consider the Higgs field, a space-time scalar valued
in the 1

2
of gauged isospin and the sterile neutrino (or right handed neutrinos in

general) which are isospin singlets but space-time spinors. These are mirrors of
each other under the parity symmetry that exchanges the SU(2)L and SU(2)R parts
of the original connection, and are hence unified in a single Dirac spinor.

The basic dynamics of the SL(2,C)C extended Plebanski action are detailed in the
next section. Sections 3 and 4 describe the symmetric and broken phases of solutions.
The imposition of reality conditions is discussed in sections 5. For the theory to truly
unify the electroweak interactions with gravity there must be a U(1) in the theory. This
can be incorporated most simply by extending SL(2,C)R to GL(2,C)R as is discussed in
section 6. But if we keep the philosophy that parity is only broken spontaneously, there
must be another U(1) gauge field coming from extending SL(2,C)L to GL(2,C)L. Matter
coupling is discussed in section 7, and some possible phenomenological consequences
are spelled out in the conclusions, in section 8. Finally, the appendix contains a summary
of the Infeld-Van der Waerden map, in section A, and of the conventions and recurrent
identities we have been making use of, in section B.

2 Field equations

We now exhibit the field equations. Because the reality conditions are subtle we start with
the complexification of the theory and study phase invariant reality conditions below.

We write the equations of motion: from variation with respect to the BAB and BA′B′

fields
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we obtain

FAB = ΨABCD BCD +ΨABA′B′ BA′B′ −
(

λ

3G
+ 4πGg2Ψ2

)

BAB , (8)

FA′B′ = ΨA′B′C′D′ BC′D′ −ΨA′B′AB BAB +

(

− λ

3G
+ 4πGg2Ψ2

)

BA′B′ , (9)

whilst varying with respect to the multiplet of scale fields we find

ΨABCD =
1

8πGg2W
B(AB ∧ BCD) , (10)

ΨA′B′C′D′ = − 1

8πGg2W
B(A′B′ ∧ BC′D′) , (11)

ΨABA′B′ =
1

4πGg2W
BAB ∧ BA′B′ , (12)

where
W = BAB ∧BAB − BA′B′ ∧ BA′B′

. (13)

Finally, variation with respect to the connection components gives

D ∧ BAB = D′ ∧BA′B′ = 0 , (14)

in which D stands for the covariant derivative with respect to AAB , whilst D′ stands for
the covariant derivative with respect to AA′B′

.

3 Symmetric solution

We begin with a left-right symmetric solution of the theory. We expand the BAB and BA′B′

in g
BAB = B

(0)
AB + g2bAB , (15)

BA′B′ = B
(0)
A′B′ + g2bA′B′ . (16)

We then solve the equations of motion (10) and (11) order by order in g. We have to
leading order on the left side

B
(0)
(AB
∧ B

(0)
CD) = 0 , (17)

while to order g2

b(AB ∧ B
(0)
CD) +

g2

2
b(AB ∧ bCD) = 4πGΨABCDW. (18)

There then must exists frame field eAA′

such that

B
(0)
AB = e A′

A ∧ eBA′ = ΣAB . (19)
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Similarly on the right side we have the same equations of motion,

B
(0)
(A′B′ ∧ B

(0)
C′D′) = 0 (20)

and

B
(0)
(A′B′ ∧ bC′D′) +

g2

2
b(A′B′ ∧ bC′D′) = −4πGΨA′B′C′D′W , (21)

which tells us that there must exist a second frame field fAA′

such that

B
(0)
A′B′) = fA

A′ ∧ fAB′ χ′ = Σ′

A′B′(f)χ′ . (22)

The two frame fields, eAA′

and fAA′

are coupled through (12) which to leading order give

ΣAB(e) ∧ Σ
′A′B′

(f) = 0 . (23)

This is solved by
fAA′

= h eAA′

, (24)

where h is a function. Speziale shows that in general the symmetric solutions give a bi-
metric theory with eight degrees of freedom [13].

