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Abstract

Genetic researchers often collect disease related quantitative traits in addition to disease status because they are
interested in understanding the pathophysiology of disease processes. In genome-wide association (GWA) studies, these
quantitative phenotypes may be relevant to disease development and serve as intermediate phenotypes or they could be
behavioral or other risk factors that predict disease risk. Statistical tests combining both disease status and quantitative
risk factors should be more powerful than case-control studies, as the former incorporates more information about the
disease. In this paper, we proposed a modified inverse-variance weighted meta-analysis method to combine disease
status and quantitative intermediate phenotype information. The simulation results showed that when an intermediate
phenotype was available, the inverse-variance weighted method had more power than did a case-control study of
complex diseases, especially in identifying susceptibility loci having minor effects. We further applied this modified meta-
analysis to a study of imputed lung cancer genotypes with smoking data in 1154 cases and 1137 matched controls. The
most significant SNPs came from the CHRNA3-CHRNA5-CHRNB4 region on chromosome 15q24–25.1, which has been
replicated in many other studies. Our results confirm that this CHRNA region is associated with both lung cancer
development and smoking behavior. We also detected three significant SNPs—rs1800469, rs1982072, and rs2241714—in
the promoter region of the TGFB1 gene on chromosome 19 (p = 1.4661025, 1.1861025, and 6.5761026, respectively). The
SNP rs1800469 is reported to be associated with chronic obstructive pulmonary disease and lung cancer in cigarette
smokers. The present study is the first GWA study to replicate this result. Signals in the 3q26 region were also identified in
the meta-analysis. We demonstrate the intermediate phenotype can potentially enhance the power of complex disease
association analysis and the modified meta-analysis method is robust to incorporate intermediate phenotype or other
quantitative risk factor in the analysis.

Citation: Li Y, Huang J, Amos CI (2012) Genetic Association Analysis of Complex Diseases Incorporating Intermediate Phenotype Information. PLoS ONE 7(10):
e46612. doi:10.1371/journal.pone.0046612

Editor: Chuhsing Kate Hsiao, National Taiwan University, Taiwan

Received May 1, 2012; Accepted September 5, 2012; Published October 19, 2012

Copyright: � 2012 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was partially supported by National Institutes of Health grants P50CA70907, RO1CA121197, P30CA016772 and U19 CA148127. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for
this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Christopher.I.Amos@Dartmouth.edu

Introduction

Genome-wide association (GWA) studies have identified hun-

dreds of common genetic variants associated with complex

diseases and provided valuable insight into their genetic architec-

ture. However, most of these variants confer relatively low risk

effects and explain only a small proportion of the heritability of

most complex diseases. For most of these diseases, less than 10% of

the genetic variance is explained by the identified common

variants, leaving the bulk of heritability unexplained [1]. One

important reason for the unexplained heritability is that most of

the genetic variants that have been identified have small odds

ratios (around 1.1 for the heterozygous genotypes and 1.5–1.6) for

the homozygous genotypes; latent variants likely have even less of

a disease effect [2]. Researchers estimated that hundreds of genetic

variants are involved in the development of complex diseases but

that together they would explain only about 20% of genetic

variance [3]. Investigators have used imputation of genetic loci

from the Hapmap and other referent populations to boost the

power of case-control association studies for complex diseases [4–

5]. However, traditional case-control studies still have limited

power to detect genetic variants with low risk effect so new

statistical analysis methods are needed in the study.

Disease status is often the ultimate result of influences from

multiple genotypes and environmental factors. Many ‘‘intermedi-

ate’’ phenotypes reflect the pathway leading to disease develop-

ment. An intermediate phenotype may reflect more directly the

effects from causal genes than disease status and be less genetically

complex and more strongly associated with susceptibility loci.

Analysis of intermediate phenotypes has the potential to capture

the underlying heritable trait variation that may be missed in case-

control studies, thus increasing the statistical power in genetic

association studies [6–7]. Studying intermediate phenotypes would

also provide insight into the complicated etiologic disease

pathways. Behavioral and other quantitative measures of increased

risk for disease may also help to improve the power of studies to

detect associations of genetic factors with disease risk if these

PLOS ONE | www.plosone.org 1 October 2012 | Volume 7 | Issue 10 | e46612



behavioral or other risk factors involve the same genetic factors in

their etiology as the disease.

