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RESEARCH ARTICLE

Experimentally-Derived Fibroblast Gene
Signatures Identify Molecular Pathways
Associated with Distinct Subsets of Systemic
Sclerosis Patients in Three Independent
Cohorts
Michael E. Johnson1, J. MatthewMahoney1, Jaclyn Taroni1, Jennifer L. Sargent1,
Eleni Marmarelis1, Ming-RuWu1, John Varga2, Monique E. Hinchcliff2, Michael
L. Whitfield1*

1 Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America,
2 Northwestern University Feinberg School of Medicine, Department of Internal Medicine, Division of
Rheumatology, Chicago, IL, United States of America

* Michael.L.Whitfield@Dartmouth.edu

Abstract
Genome-wide expression profiling in systemic sclerosis (SSc) has identified four ‘intrinsic’

subsets of disease (fibroproliferative, inflammatory, limited, and normal-like), each of which

shows deregulation of distinct signaling pathways; however, the full set of pathways contrib-

uting to this differential gene expression has not been fully elucidated. Here we examine ex-

perimentally derived gene expression signatures in dermal fibroblasts for thirteen different

signaling pathways implicated in SSc pathogenesis. These data show distinct and overlap-

ping sets of genes induced by each pathway, allowing for a better understanding of the mo-

lecular relationship between profibrotic and immune signaling networks. Pathway-specific

gene signatures were analyzed across a compendium of microarray datasets consisting of

skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea,

and 26 controls. IFNα signaling showed a strong association with early disease, while

TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated

with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative

subset was most strongly associated with PDGF signaling, while the inflammatory subset

demonstrated strong activation of innate immune pathways including TLR signaling up-

stream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic

and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high

expression of genes associated with lipid signaling, which was absent in the inflammatory

and limited subsets. Together, these data suggest a model by which IFNα is involved in

early disease pathology, and disease severity is associated with active TGFβ signaling.
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Introduction
Systemic sclerosis (SSc) is a progressive fibrotic disease of unknown etiology characterized by
fibrosis of the skin and internal organs, vascular abnormalities, immune activation, and exces-
sive extracellular matrix deposition. Heterogeneity of disease symptoms and outcomes remains
a significant obstacle, though emerging data are beginning to provide insight. Clinical classifi-
cations of SSc are based primarily on the extent of skin and internal organ involvement, and
SSc autoantibody profiles [1]. Multiple high-throughput gene expression analyses of patient
skin biopsies have identified four SSc intrinsic subsets that span the two clinically identified
subsets of limited (lSSc) and diffuse (dSSc) disease. Distinct molecular signaling pathways ap-
pear to underlie each subset, providing insights into the clinically observed heterogeneity be-
tween SSc patients that has confounded clinical trials. Analysis of serial biopsies over 6–12
months has shown the intrinsic subsets to be stable over this short time frame, but does not
rule out the possibility of patients changing subsets over much longer time scales [2].

Previously, we have described associations between both a TGFβ-responsive gene signature
and increased disease severity in the fibroproliferative subset of dSSc patients [3], and an IL-
13/CCL2 gene signature and the inflammatory subset [4]. While these associations were sug-
gestive, the studies were limited by the small number of samples available, and the absence of a
validation cohort. In addition, these pathways accounted for only a fraction of the overall gene
expression present within each of the intrinsic gene expression subset of SSc. Here, we have ex-
panded our analyses to include ten additional inflammatory and fibrotic signaling pathways
(three experimentally derived here for the first time; seven taken from the literature), and ex-
panded on two others, to determine the genes induced, the unique and overlapping genes
among the pathways, and how each contributes to the gene expression changes in SSc skin.
Along with our prior analyses of TGFβ, these pathway gene signatures were compared against
three independent SSc patient cohorts, which were merged into a single dataset, and stratified
into intrinsic gene expression subsets. This allows us to assess the relative contribution of each
signaling pathway to the gene expression changes seen in SSc skin.