4 Symmetry breaking solution

We keep the above solution on the left, unprimed, side, so we continue to expand as in
(15). Thus, we have a frame field eAA′

from the solution to (17).
However on the right handed side we do something else. We image that the equa-

tion of motion for FA′B′ , eq. (9) is dominated by the term (BA′B′λ)/3G and by the term
BCD(BA′B′ ∧ BCD)/(4πGg2W ). In doing so, we have assumed BA′B′ to be order g2 and
higher and we have imaged the scaling λ g2 = ξ, with ξ a fixed dimensionless real param-
eter, so that

FA′B′ ≈ −BCDB(A′B′ ∧ BCD)

4πGg2W
− λ

3G
BA′B′ +O(g2) . (25)

We may now expand the left handed B fields as BAB = ΣAB + O(g2), which to zeroth
order leads to

W = 24 ı e+O(g2) , (26)

and invert (25) in order to obtain an expression for BA′B′

in terms of FA′B′

and its dual.
We then realize the relation between BA′B′

and FA′B′

shifting the BA′B′

field by

BA′B′ = −πGg2 (δξ11 + γξ ⋆) FA′B′ + g6bA′B′ , (27)

where ⋆ stands for the space-time Hodge dual with indices suppressed, 11 acts as the
identity operator on 2-forms, and

δξ =

(

1

16
+

ξ

3

)

1
(

(

1
16

+ ξ

3

)2 −
(

3
128

)2
) and γξ = −

3 δξ

128
(

1
16

+ ξ

3

) . (28)
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We can check that the shifting term in (27) is small in solutions to equations of motion
and compute that bA′B′ is suppressed in power of G:

bA′B′ =−π4G3
(

(δ2ξ + γ2
ξ )11 + 2δξ γξ⋆

)

FC′D′

(δξ11 + γξ⋆)FA′B′∧(δξ11 + γξ⋆)FC′D′+O(g6) . (29)

To understand the effect of this shift we solve the equations of motion for the Ψ mul-
tiplet, (10)-(12), and plug the result back into the action to find

S =

∫

ı

4πG

{

BAB ∧ FAB − BA′B′ ∧ FA′B′ +
λ

6G
(BAB ∧ BAB − BA′B′ ∧ BA′B′

)

}

+
81 ı

128π2G2g2W

(

(BAB ∧BCD)
2 + (BA′B′ ∧ BC′D′)2 − 4(BAB ∧ BA′B′)2

)

. (30)

We incorporate the shift (25) together with

BAB = ΣAB + g2bAB (31)

to write the action as

S = S(0)(eAA′

, AAB, AA′B′) + S(1)(bAB, bA′B′ , eAA′

, AAB, AA′B′) , (32)

where the leading order action S(0) is

S(0) =

∫

ı

4πG
ΣAB ∧ FAB +

λ

12πG2
e

− e

4g2YM

FA′B′

µν FA′B′ρσg
µρgνσ − ıΘFA′B′ ∧ FA′B′

+
9G2

(16π)2λ2e
(F(A′B′ ∧ FC′D′))

2 . (33)

In this latter expression the Yang-Mills coupling constant is

− 1

4g2YM

= g2
[

δξ γξ

(

ξ
π2

3
− 1

64
− 74

)

+ γξ

]

, (34)

while the Θ angle is

Θ = g2
[

(δ2ξ + γ2
ξ )

(

ξ
π2

6
− 1

128
− 37

)

+ δξ

]

. (35)

Notice that for ξ ∼ 10−1 or smaller we would get g2 g2YM ∼ 10−4.
The bAB and bA

′B′

are auxiliary fields which are determined by variation of the higher
order action S(1), namely

S(1) =

∫

ıg2

4πG

{

bAB ∧ FAB +
λ

3G
bAB ∧ ΣAB +

λg2

3G
bAB ∧ bAB +

g2λ

3G
bA′B′ ∧ bA

′B′

}

+
81 ı

128π2G2g2W

(

(BAB ∧ BCD)
2 + (BA′B′ ∧ BC′D′)2 − 4(BAB ∧ BA′B′)2

)(1)

, (36)
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where by the last ”()(1)” we mean that the zeroth order terms present in S(0) in eq. (33)
are absent.