Intermediate phenotypes, also known as endophenotypes, were

first used in psychiatric disorders studies as they were easier to

measure and less complicated than disease status [6]. Endophe-

notypes have been successfully applied in unraveling the complex

etiology of mental disease. For example, neurological soft signs

have been used as an endophenotype in analysis of Schizophre-

nia. In 2012, Greenwood et al. [8] found 94 candidate genes

associated with Schizophrenia-relate endophenotypes. Simons et

al. [9] identified VMAT2 as a candidate gene for psychotic

disorder and neurocognition using measurement of cognitive

functioning as the intermediate phenotype. Researchers also have

adapted endophenotype for use in other complex disease studies.

For example, high mammographic density is one of the strongest

known risk factors for breast cancer and is an intermediate

phenotype that can help elucidate the genetic factors that

contribute to development of breast cancer [10]. In 2011,

researchers identified the gene ZNF365 on chromosome 10 as

being associated with both breast cancer and mammographic

density [11]. That same year, researchers used neuropathology

and cognitive function proximate to death as the intermediate

phenotypes for Alzheimer disease and identified two genes—

ZNF224 and PCK1—involved in the development of Alzheimer

disease [12]. In these two studies, the researchers performed

linear regression analysis of the quantitative intermediate

phenotype with the marker genotype as the covariates. Their

findings suggested successful use of intermediate phenotypes in

genetic association analysis of complex diseases.

Meta-analysis is a powerful method in GWA studies, as it can

combine information from independent populations, thus in-

creasing the sample size and overcoming the lack of power in

most common disease studies [13–16]. The combined informa-

tion from multiple populations is either disease status or

quantitative trait, not both of them. The most widely used

meta-analysis techniques are Fisher’s combined probability test

[17] and inverse-variance weighting [18]. When intermediate

phenotypes and disease status are both available in a study, a

meta-analysis method combining disease status and intermediate

phenotypes should be more powerful than either a case-control

study or linear regression analysis of quantitative traits alone, as

meta-analysis incorporates more information from the patients.

In the present study, we demonstrated that meta-analysis can be

used to examine a combination of the disease status and

intermediate phenotype information from a single population in

a complex disease study and a modified inverse-variance

weighted method was proposed for the analysis. Simulation was

conducted to evaluate the performance of Fisher’s combined

probability test, the modified inverse-variance weighted method,

and the traditional case-control method. The results showed that

inverse-variance weighting was the best of the three methods. We

then applied the meta-analysis to a study of imputed lung cancer

genotypes with smoking data. The results validated previous

findings regarding the CHRNA3-CHRNA5-CHRNB4 region on

chromosome 15q24–25.1 [19–23] and the promoter region of the

TGFB1 gene on chromosome 19 [24–25], which suggested the

modified inverse-variance weighting was a reliable method to do

the meta-analysis within a study. A new region—3q26.1—was

also identified; no genes are located in this region, and deletion of

the region has been reported to be associated with some cancers

[26–27].

Results

Simulation study of the novel method for combining
results from disease and intermediate phenotype
association studies

Table 1 lists the parameters for the medium- and low-risk

susceptibility loci in simulations. The results for the medium- and

low-risk variants are shown in Figures 1 and 2. The x-axis in each

graph denotes the correlation coefficient between the SNP marker

and disease locus, which increased from 0 to 0.8. The y-axis in

each graph denotes the power of each test. When the SNP marker

was directly associated with the disease status but the disease-

related quantitative trait was not associated with the SNP marker

of interest, we obtained no useful information about the

quantitative trait pertaining to the SNP marker studied (lines 1,

3, and 5 in Figures 1–2). Logistic regression analysis was the most

powerful method to detect the association between the SNP

marker and disease status followed by Fisher’s combined

probability test. The power of modified inverse-variance weighted

method was only about half of that of logistic regression. When the

quantitative trait was an intermediate phenotype between the SNP

marker and disease status, linear regression analysis of the

quantitative trait provided valuable information for the association

analysis. The power of the tests increased as the correlation

coefficient between the SNP marker and disease locus increased (x-

axis). Also, as the heritability of the quantitative trait explained by

the SNP increased from 0.002 to 0.010 (columns 1–5 in Figures 1–

2), the power of the linear regression analysis increased, as did the

power of the meta-analysis methods, because they rely on the

information from linear regression analysis. The modified inverse-

variance weighted method was more powerful than Fisher’s

combined probability test in the meta-analysis (lines 2, 4, and 6 in

Figures 1–2). Using the recessive model, logistic regression analysis

had little power, and the linear regression analysis had the

predominant effect in the meta-analysis. The performance of

Fisher’s combined probability test and the modified inverse-

variance weighted method were almost equal to that of the linear

regression analysis.