The list of pathways analyzed here includes both pathway analyses previously performed
within our own group, along with pathways strongly implicated by the primary literature, but
without knowledge of how they stratify across a sample of the SSc patient population. Pathways
suggested by the literature include platelet-derived growth factor (PDGF), sphingosine-1-
phosphate (S1P), peroxisome proliferator-activated receptor gamma (PPARγ), tumor necrosis
factor alpha (TNFα), interferon alpha (IFNα), nuclear factor kappa-B (NF-κB), and innate im-
mune signaling. The in vivo gene response to imatinib mesylate was also included in these anal-
yses due to the overlapping functions of this drug, and its use as an experimental treatment for
SSc [5].

IFNα signaling was strongly associated with early disease, while TGFβ signaling spanned
both the inflammatory and fibroproliferative subsets, and was associated with more severe skin
involvement. We find the fibroproliferative intrinsic subset to be more strongly associated with
the PDGF gene signature, while the inflammatory subset is associated with a wide range of NF-
κB activating pathways.

Materials and Methods

Skin biopsy data
Microarray data for scleroderma lesional and nonlesional skin biopsies and healthy controls
used in this analysis have been described previously [2,6,7]. These data are publically available
in the NCBI GEO database under accession numbers GSE9285, GSE32413, and GSE45485,
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respectively. Additional skin biopsy microarrays not previously described elsewhere are also in-
cluded in this dataset, and are available from the NCBI GEO database under accession number
GSE59785. The analysis of human samples in this study was approved by the Committee for
the Protection of Human Subjects at Dartmouth College (CPHS# 16631) and by the institu-
tional review boards (IRB) of Northwestern University’s Feinberg School of Medicine
(STU00004428). All subjects in the study provided written consent, which was approved by the
IRB review panels of Dartmouth College and Northwestern University Feinberg School of
Medicine.

Batch effects evident between the three datasets were adjusted using ComBat [8] run as a
GenePattern module using parametric and non-parametric settings. The statistical significance
of batch bias before and after adjustment was assessed using guided principal component anal-
ysis (gPCA) and the first two unguided principal components were inspected (S1 Fig.). Genes
were then selected using an intrinsic gene identifier algorithm [9] using a false discovery rate
(FDR) sufficient to produce reproducible clusters (generally between 2000 and 3000 probes),
clustered using Cluster 3.0 [10], and visualized with Java TreeView [11]. The distribution of in-
trinsic subset assignments in the original published datasets were compared to those deter-
mined after ComBat adjustment using a Chi-squared test.

Experimental treatment and RNA preparation
Primary adult NHDFs were obtained from Cambrex Bioscience Inc. (East Rutherford, NJ); SSc
fibroblasts were isolated from explanted lesional biopsies cultured for three passages in DMEM
supplemented with 10% fetal bovine serum (FBS) (v/v) and 100 IU/mL penicillin-streptomy-
cin. To measure pathway treatment responses, 4 × 105 fibroblasts were seeded in 100 mm
dishes, and cultured in DMEM supplemented with 10% FBS for 48 h; cells were then brought
to quiescence in DMEM plus 0.1% FBS for 24 h. Cellular agonists (PDGF, R&D Systems, Min-
neapolis, MN; rosiglitazone (RZN), Cayman Chemical Company, Ann Arbor, MI; S1P, Sigma-
Aldrich, St. Louis, MO; IL-4 and IL-13, Peprotech, Rocky Hill, NJ) were added to low serum
media, and cells incubated for 0, 2, 4, 8, 12, and 24 h; baseline, zero hour time points were per-
formed in triplicate. Following treatment, cells were lysed in RLT buffer supplemented with
0.1% β-mercaptoethanol, and total RNA isolated using RNeasy mini kits (Qiagen, Valencia,
CA), according to the manufacturer’s instructions. Pathway gene signatures were defined as all
probes exhibiting a� 2-fold mean change in expression relative to controls at 12 and 24 h across
all replicates. Data were filtered to include only probes showing an average correlation> 0.8
relative to an idealized induction pattern (full induction at 2–24 h time points).