The action S(1) is a quartic polynomial, non-derivative in bAB and bA
′B′

. These latter
fields are then determined by the solution of local, non-derivative cubic equations. By
solving these equations we get higher order interactions in the physical fields, eAA′

, AAB

and AA′B′

.

5 Reality conditions

A crucial part of this construction is a modified form of the reality conditions. Initially we
regard all fields as complex (for the lorentzian case), and then specify reality conditions
which are to be imposed on the solutions of the equations of motion.

We first review the standard reality conditions imposed in the Ashtekar formulation,
and then introduce our new proposal.

The standard reality conditions are to take the three metric as real,

q̃ab ∗ = q̃ab . (37)

while the connection satisfies the non-linear condition.

A(L)i
a + A(R)i

a = 2Γ(e)ia , (38)

Here we indicate the left and right connection by

AAB
a = A(L)i

a σAB
i , AA′B′

a = A(R)i
a σA′B′

i , (39)

where the i index labels the three Pauli matrices σi.
These bind the left and the right parts of the connection and so prevent the theory

from existing in the parity broken phase. In that asymmetric phase, we might impose
different reality conditions:

(A(L)i
a )∗ + A(L)i

a = 2Γ(e)ia, (A(R)i
a )∗ = A(R)i

a . (40)

However the reality conditions are part of the definition of the theory. They determine
the inner product of the quantum theory. If the symmetry breaking is to be dynamical we
do not want to impose different reality conditions on different phases of the theory. We
want instead a single set of reality conditions that governs the whole theory. We can do
this the following way:

We differentiate the right and left two forms as

BA′B′

= BL i σA′B′

i , BAB = BR i σAB
i . (41)

We then use these to define the left and right Urbantke metrics [22]:

g̃Rab = BRi
acB

Rj
bd B

Rk
ef εijkǫ

bdef , (42)
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g̃Lab = BLi
acB

Lj
bd B

Lk
ef εijkǫ

bdef . (43)

Note that in the symmetric solution

g̃Lab = det(e) eAA′

a eBb A′ , (44)

while on the right
g̃Rab = det(f) fAA′

a fB
b A′ . (45)

In the asymmetric solution (44) holds but instead of (45) we have a cubic in the Yang-
Mills field strength

g̃Rab = −27
G3

λ3
F i
acF

j
bdF

k
efǫijkε

bdef . (46)

In either case the correct reality conditions are

g̃Lab = (g̃Lab)
∗ , (47)

g̃Rab = (g̃Rab)
∗ . (48)

In the symmetric case this tells us that both left and right handed metrics are real, whereas
in the asymmetric solution we learn that g̃Rab is real and the Yang-Mills connection ωi

a is
real and hence in SU(2).

These can be implemented by adding these reality conditions to the action so they
become equations of motion which arise by varying new Lagrange multipliers λab

L,R:

Swrc =

∫

ı

4πG

{

BAB ∧ FAB − BA′B′ ∧ FA′B′ +
λ

6G
(BAB ∧ BAB − BA′B′ ∧ BA′B′

)

−1
2
ΨABCDB

(AB ∧BCD) +
1

2
ΨA′B′C′D′B(A′B′ ∧ BC′D′) −ΨA′B′ABB

A′B′ ∧ BAB

}

+
ıg2

2
(Ψ2

ABCD +Ψ2
A′B′C′D′ +Ψ2

ABA′B′)(BAB ∧ BAB − BA′B′ ∧BA′B′

)

+λab
R

(

g̃Rab − (g̃Rab)
∗

)

+ λab
L

(

g̃Lab − (g̃Lab)
∗

)

. (49)

The B equation of motion (8) is modified by

FAB = ΨABCD BCD +ΨABA′B′ BA′B′ − (
λ

3G
+ 4πGg2Ψ2)BAB + 4πıGλef

R

δg̃Ref
δBAB

. (50)

But the new term vanishes because the equation of motion for BAB∗ yields

λef
R

δg̃R∗

ef

δBAB∗
= 0 , (51)

which implies that λab
R vanishes. Meanwhile, variation of λab

R enforces the reality of g̃Ref .
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6 Adding U(1) factors: photons

We can incorporate electro-weak unification by adding a U(1) factor2. This is done most
naturally by extending the SL(2,C)L gauge symmetry to3 GL(2,C)L, and similarly for the
right component gauge group. The gauge fields AA′B′

are then no longer symmetric in
AB.