The type I error rate in this simulation was set at 0.01. To

obtain an accurate estimation of the type I error rate, we carried

out 10,000 simulations for each set of conditions under the null

hypothesis of no association between the SNP marker and disease

locus. We did not observe an inflated type I error rate in this

simulation for any of the methods (Table S1 and S2).

Application of the modified inverse-variance weighted
meta-analysis method to imputed lung cancer
genotypes with smoking data

The 2log10(p)s for logistic regression analysis of disease status,

linear regression analysis of cigarettes per day (CPD) with

adjustment for disease status, Fisher’s combined probability test,

and our modified inverse-variance weighted method are plotted in

Figure 3. The SNPs with 2log10(p)s greater than 5 are highlighted

as the SNPs potentially associated with lung cancer. Although the

SNPs do not meet the commonly accepted criterion of

2log10(p).8 because of our limited sample size, they are still

very promising signals that can be further validated. The inflation

factors l in the tests were ranged from 1.01–1.02, indicating no

spurious association caused by population stratification in the

analyses. Consecutive significant SNPs in a chromosomal region

are listed in Table S3, and we identified three significant regions in

our meta-analysis. The most significant region was AGPHD1-

CHRNA3-CHRNA5-CHRNB4 on chromosome 15q24–25.1

Joint Genetic Association with Disease and Trait
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(Figure 4). When we used a traditional case-control method, no

SNP in this region had a 2log10(p) greater than 5 because of the

limited sample size. In the meta-analysis, this region became very

significant with the strongest signal at rs12914385 with a p-value

1.9861029. This result confirmed that the CHRNA3-A5 region on

15q24–25.1 is associated with both lung cancer development and

smoking behavior, which several other independent studies have

already proven [19–23], and that CPD is an intermediate

phenotype for lung cancer.

Another significant region is the B9D2 gene, which encodes a

protein that lies partially within the TGFB1 promoter on

chromosome 19 [28]. SNP rs1800469, rs1982072, and

rs2241714 had a p value less than 0.001 in our case-control study

and less than 0.01 in quantitative trait analysis. In the modified

inverse-variance weighted meta-analysis, these three SNPs had a

p-value of 1.4661025, 1.1861025, and 6.5761026, respectively.

Previous authors reported that the SNPs rs1800469 and

rs2241712 in the promoter of the TGFB1 gene are associated

with chronic obstructive pulmonary disease and lung cancer in

cigarette smokers [24–25]. Our results supported the signal at

rs1800469; rs2241712 was not present in our genotype data, but

rs2241714 (about 350 bp away from rs2241712) was also

significant (Table S3). The evidence from a GWA study supports

that the TGFB1 gene is associated with tobacco-induced lung

cancer. The significant SNPs in the TGFB1 promoter region may

be related to abnormal TGFB1 gene transcription levels in lung

cancer patients. We also identified a large region on 3p26 (4.139–

4.258 Mb) associated with both lung cancer development and

smoking behavior, a total of 74 SNPs with a p-values around

1.061025 were detected, and only two of them were from the

genotyped SNPs, they were rs1444056 (4214953 bp) and

rs1403124 (4188033 bp). No genes with known functions reside

in this region although deletion of the region has been reported to

be associated with some cancers [26–27].

For the significant SNPs identified in the three regions, the

modified inverse-variance weighted method always produced a

stronger signal than did Fisher’s combined probability test. To

further compare the performance of Fisher’s combined probability

test and the modified inversed-variance weighted method in

association analysis, we plotted the 2log10(p) in the case-control

method versus Fisher’s combined probability test, and the case-

control method versus the inverse-variance weighted method

(Figure 5). The plot on the left in the figure shows that Fisher’s

combined probability test tended to produce more significant

signals for non-significant SNPs (2log10(p),4) in the case-control

study, which may have introduced a higher false-discovery rate

than the inverse-variance weighted method in real data analysis.