Quantitative real-time PCR
Reverse transcription of total RNA (200 ng) was performed using SuperScript II reverse
transcriptase (Invitrogen, San Diego, CA) to generate single-stranded complementary DNA;
1.0 mg cDNA was used for each qRT-PCR reaction. Taqman gene expression probes for CD36,
THBD, and 18S were obtained from Life Technologies (Foster City, CA), and analyzed using
the 7500 Fast Real-Time PCR system. Fold changes were calculated relative to 18S controls
using the comparative Ct formula 2−ΔΔCt [12]. All experiments were performed in triplicate.

Microarray procedures
Microarray hybridizations were performed as described previously [7]. Briefly, RNA quality
was assessed using the Agilent 2100 Bioanalyzer, and quantified using a Thermo Scientific
NanoDrop 2000 spectrophotometer. Total RNA (200 ng) was amplified and labeled using
Agilent QuickAmp Labeling kits, as described previously [6]. Cy3-labeled sample and
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Cy5-labeled Universal Human Reference RNA (Stratagene, La Jolla, CA) we co-hybridized
onto Agilent SurePrint Human Genome 4 × 44k (G4112F) and 8 × 60k (G4851A) microarrays.
Data were uploaded to the UNC microarray database, normalized, and filtered for spot quality
and signal intensity. Microarray data from this paper have been deposited in the NCBI GEO
database under accession numbers GSE56038 and GSE59785.

Data analysis
Data analyses were performed for each of the 13 agonists: PDGF, S1P, RZN, TGFβ, IL-13, IL-4,
IFNα, TNFα, Polyinosinic:polycytidylic acid (poly(I-C)), ionomycin-phorbol 12-myristate 13-
acetate (ionomycin-PMA), dexamethasone (DEX), lipopolysaccharide (LPS), and imatinib
mesylate. PDGF, S1P, and RZN time courses were performed as part of this analysis. TGFβ
time courses were originally described by Sargent, et al. and are available from the NCBI GEO
database under accession number GSE12493. Two additional IL-13 and IL-4 time courses each
were performed adding to the data published in Greenblatt, et al. [4] and are available under
accession number GSE56308. In vitro fibroblast treatment arrays for agonists IFNα, TNFα,
poly(I-C), ionomycin-PMA, DEX, and LPS were originally described by Rubins, et al. [13], and
are available from the NCBI GEO database under accession number GSE24125. In vivo
imatinib mesylate treatment response microarrays were performed by Chung, et al. [5] using
skin biopsies collected before and after treatment; these data are available from the NCBI GEO
database under accession number GSE11130. A summary of all treatment-associated microar-
ray data used in this study is presented in Table 1.

Pathway gene signatures for each of the treatments listed in Table 2 were defined as all
genes up or downregulated� 2-fold across all of their corresponding 12 and 24 h time points,
relative to untreated controls. The imatinib signature was determined based upon a p-value
cutoff, as defined by Chung, et al. [5]. A centroid was created for each of the TGFβ, PDGF,
S1P, RZN, IL-13, and IL-4 time courses by averaging the 12 and 24 h time points, and the cen-
troids aligned to the MPH dataset using Agilent probe IDs. Data for IFNα, TNFα, poly(I-C),
LPS, ionomycin-PMA, DEX, and imatinib were aligned by Entrez ID due to differences in mi-
croarray annotation; genes represented by multiple probes were averaged across all probes for
both the treatment and MPH datasets. Pearson’s correlation coefficients were calculated be-
tween each pathway gene signature centroid and the MPH dataset for each individual microar-
ray; average correlations were then calculated for each gene signature for each of the four
intrinsic subsets. P values quantifying the enrichment of pathway signatures within individual
subsets were calculated based upon the average Pearson’s correlation r coefficient using the
standard method for Pearson’s correlation P value calculations, with n defined as the number
of genes within each pathway.