AA′B′

= A(A′B′) + εA
′B′

a′ (52)

defining the U(1) gauge field a′. If we want to continue to follow our hypothesis that
left-right breaking occurs only spontaneously we should do this on the left as well, so

AAB = A(AB) + εABa . (53)

We use the same action (5), which becomes the previous action plus a U(1)C factor.

S = SSL(2,C)C + SU(1)C (54)

where SSL(2,C)C is the previous action (5), (with W extended as below) and

SU(1)C =

∫

ı

4πG

{

B ∧ f − B′ ∧ f ′ +
λ

6G
(B ∧ B − B′ ∧ B′)

−1
2
Ψ··B ∧ B − 1

2
Ψ·

′
·
′B′ ∧B′ − 1

2
Ψ··

′B ∧ B′

−ΨAB·B
AB ∧B −ΨA′B′

·B
A′B′ ∧ B −ΨAB·

′BAB ∧ B′ −ΨA′B′
·
′BA′B′ ∧ B′

}

+
ıg2

2
(Ψ2

··
+ Ψ2

·
′
·
′ +Ψ2

··
′ +Ψ2

·
′AB +Ψ2

·
′A′B′ +Ψ2

AB·
+Ψ2

·A′B′)W , (55)

where B and B′ are abelian two-forms and f = da, f ′ = da′ and, now,

W = BAB ∧BAB − BA′B′ ∧ BA′B′

+B ∧ B − B′ ∧ B′ . (56)

We can again solve for the Ψ equations of motion to cast the action in the form

SU(1)C =

∫

ı

4πG

{

B ∧ f −B′ ∧ f ′ +
λ

6G
(B ∧ B − B′ ∧ B′)

}

+

+
81 ı

128π2G2g2

(

(B ∧ B)2 + (B′ ∧B′)2 + (B ∧B′)2 − 4(B ∧BAB)
2 +

−4(B ∧ BA′B′)2 − 4(B′ ∧BAB)
2 − 4(B′ ∧ BA′B′)2

)

. (57)

Note that if g = 0 the Ψ·· equation of motion gives

B ∧B = 0 , (58)

2The inclusion of a U(1) gauge field by extending the Plebanski action was also studied in [27].
3A subgroup of GL(2,C)L is SL(2,C)L × U(1)L.
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which implies B = 0. So this extension of the gauge group is only possible in the extended
(as opposed to the unextended) Plebanski action. We then have no choice but to shift the
U(1) fields:

B = −πGg2 (δξ11 + γξ ⋆) f + g6 b , B′ = −πGg2 (δξ11 + γξ ⋆) f
′ + g6 b′ , (59)

where δξ and γξ have been defined in (28).

Again this gives a zeroth order action plus an action for the auxiliary fields, b and b′.
Below we only write the U(1)C part of the leading order action:

S
U(1)C
(0) =

e

4g2YM

(fµνfρσ + f ′

µνf
′

ρσ)g
µρgνσ +Θ(f ∧ f + f ′ ∧ f ′) +

+
9 g2G2

256 ξ2e

(

(f̃ ∧ f̃)2 + (f̃ ′ ∧ f̃ ′)2 + (f̃ ∧ f̃ ′)2 − 4(f̃ ∧ FAB)
2 +

−4(f̃ ∧ FA′B′)2 − 4(f̃ ′ ∧ FAB)
2 − 4(f̃ ′ ∧ FA′B′)2

)

, (60)

where we have used the shorthand notations f̃ = (δξ11 + γξ ⋆) f and f̃ ′ = (δξ11 + γξ ⋆) f
′.