The reason for this finding is that Fisher’s combined probability

test is based on the p values from the logistic and linear regression

tests, and so cannot tell the directions of the association effect from

these two regression tests. Fisher’s combined probability test can

produce a significant result even when the effects in logistic and

linear regression analyses are in opposite directions. This should

not be true when the quantitative trait is an intermediate

Figure 1. Power Plots for the Medium-Risk Model.
doi:10.1371/journal.pone.0046612.g001

Joint Genetic Association with Disease and Trait
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phenotype for the disease being studied. The modified inverse-

variance weighted method does not have this problem because it is

based on linear combination of the two effect sizes. Therefore, it is

a better method than Fisher’s test for a single- population meta-

analysis.

Discussion

Researchers have widely used meta-analysis in genetic associ-

ation studies to combine information from different populations

and increase sample sizes. However, it is rarely used to combine

different types of data in a single population. Genetic researchers

will often collect phenotypic information in addition to disease

status to better understand the pathophysiology of disease

development and to maximize study findings; in many of these

instances, the information is on intermediate phenotypes. A meta-

analysis method incorporating both the disease status and

intermediate phenotype should be more powerful than a

traditional case-control study method. In the present study, we

examined a modified inverse-variance weighted meta-analytical

method. Simulation studies showed that this method is more

powerful than the traditional case-control method in association

analysis of complex diseases, especially for identification of disease

loci having very minor effects. Also, compared with Fisher’s

combined probability test, inverse-variance weighted meta-analy-

sis is more robust as it has a bigger power and a lower type I error

Figure 2. Power Plots for the Low-Risk Model.
doi:10.1371/journal.pone.0046612.g002

Table 1. Parameters for Medium- and Low-Risk Models in
simulation.

Genetic
Model b1 c0 c1 ODhetero ODhomo

Medium Add1
a 0 23.36 log1.20 1.20 1.44

Add2
b 1 23.1 log1.15 1.20 1.43

Dom1 0 23.36 log1.14 1.30 1.30

Dom2 1 23.16 log1.07 1.31 1.31

Rec1 0 23.13 log1.14 1.00 1.30

Rec2 1 23.04 log1.07 1.00 1.31

Low Add1 0 23.16 log1.10 1.10 1.21

Add2 1 23.05 log1.05 1.10 1.22

Dom1 0 23.18 log1.08 1.17 1.17

Dom2 1 23.07 log1.04 1.17 1.17

Rec1 0 23.05 log1.08 1.00 1.17

Rec2 1 23.00 log1.04 1.00 1.17

ODhetero: odds ratio for heterozygous genotypes; ODhomo: odds ratio for
homozygous genotypes; Add: additive; Dom: dominant; Rec: recessive.
aDisease model 1 in Figure 1–2.
bDisease model 3 in Figure 1–2.
doi:10.1371/journal.pone.0046612.t001

Joint Genetic Association with Disease and Trait
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rate. We set the MAFs of the SNP marker and disease locus as

equal in our simulation studies and we observed that the results of

the tests were similar when the MAFs were set differently (results

not shown). In addition, the intermediate phenotypes in both

patients and controls were available in this study. This phenotype

is sometimes only available in patients because either the

quantitative trait is expressed in them only or the cost of

measuring the quantitative trait in controls is too high. Our

simulation study showed that the meta-analysis was still better than

the case-control study method when the quantitative trait was only

available for patients (results not shown).

We further applied meta-analysis to empirical data analysis.

Smoking behavior, which can be quantified as smoking duration

or smoking quantity, is the most important risk factor for lung

cancer development. In 2008, several replicated studies showed

that there was a strong association between the nicotinic

acetylcholine receptor subunit cluster of genes (CHRNA) on

chromosome 15q25.1 and lung cancer. But there was no

conclusion on whether the association was direct or mediated

via smoking behavior. Hung’s group [23] observed an increased

risk even in non-smokers, which implied at least some of the risk

was not mediated via smoking. Thorgeirsson et al. [29] suggested

that the association with lung cancer was mainly mediated through

smoking behavior. In 2010, researchers using genome-wide

approaches provided conclusive evidence for a strong association

between CHRNA genes and smoking behavior [22]. There is

reason to believe that CHRNA genes are associated with both

smoking and lung cancer. Smoking behavior is an attribute

associating with increased lung cancer risk. The method that we

derive can be applied equally well to either intermediate

phenotypes or to behavioral attributes that associate with

increased risk for a disease. To address this comment, we revised

our paper by inserting discussion about modeling either interme-

diate phenotypes or other quantitative risk factors into the model.