Pearson’s correlation coefficients were used to quantify the contribution of a specific path-
way to the gene expression within a given patient. These correlation ‘scores’ were then com-
pared against clinically relevant factors including age, sex, modified Rodnan skin score
(MRSS), biopsy site, and disease duration to identify the predictive value of each pathways for
these clinical outcomes. Clinical comparisons were limited to dSSc patients only, using a single
array per patient per time point collected; in cases where both lesional and non-lesional biop-
sies were collected only the lesional biopsy was considered. Comparisons of biopsy site were
limited to clinically dSSc patients that provided paired lesional and non-lesional biopsies at a
given time point; n denotes the number of patients included in each analysis. Continuous vari-
ables were compared using Pearson’s correlation; categorical variables were analyzed by
ANOVA. All statistical analyses were performed using IBM SPSS version 19. P values� 0.05
were considered statistically significant.

Fibrotic and Immune Signatures in Systemic Sclerosis
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Table 1. Overview of agonists used in this study.

Agonist Primary Target Source Experimental Overview Accession

PDGF PDGFR This study In vitro human fibroblast time course GSE56308

S1P S1PR1–5 This study In vitro human fibroblast time course GSE56308

RZN PPARγ This study In vitro human fibroblast time course GSE56308

IL-13 IL-13Rα1/IL-4Rα This study In vitro human fibroblast time course GSE56308

IL-4 IL-4Rα This study In vitro human fibroblast time course GSE56308

TGFβ TGFβ Sargent, et al.,
2009

In vitro human fibroblast time course GSE12493

TNFα TNFR1/2 Rubins, et al., 2011 24 h in vitro human fibroblast treatment GSE24125

IFNα IFNAR Rubins, et al., 2011 24 h in vitro human fibroblast treatment GSE24125

Poly(I-C) TLR3 Rubins, et al., 2011 24 h in vitro human fibroblast treatment GSE24125

LPS TLR4 Rubins, et al., 2011 24 h in vitro human fibroblast treatment GSE24125

DEX Glucocorticoid
receptors

Rubins, et al., 2011 24 h in vitro human fibroblast treatment GSE24125

Iono-
PMA

T cells/Ca2+/PKC Rubins, et al., 2011 24 h in vitro human fibroblast treatment GSE24125

Imatinib Ableson kinase/PDGFR Chung, et al., 2009 Skin biopsies from in vivo clinical trial collected before and after
treatment

GSE11130

doi:10.1371/journal.pone.0114017.t001

Table 2. Experimental pathway gene signatures and overlap with the MPH dataset.

Treatment Number of probes passing
filter a, b

Number of genes found in MPH dataset (% overlap) d

PDGF 1198 728 (60.8)

TGFβ 946 842 (89.0)

S1P 848 825 (97.3)

IL-13 850 759 (89.3)

IL-4 1549 1415 (91.3)

RZN 222 128 (57.7)

LPS 1472 1185 (80.5)

PolyIC 4599 3749 (81.5)

TNFα 1487 1184 (79.6)

IFNα 262 223 (85.1)

Iono-PMA 3694 3040 (82.3)

Dex 1495 1151 (77.0)

Imatinib 1050 c 843 (80.3)

a Pathway gene signatures were defined as all genes up or downregulated � 2-fold across all 12 and 24 h

time points, relative to untreated controls.
b IDs for PDGF, TGFβ, S1P, IL-13, IL-4, and RZN denote unique Agilent probe IDs. Entrez gene IDs were

used for LPS, PolyIC, TNFα, IFNα, Iono-PMA, Dex, and imatinib; all genes represented by two or more

probes were averaged in both the MPH dataset and individual gene signatures.
c The gene expression signature used for imatinib was determined based upon a p value cutoff, as defined

by Chung, et al. [5].
d MPH overlap signifies the number of genes IDs from a given pathway also appearing in the MPH dataset;

the low overlap percentages seen in both PDGF and PPARγ pathways is a result of platform differences,

as both PDGF and PPARγ pathways were reanalyzed on Agilent 8 × 60k DNA microarrays, while the MPH

dataset includes only probes present in both 44k and 60k arrays.