We see the following interesting features:

• the two U(1) factors have the same Yang-Mills coupling constant as the SU(2)L fac-
tor, so there is coupling constant unification;

• however they will couple differently to matter as we will see;

• there is a universal four point coupling of vector potentials of the form (F ∧ F )2

which has a universal coupling

λ4−point =
9 g2G2

256 ξ2
∼ 9 g2

256M4
p ξ

2
(61)

which is quite small.

7 Matter couplings

Matter couplings are tricky to write because there is no metric or frame field initially (as
of instance in [28]), but only a BAB field. Couplings to scalars and additional gauge fields
can be done through the Urbantke metric, but they involves non-polynomial couplings.
The simplest coupling is to chiral spinors, with the following action [23]:

SDirac
L =

∫

BAB ∧ ρA ∧ (Dλ)B + τABC ∧ B(AB ∧ ρC) . (62)

13



This works like the Plebanski actions above, but here τABC = τ (ABC) is a Lagrange multi-
plier 1-form whose variation, together with the leading order solution for BAB, yields

Σ(AB ∧ ρC) = 0 , (63)

which is solved by inventing a complex conjugate spinor, λ̄A′ such that

ρA = eAA′

λ̄A′ . (64)

Putting this back into the action we find an effective action

SDirac
L =

∫

λ̄A′eA
′

A ∧ ΣAB ∧ (Dλ)B , (65)

which yields the Weyl theory for a right handed spinor λA.

Let us now consider the right handed side. By symmetry, we must start the same way:

SDirac
R =

∫

BA′B′ ∧ ρ′A ∧ (Dλ)′B + τA′B′C′ ∧B(A′B′ ∧ ρC
′) . (66)

Note that there is no relation between λA′

and λ̄A′

, indeed the latter is not even a field in
the fundamental action.

In the symmetric solution things work the same way on the right side as the left, and
the result is that the fields combine to make a Dirac spinor. But on the symmetry breaking
side things on the right side are not so simple. Instead of (63) we have

F (A′B′ ∧ ρC
′) = 0 , (67)

which does not have any simple general solution.
In terms of its transformation properties, in the symmetry broken phase, λA′ is a space-

time scalar and weak spinor, so it has the quantum numbers of the Higgs boson.

8 Conclusion

Ever since the discovery and experimental success of the standard electroweak theory,
the origin of the weak interaction’s chirality has remained a mystery. In this work we we
have reached the conclusion that a parity symmetric theory of gravity holds the key to
the chiral origin and maximal parity violation of the weak interaction. In particular, we
describe a parity symmetric theory of gravity that has a symmetry broken phase, which
organizes the degrees of freedom to give rise to general relativity coupled to a SU(2)
Yang-Mills theory. The emergence of gravity and the weak interaction is made possible
because gravity has been shown to be completely described in terms of purely left-handed
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variables [9]. This leaves the right handed connection to function as the weak interaction
connection.

One concern is that the expansion in which we understand the symmetry broken
phase involves small g and large λ — the dimensionless cosmological constant. (See (25)
and (34).) Since λ is the bare cosmological constant, it might be possible to imagine that
it must be large to cancel contributions coming from radiative corrections and symmetry
breaking, but this will require more investigation.

Extending the SL(2,C)C symmetry group to GL(2,C)C, enables us to account for two
additional U(1) sectors, one of them describing the U(1)Y and the other accounting for
an extra abelian gauge group that we can speculate may be eventually related to dark
matter. We note that the theory we have discussed naturally supplies an extra U(1) which
has been suggested both as a constituent of dark matter [29, 30] and as possibly relevant
to the di-photon excess seen at the LHC [31, 32]. In our model, the Higgs boson arises
with the correct quantum numbers and in the symmetry restored gravitational theory is
identified with a sterile neutrino under a party transformation. It is important to see any
effects of the symmetry breaking in the neutrino and Higgs sector, such as new interaction
vertices; we leave this question to future work. In this work, we did not provide a mass
generation’s mechanism, such as spontaneous symmetry breaking (SSB), although it is
not difficult to implement this into our model. We will address the issue of SSB in a
forthcoming paper [33], together with the role of the extra U(1) gauge sector, in order to
unveil its consequences for current and upcoming LHC experiments.