The GWA study incorporating the quantitative trait of CPD with

the imputed genotype data detected significant SNPs on chromo-

somes 3, 15, and 19. The signal in the CHRNA3-CHRNA5-

CHRNB4 region was much stronger in the meta-analysis than in

the case-control study. The highest p value was 1.9861029, which

was a very strong signal in our small sample size (1154 cases and

1146 controls). Many independent studies have replicated the

finding of association of CHRNA3-CHRNA5-CHRNB4 on 15q24

with lung cancer and smoking behavior. Our results further

confirmed this finding. Also, it suggested that CPD is abehaviorally

mediated risk factor for lung cancer or an intermediate phenotype

that is involved in lung cancer risk. Whether or not the genetic

effects of the nicotinic receptor variants on chromosome 15q25.1

directly contribute to lung cancer risk or only contribute through

their effects on smoking behavior is a topic of ongoing debate and

further study. Mediation analyses [30–31] have shown both direct

and indirect (through smoking behavior) effects of the SNPs in this

region on lung cancer risk. In contrast, a study of the SNP effects

on cigarette per day use versus cotinine levels among smokers

shows a much stronger effect on cotinine levels [32–33]. This

finding suggests that reported cigarettes per day is inadequately

capturing the actual exposure individuals experience to nicotine,

but this observation still does not indicate yet the exact pattern of

relationship of the genetic effects on smoking versus lung cancer

risk [34].

The SNPs rs1800469 and rs2241712 in the promoter of the

TGFB1 gene on chromosome 19 were associated with chronic

obstructive pulmonary disease and lung cancer in smokers in

previous studies. These polymorphisms can only be detected in our

study using meta-analysis. Thus, meta-analysis combining an

intermediate phenotype and the disease status is a powerful tool

for detecting genetic variants in complex disease association

studies, especially when the effects of the susceptibility loci are

minor. The significant SNPs detected in these verified regions

demonstrate that our modified inverse-variance weighted meta-

Figure 3. Manhattan Plot of GWA Studies of Lung Cancer and CPD Data. 1–4: case-control method (l= 1.018), linear regression analysis with
adjustment for disease status (l= 1.010), Fisher’s combined probability test (l= 1.013), and the modified inverse-variance weighted method
(l= 1.011). 2log10(p).4.5 was used as the cutoff in plot 1 to match with the previous GWA study published in 2008 (Nat Genet, 40.5: 616–622).
2log10(p).5 was used as the cutoff in plot 2–4 to reduce false discovery rate.
doi:10.1371/journal.pone.0046612.g003

Joint Genetic Association with Disease and Trait
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Figure 4. 2Log10(P) Plot of Significant SNPs on Chromosomes 3, 15, and 19 in Meta-analysis of imputed lung cancer genotypes
with smoking data.
doi:10.1371/journal.pone.0046612.g004

Figure 5. P-Value Comparisons between the tests. X-axis, 2log10(p) from logistic regression analysis. Y-axis, 2log10(p) from Fisher’s combined
probability test (left); 2log10(p) from the modified inverse-variance weighted method (right).
doi:10.1371/journal.pone.0046612.g005

Joint Genetic Association with Disease and Trait
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analysis is a reliable method for genetic association studies when

an intermediate phenotype is available.

In the lung cancer study, the intermediate or behaviorally

related phenotype, smoking quantity, has a positive relationship

with disease status. This positive correlation may not always be

true. For example, there is a negative relationship between brain

size and Alzheimer’s disease. In this case, the quantitative trait can

be specified as the measurement of the overall brain shrinkage

from the patient’s normal brain size, which has a positive

relationship with the disease. Researchers may use prior studies

to assess correlations between the intermediate phenotype and the

disease of interest to help determine how this information should

be combined in the joint analysis.

In this study, the modified inverse-variance based test was

applied when only one intermediate phenotype is available.

Statistically, it can also be applied when multiple intermediate

phenotypes are available in the data as this method is based on the

combination of estimators from several regression tests with the

modified inverse variance as the weights. However, consideration

is needed on the complicated disease model when multiple

intermediate phenotypes are existent. The disease model could

include multiple disease pathways with each one having an

intermediate phenotype in it, or one pathway with more than one

intermediate phenotypes in it, or even a mixture of them. Further

investigation is needed for the application of this method in a more

complicated situation.