doi:10.1371/journal.pone.0114017.t002
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Results

Integrative analysis of the intrinsic subsets
In vitro, experimentally derived pathway signatures putatively deregulated in SSc provide an
interpretive framework for previously generated skin biopsy data. Three distinct skin biopsy
datasets consisting of 75 [6], 89 [2], and 165 ([7] and unpublished data) microarrays were
merged using ComBat [8] to create a single microarray dataset (referred to as the MPH
(Milano-Pendergrass-Hinchcliff) dataset). Together, these combined data include 329 microar-
ray hybridizations from 287 unique biopsies representing 111 patients: 70 dSSc, 10 lSSc, 26
healthy controls, 4 morphea, and 1 eosinophilic fasciitis; one patient’s diagnosis changed from
lSSc to dSSc during the period of study. This combined dataset was used as a reference against
which the relative contributions of different signaling pathways could be compared in a ge-
nome-wide meta-analysis.

Functional gene expression groups
Clustering of the MPH dataset was performed as described previously [2,6,7], using the genes
that showed the most intrinsic expression (e.g. the most consistent expression across all sam-
ples from a single patient but with the highest variance between different patients [9,14]). We
selected 2316 probes covering 2189 unique genes at an estimated false discovery rate (FDR) of
0.65%. Average linkage hierarchical clustering was performed for both genes and arrays, reca-
pitulating the four previously described ‘intrinsic’ subsets (fibroproliferative, inflammatory,
limited, and normal-like; Fig. 1). A similar analysis performed using only a single array per
patient revealed broadly similar results, indicating that the inclusion of multiple time points
and technical replicates for some patients did not significantly affect the size of each subset
(S2 Fig.).

As the MPH dataset is composed of previously described biopsy samples, the intrinsic sub-
sets assignments identified in this analysis are similar to those previously described. The meth-
ods required to merge these three datasets into one group does cause some samples at the
edges of groups to be misclassified [2,6,7]. Subset assignments were largely consistent between
the original and MPH datasets (p� 0.001, Chi-squared test; S1 Table). Strong reproducibility
was observed in the inflammatory (47/75; 63%), and fibroproliferative (69/99; 70%) subsets
where samples original classified as such were given the same classification here. The most
common misclassification of fibroproliferative was to inflammatory (17 biopsies) and vice
versa (16 inflammatory biopsies misclassified as fibroproliferative). Patients originally classi-
fied as the limited subset were typically classified as such here (12/19; 63%) and the most com-
mon misclassification was to fibroproliferative (6 biopsies). The normal-like subset showed the
greatest variability (58/104 56%) with the majority of the misclassified samples (28 biopsies)
being added to the limited dendrogram branch.

Gene clusters associated with each intrinsic subset were analyzed using the Database for
Annotation, Visualization, and Integrated Discovery (DAVID) to identify functional enrich-
ment. Gene ontology (GO) biological process annotations recapitulated those previously de-
scribed. The inflammatory subset include inflammatory response, immune response, cell
adhesion, angiogenesis, and antigen processing (p< 0.001; Fig. 1) and include multiple HLA
and immunoglobulin genes, CTGF, CCL2, IL10RA, IL27RA, VEGFC, and genes associated
with fibrosis (COMP, COL1A1, COL4A1, COL4A2, COL5A2, COL6A1, COL6A3, COL14A1,
and COL15A1).

The fibroproliferative subset is significantly enriched for GO biological processes associated
with the cell cycle including chromatin assembly, nucleosome assembly, M phase, and cell cycle

Fibrotic and Immune Signatures in Systemic Sclerosis

PLOS ONE | DOI:10.1371/journal.pone.0114017 January 21, 2015 6 / 23



Figure 1. Hierarchical clustering recreates intrinsic subsets.Hierarchical clustering of the ComBat-merged MPH dataset recreates clear normal-like,
fibroproliferative, inflammatory, and limited subsets. Clustering was performed on 2316 probes covering 2189 genes at an FDR of 0.65%, chosen based

Fibrotic and Immune Signatures in Systemic Sclerosis
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(p< 0.001; Fig. 1), and includes genes for cell cycle regulators CCNE1, CDCA5, CDKN2A,
and CCNB2, as well as multiple histone genes.