A From Lorentz indices to spinorial indices: Infeld-Van

der Waerden map

We started from a theory that is Lorentz invariant, whose “objects” in the starting ac-
tion are Lorentz algebra valued tensor fields. We have then recast the action in terms
of spinor fields. If we want to account for the usual Plebanski theory is spinorial vari-
ables, we may start the analysis considering in stead of a SO(3, 1) principal fiber bundle
an SL(2,C) principal fiber bundle, where SL(2,C) is the universal covering of group of
SO(3, 1). Lorentz tensor fields are then no more simply sections of PSL(2,C), but they are
allowed to be multi linear maps, or eventually anti-linear maps if we use complex con-
jugation. Sections of these bundles are called spinor fields. We are then lead to the con-
struction of a spinor algebra, that is mapped in the Lorentz algebra valued tensor fields
algebra through the Infeld-van der Waerden symbols σ:

T r...
s... → TAA′...

BB′... = σAA′

r . . . σs
BB′ . . . T r...

s... , (68)

where again the pair of capital latin indices A,A′ take the values 0, 1. We identify σAA′

0

with the 2 × 2 unit matrix and σAA′

1 , σAA′

2 , σAA′

3 with the Pauli matrices, satisfying the
relations

σAA′

r σr
BB′ = δAB δA

′

B′ , σAA′

r σs
AA′ = δrs . (69)
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This map allows us to recover spinor fields from Lorentz algebra tensors, and thus to
rewrite our starting actions for the SL(2,C)C and GL(2,C)C symmetric theories.

We start here below reviewing the spinor equivalent of the objects entering our action.
Tetrads are recast using the map in ea → eAA′

= ea σAA′

a . Writing the Lorentz connection
components requires to select a convention on the order the primed and unprimed in-
dices appear: what matters is indeed the relative order of the primed with respect to the
umprimed indices associated to the Lorentz index through the Infeld-van der Waerden
symbols. Since the Lorentz connection is written in terms of a pair of antisymmetric in-
dices such that Aab = −Aba, we have then that AABA′B′ = −ABAB′A′ , from which it follows
that the Lorentz connection can be decomposed in

AABA′B′ = AAB εA′B′ + AA′B′ εAB , (70)

in which now the components AAB and AA′B′ are symmetric in the swap of indices in
order to fulfill the property AABA′B′ = −AABA′B′ .

We use a convention such that εAB = εAB , in which εAB is the Levi-Civita symbol ε01 =
−ε10 = −1. Indices are raised and lowered using the so called “northwest-southeast”
convention, that means ωP

N = εPQ ωQN and e C′

A = ePC′

εPA. Moreover

ε A
B = δAB = −εAB . (71)

The one forms AMN are SL(2,C) connection with an associated curvature two form
that we may recover from the Ricci tensor Rµν → RMNM ′N ′ , which can be decomposed in

RMNM ′N ′ = RMN εM ′N ′ +RM ′N ′ εMN , (72)

in which RMN and RM ′N ′ are as well symmetric in the swap of indices and are expressed
by

RMN = dAMN + A P
M ∧APN , RM ′N ′ = dAM ′N ′ + A P ′

M ′ ∧ AP ′N ′ . (73)

Following this recipe we can map any Lorentz tensor field in a spinor field. Finally, we
recall that

εMNPQM ′N ′P ′Q′ = ı (εMP εNQεM ′Q′εN ′P ′ − εMQεNPεM ′P ′εN ′Q′) . (74)

Thanks to this decomposition, we may recast the covariant derivative (with respect to
the Lorentz connection) acting for instance on the tetrad field as

DeAA′

= deAA′

+ AA
B ∧ eBA′

+ AA′

B′ ∧ eAB′

, (75)

which allows for instance to write the Cartan structure equation for the Einstein-Hilbert
action in the vacuum as