Whereas an intermediate phenotype is very useful in GWA

studies, it also has potential to help researchers understand the

intricate interactions among the disease associated genes and

elucidate the complicated mechanism underlying the human

diseases. The rapid development of microarray technology has

made genome-wide gene expression profiles available to research-

ers. The gene expression levels are closely linked with both the

genetic variants and disease status, providing a large number of

intermediate phenotypes for complex diseases. Meta-analysis

combining the disease status and gene expression data will be

very powerful in identifying the functional genetic variants

associated with complex diseases. This modified inverse-variance

weighted meta-analytic approach is a promising tool in decipher-

ing complex disease codes.

Materials and Methods

Simulation study
Given a disease locus A having two alleles A1 and A2 with allele

frequencies q1 and q2 (q1+q2 = 1), an SNP marker M has two alleles

M1 and M2 with allele frequencies m1 and m2 (m1+m2 = 1). The

SNP marker and disease locus are closely linked so that they are in

linkage disequilibrium, which can be quantified using the correla-

tion coefficient (r). The pathway to a complex disease has an

intermediate phenotype that can be measured as a quantitative trait

(Y). If X denotes the genotype at the SNP marker, then the

relationship between Y and X can be expressed using the linear

equation Y =b0+b1X+e, in which e represents the error term

following N(0,s2
E). The genotypes at X were coded as 0, 1, and 2

for an additive effect; 0, 1, and 1 for a dominant effect; 0, 0, and 1

for a recessive effect. The relationship between the disease status

and SNP marker and quantitative trait can be expressed using the

equation P(D|X,Y) = exp(c0+c1X+c2Y)/(1+exp(c0+c1X+c2Y)).The

minor allele frequencies (MAFs) of the SNP marker (m1) and disease

allele are both set at 0.3 for a common allele frequency. The values

for b and c parameters in the logistic equation are chosen to fix the

disease incidence rate at 0.05 (Table 1). The value of s2
E represents

the residual effect in the regression analysis, which includes the

effect of environmental factors and impact of other genetic loci. The

heterozygous and homozygous odds ratios at the SNP marker range

from 1.2 to 1.4 for a medium-risk model and 1.1 to 1.2 for a low-risk

model.

The genetic variance of the quantitative trait explained by the

SNP marker can be expressed as s2
A = 2m1m2a

2,

s2
D = (2m1m2ak)2, in which a= a[1+k(m12m2)] [35]. In this

equation, a and k represent additive and dominant effects of the

SNP marker respectively. In this simulation, the heritability of the

quantitative trait explained by the SNP marker ranges from 0.002

to 0.010, with a step size of 0.002; these numbers are based on the

estimation of common variants effect-size distribution from recent

GWA studies in complex diseases [3]. The type I error rate in the

simulation study was set at 0.01. Additive, dominant, and recessive

effects were simulated at the SNP marker, although the additive

model is the common model assumed in quantitative trait

association analyses. For the medium-risk variants, we simulated

2000 cases and 2000 controls for the additive and dominant

models and 6000 cases and 6000 controls for the recessive model.

For the low-risk variants, we simulated 4000 cases and 4000

controls for the additive and dominant models and 8000 cases and

8000 controls for the recessive model. The analysis program is

coded in R which is available upon request, and we have posted

the code to SourceForge (http://sourceforge.net/p/

modifiedinverse/wiki/Home/).

Disease models in simulations
Figure 6 lists the possible relationships among the disease

susceptibility locus, disease status, and quantitative trait given this

trait is an intermediate phenotype. In model 1, the quantitative

trait and SNP marker are independently associated with the

disease status, and the disease locus is not related to the

quantitative trait. Models 2 and 3 are different from each other

etiologically. Model 2 is a single pathway, whereas model 3 is a

dual pathway between the disease susceptibility locus and disease

status. Mediation analysis can be used to differentiate these two

models [36], but it is impossible to separate models 2 and 3 when

the disease status and quantitative trait are evaluated separately in

the analysis. The results from disease models 1 and 3 were

reported, with the correlation coefficient (r) between the SNP and

disease susceptibility locus increasing from 0 to 0.8 [Figure 1–2].