The normal-like and limited groups are defined primarily based upon the absence of im-
mune or proliferation related gene expression, with the primary division between these groups
driven by a strong a strong lipid and fatty acid metabolism signature in the normal-like group
which is significantly decreased in the limited subset. This lipid signature is characterized by
GO biological processes of fatty acid metabolism, lipid biosynthesis, oxidation reduction, and
steroid biosynthesis (p< 0.001; Fig. 1). Genes principally involved in these processes include
HMGCS1, fatty acid desaturases (FADS1 and FADS2), and acyl-CoA synthesis genes
(ACADVL, ACAT2, ACOX2, and ACSL3).

Generation of fibrotic pathway gene signatures in dermal fibroblasts
Using targets suggested by the literature, we performed treatment time courses for PDGF, S1P,
and rosiglitazone (RZN), an agonist of PPARγ, in SSc and normal dermal fibroblasts to assess
the role of each signaling pathway is SSc pathogenesis; we performed two additional time
courses each for IL-4 and IL-13 to expand upon the work of Greenblatt et al. [4]. No significant
differences were observed between the genes induced by the different treatments in SSc lesional
and healthy control fibroblasts in culture, consistent with previous findings [3,15,16]. Optimal dos-
ing for PDGF and RZN were determined experimentally (Fig. 2), with cellular responses measured
by quantitative real-time PCR; dosing for S1P was chosen based upon published results [17,18]. A
10 μM concentration of RZN resulted in a 1.7-fold induction of CD36 (p< 0.001 vs. control), with
only modest increases at higher concentrations (Fig. 2A). The gene expression response increased
over the course of 24 h with 10 μM (Fig. 2B). Accordingly, we chose 10 μM for all RZN treatment
time courses. Treatment with 30 ng/mL PDGF resulted in a 57-fold induction of thrombomodulin
(THBD), with dosage above 50 ng/mL saturating (p< 0.001 vs. control; Fig. 2C). Based upon
these results a concentration of 30 ng/mL was used for all PDGF time course experiments. THBD
expression increased sharply upon treatment with PDGF, with maximal induction seen at 24 h
(Fig. 2D). Table 1 provides a summary of the time courses generated in this study. Each time
course was analyzed independently (see methods) and then all pathways concatenated into a single
data file (Fig. 3).

We first examined the genes and biological processes affected by each pathway treatment in-
dependently. Since IL-4, IL-13, and TGFβ have been described previously [3,4], transcriptional
responses to these agonists are not discussed in detail.

The link between PDGF signaling and SSc pathogenesis is well established [19–22], with
many PDGF-mediated effects, including cell proliferation, abnormal vascular development,
and immune activation [23] having important implications for SSc. PDGF treatment of dermal
fibroblasts resulted in the induction or suppression of 1198 probes covering 1099 unique genes
(Table 2; S3 Fig.). Genes with increased expression were highly enriched for GO biological pro-
cesses related to kinase activity, phosphorylation, wound healing, cytokine signaling, and
smooth muscle cell proliferation (p< 0.001). Specific genes include IL8R ligands (CXCL1,
CXCL2, CXCL3), TNF receptor superfamily members (TNFRSF12A, TNFRSF21, TNFRSF6B,
TNFRSF8), metallothioneins (MT1A, MT1B, MT1E, MT1L, MT2A), BCL2A1, CCL2, IFI44,

upon their consistent expression within an individual patient, along with high variance between patients. The array tree is color coded to indicate new intrinsic
subset designations (yellow = limited, green = normal-like, purple = inflammatory, red = fibroproliferative, and black = unassigned). Below the array tree, hash
marks are used to indicate the original subset designation (TOP: green = normal-like, red = fibroproliferative, purple = inflammatory, yellow = limited, black =
unassigned), the dataset of origin (MIDDLE: blue = Milano, green = Pendergrass, red = Hinchcliff), and the clinical diagnosis (BOTTOM: green = normal,
red = diffuse scleroderma, yellow = limited scleroderma, black = morphea or eosinophilic fasciitis). Black bars indicate genes that clustered together
hierarchically, with the most highly represented GO terms listed alongside each cluster.