D e
(M
Q′ ∧ eN)Q′

= 0 ←→ d(eI ∧ eJ)− eK ∧ eJ ∧ AI
K + eI ∧ eK ∧AJ

K = 0 . (76)
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Notice now that we may switch to the Plebanski formulation of gravity by composing
in the only two possible combinations allowed the tetrad field in the resulting (Plebanski)
two forms

BAB = eAC′ ∧ eBC′ BA′B′

= eCA′ ∧ e B′

C , (77)

which in turn allows to rewrite

eAA′ ∧ eBB′

= −1
2

(

εA
′B′

BAB + εABBA′B′

)

. (78)

Using the Infeld-van der Waerden map we can recover that the Plebanski 2-forms
satisfy the following geometric properties

⋆ BAB = −ıBAB ⋆ BA′B′

= ıBA′B′

, (79)

in which we have used the definition of the space-time Hodge star operator

⋆ (dxµ ∧ dxν) =
1

2
√−g εµνρσgραgσβ dxα ∧ dxβ . (80)

Thus ⋆ acts as an endomorphism on the Plebanski 2-forms. Notice now that the identity
⋆BAB ∧BA′B′

= BAB ∧ ⋆BA′B′

implies actually that

BAB ∧BA′B′

= 0 , (81)

and that finally

BAB ∧ BCD = 4ıδ
(A
C δ

B)
D

√
−gd4x , (82)

having recognized that d4x := dx0 ∧ dx1 ∧ dx2 ∧ dx3.
Notice that in terms of these Plebanski variables the Einstein Cartan action in presence

of a cosmological constant Λ = λ/G re-writes

SEH =
ı

4πG

∫

BAB[e] ∧RAB[A
CD] +

Λ

3
BAB[e] ∧ BAB[e] , (83)

corresponding to “half” of our action for g = 0 and all the Lagrange multipliers vanishing.

Similarly, without imposing that the Plebanski 2-forms are simple but using the totally
symmetric spinor-value Lagrange multiplier ΨABCD,

ΨABCD = Ψ(ABCD) , (84)

the generalized Plebanski action (for g = 0) reads,

SPleb[BAB, BA′B′

, AMN , AM ′N ′

, ΨABCD, ΨA′B′C′D′

] =

=
ı

4πG

∫

{

BAB ∧ RAB[AMN ]− BA′B′ ∧ RA′B′ [AM ′N ′]

−1
2
ΨABCD BAB ∧BCD +

1

2
ΨA′B′C′D′ BA′B′ ∧ BC′D′

+

+
λ

6G
BAB ∧BAB −

λ

6G
BA′B′ ∧BA′B′

}

, (85)
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which is included in the action discussed in section 1.

Following these conventions, we briefly show in the next appendix some identities
involved in the calculatiuons reported in the previous sections.

B Identities involving the Plebanski 2-forms

We can start from the very definition of self-dual and anti-self-dual variables and find

ΣCD
ρσ ΣCD γδ = −1

2

[

εA
′B′

ΣCD
ρσ εA′B′ΣCD γδ

]

= −1
2

[

Σ+ ab
ρσ Σ+

ab γδ

]

=

= −1
2

[

1
2

(

Σab
ρσ − ı

2
εabcd Σ

cd
ρσ

)

1
2

(

Σab γδ − ı
2
ε rs
ab Σrs γδ

)]

=

= 1
8

[

3
4
Σab

ρσ Σab γδ − ıΣab
ρσεabcdΣ

cd
γδ

]

= − 3
32
gγ[ρgσ]δ +

ı
8
ǫρσγδ , (86)

having used in the first line the Infeld-van der Waerden map.