When r equals 0, the SNP is not associated with the disease locus,

which is the null hypothesis in the simulation.

Analysis of simulated data
Two statistical tests were conducted for the analysis in step 1.

Test 1 is logistic regression analysis of the disease status with the

SNP marker genotype as the covariate, and test 2 is linear

regression analysis of the quantitative trait with adjustment for the

disease status. For the three proposed disease models under the

assumption that the quantitative trait is an intermediate pheno-

type, no association between the SNP and disease status, either

Figure 6. Three possible disease models for one disease locus
with an intermediate phenotype. G, disease susceptibility locus; D,
disease status; QT, quantitative trait (an intermediate phenotype).
doi:10.1371/journal.pone.0046612.g006
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directly or indirectly, means there is no association between the

SNP and quantitative trait and no association between the SNP

and disease status. So test 1 and test 2 are independent under the

null hypothesis. Step 2 is to combine the results from test 1 and 2

using meta-analysis methods. If p1 and p2 are the p values for test 1

and 2, Fisher’s combined probability test can be used to combine

the values to provide an overall p value using the formula

x2 = 22[ln(p1)+ln(p2)], which follows a chi-square distribution with

four degrees of freedom [17].

Two Z-score statistics from tests 1 and 2 were obtained from

score tests, which can be combined using inverse-variance

weighting. Suppose the two Z-scores from tests 1 and 2 are Z1

and Z2*, both follow an approximately normal distribution as

follows:

Z1*N(m1,s2
1) and Z2�*N(m2�,s

2
2):

Under the null hypothesis, Z1 and Z2* are independent

(m1 = m2* = 0).

The estimator of effect size of the SNP from linear regression

analysis of the quantitative trait can be arbitrary depending on the

subjective selection of the measurement unit and normalization

procedure of the trait, which will affect the combination result

from the inverse-variance weighted method. However, if the

quantitative trait is an intermediate phenotype involved in the

development of disease, the estimators of the coefficients for SNP

marker from logistic and linear regression analysis and their

standard errors should be close to a consistent unit, as these are

two different tests for the same associations, i.e., the association

between the SNP marker and disease status. Therefore, Z2* can be

scaled so that it has the same unit as Z1. In the present study, the

standard error of Z2* is scaled so that it is the same as that of Z1,

which is the same as multiplying each quantitative trait by a

constant c, where c = sqrt(s2
1/s2

2*). This produces the new Z-

score statistic Z2 = Z1c,N(m2,s2
1). Let L = bZ1+(12b)Z2, 0,b,1,

when b = 1/2, the variance in L is at its smallest, specifically, 1/

2V(Z1) (Text S1). This creates the new statistic S, which follows a

normal distribution: S = (bZ1+(12b)Z2)/sqrt(1/2V(Z1),N(m3,s2
3).

In this formula, m3 = 0 under the null hypothesis.

Lung cancer and smoking data with imputed marker
data

The study examined 1154 ever-smokers with lung cancer and

1137 control ever-smokers. The patients and controls were

frequency-matched by age and sex, and they were all of European

origin. Their genotype data came from Illumina HumanHap300

v1.1 BeadChips, and the GWA study results were published in

2008. The genotypes were further imputed using the MACH

(version 1.0.15) [37] with the HapMap 2 database (release 21),

which contained 2,557,253 tagging SNPs. The statistical tests were

conducted on imputed genotypes. Smoking cigarettes per day

(CPD) was used as a quantitative trait in the analysis. We used the

smoking data of CPD as the intermediate phenotype in our

analysis. The box plot and histogram in Figure S1 show the

distribution of the CPD data, and the Q-Q plot in Figure S1 shows

the normality of the CPD data. We used a square root

transformation to normalize the CPD data.

SNPs with a 2log10(p) greater than 5 were regarded as

promising significant SNPs with adjustment for multiple compar-

isons in the association analysis. The normally accepted

2log10(p).8 was not used because of our limited sample size.
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after square root transformation.
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in simulation. Add: additive; Dom: dominant; Rec: recessive.
aDisease locus and quantitative trait are independently associated

with the disease. bQuantitative trait is intermediate between the

disease locus and disease status. cTest 1, logistic regression; test 2,

linear regression; test 3, Fisher’s combined probability test; test 4,
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