Given the 2-forms with internal indices (no matter if dual of anti-self-dual) AAB
µν and BAB

µν ,
we find

AAB
µν BAB αβ ǫαβγδ ǫµνρσ

[

− 3

32
gγ[ρgσ]δ +

ı

8
ǫρσγδ

]

=

= − 3

32
AAB

µν BAB µνg
α[µgν]β +

ı

8
AAB

µν BAB µνǫ
αβµν =

= − 3

32
AAB

µν Bµν
AB +

ı

8
AAB

µν ⋆ Bµν
AB . (87)

Similarly for AA′B′

µν and BA′B′

µν , we find

AA′B′

µν BA′B′ αβ ǫαβγδ ǫµνρσ
[

− 3

32
gγ[ρgσ]δ +

ı

8
ǫρσγδ

]

=

= − 3

32
AA′B′

µν BA′B′ µνg
α[µgν]β +

ı

8
AA′B′

µν BA′B′ µνǫ
αβµν =

= − 3

32
AA′B′

µν Bµν
A′B′ +

ı

8
AA′B′

µν ⋆ Bµν
A′B′ . (88)

Notice that we have used the definition of the Levi-Civita tensors ǫ written in terms of
the Levi-Civita symbols ε, such that ε0123 = ε0123 = 1, ǫαβγδ = e−1εαβγδ and ǫαβγδ = e εαβγδ.
We have also used the definition of the gravitational Hodge dual ⋆ introduced in the pre-
vious appendix.

Below, we show some identities concerning or involving the determinant of the metric.
From the very definition of the Σab 2-forms it is straightforward to check that

εabcd Σ
ab
µν Σ

cd
ρσ = ǫµνρσ . (89)

18



For any two 2-forms Aab and Bcd that can be decomposed in terms of tensors AAB and BCD

symmetric in the spinorial indices, using the Infeld-van der Waerden map and defining
(. . . ) · ǫ = (. . . )αβγδ ǫαβγδ , we find that

ı (AAB ∧ BCD) · ǫ ΣAB ∧ ΣCD = ı (AAB ∧BCD) · εe
(

ΣAB ∧ ΣCD
)

· ε
e
ed4x =

= Aab µν Bcd ρσ Σab
αβΣ

cd
γδ ǫαβγδ ǫµνρσ ed4x = Aab µν Bcd ρσ εabcd ǫµνρσ ed4x . (90)

We can also prove that BAB ∧BAB = 4! ı e d4x+O(g2), since

4! e d4x = (ea ∧ eb ∧ ec ∧ ed) ε
abcd = (eAA′ ∧ eBB′ ∧ eCC′ ∧ eDD′) εABCDA′B′C′D′

=

= (eAA′ ∧ eBB′ ∧ eCC′ ∧ eDD′) ı (εACεBDεA
′D′

εB
′C′ − εADεBCεA

′C′

εB
′D′

) =

= ı
[

−
(

eAC′ ∧ e C′

B

)

∧
(

e D′

A ∧ eBD′

)

−
(

e A′

C ∧ eDA′

)

∧
(

eCB′ ∧ e B′

D

)]

=

= − ı BAB ∧BAB +O(g2) . (91)

Thus we find for W

W : = BAB ∧BAB − BA′B′ ∧ BA′B′

= (92)

= 4! ı e d4x+ 2g2 bAB ∧ ΣAB + g4 bAB ∧ bAB +

−π2G2g4 (δξ 11 + γξ ⋆)FA′B′ ∧ (δξ 11 + γξ ⋆)F
A′B′

+O(g8) =

= 4! ı e

[

1− ı
g2

12

(

bAB ∧ ΣAB

)

· ǫ− ı
g4

24

(

bAB ∧ bAB

)

· ǫ+

+ı
π2G2g4

24

(

(δξ 11 + γξ ⋆)FA′B′ ∧ (δξ 11 + γξ ⋆)F
A′B′

)

· ǫ
]

d4x+O(g8) , (93)

and consequently

1

W
≡ 1

W · ǫ = (94)

=
1

4! e ı

[

1 + ı
g2

12

(

bAB ∧ ΣAB

)

· ǫ+ ı
g4

24

(

bAB ∧ bAB

)

· ǫ+

−ı π
2G2g4

24

(

(δξ 11 + γξ ⋆)FA′B′ ∧ (δξ 11 + γξ ⋆)F
A′B′

)

· ǫ
]

d4x+O(g8) ,

having used the ansatz on the shifted relation between BA′B′

and FA′B′

.
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