doi:10.1371/journal.pone.0114017.g001
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and VEGF. Downregulated genes were enriched for GO biological processes associated with
cell motility and migration, MAP kinase signaling, and Wnt receptor signaling. Genes downre-
gulated by PDGF include CTGF, MAP3K8, and GATA6.

The lipid and fatty acid metabolism signature identified within the normal-like subset are
indicative of increased PPARγ signaling, as suggested by Varga and coworkers [24–26]. PPARγ
signaling exerts a potent anti-fibrotic response [27], and is antagonistic to TGFβ [25], suggest-
ing a potential therapeutic role for this pathway in SSc. Activation of PPARγ signaling by RZN
had only modest effects on fibroblasts in the absence of other signals. A total of 222 probes cov-
ering 219 unique genes were affected in this analysis, of which only 37 probes were upregulated
including ADRP, ANGPTL4, and PDK4 (Table 2; S4 Fig.). Lowering of the 2-fold cutoff to 1.5-
fold increased the overall number of probes to 985. This more permissive cutoff revealed en-
richment for expected GO processes including regulation of lipid metabolism, lipid storage,
and long-chain fatty acid synthesis (p< 0.05). GO biological processes for downregulated
genes are almost exclusively associated with cell cycle regulation, including the terms M phase,
cell cycle, mitosis, nuclear division, spindle organization, and others (p< 0.001); this result was
seen with both 2 and 1.5-fold cutoffs.

Figure 2. Dosage response and induction of reporter genes following stimulation with PDGF and RZN. RZN and PDGF concentrations were
optimized for use in microarray treatment experiments by qRT-PCR using reporter genes CD36 and thrombospondin (THBD), respectively. NHDFs were
treated with A) 0, 1, 10, 50, and 100 μMRZN or C) 0, 10, 30, 50, and 100 μg/mL PDGF for 24 h. Levels of CD36 and THBD were analyzed by qRT-PCR, and
normalized to 18S rRNA. NHDFs were treated with B) 10 μMRZN and D) 30 ng/mL PDGF for 0, 0, 0, 2, 4, 8, 12, and 24 h. Error bars indicate the standard
deviation across three or more replicates; all time points were statistically significant relative to controls (p< 0.05).

doi:10.1371/journal.pone.0114017.g002
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S1P signaling has also been shown to play an important role in immune activation and regu-
lation [28], with potent pro-fibrotic effects seen in both normal and SSc fibroblasts [29]. As
S1P levels are regulated in part through TGFβ [18], this suggests both unique and overlapping
functions associated with this pathway. S1P treatment induced the most diverse responses of
any of the agonists tested, with� 2-fold induction or suppression seen in 848 probes covering
749 unique genes (Table 2; S5 Fig.). Upregulated GO biological processes included immune
activation, inflammatory and wounding responses, regulation of cell death, and proliferation
(p< 0.001). Prominently induced pathways include IL8R, TGFβ, Toll-like receptor, PPAR,
and VEGF signaling, along with substantial activation of interferon-inducible proteins, such as
IFI44. Downregulated GO biological processes include metabolism of sugars (glucose, hexose,
and monosaccharide), antigen processing and presentation, immune response, fatty acid syn-
thesis, and cell adhesion (p< 0.001).

Identification of specific and overlapping functions for each pathway
Significant overlap exists between pathway gene signatures, particularly for fibrotic genes, mak-
ing it difficult to identify pathway-specific effects. To better delineate the genes induced by
multiple pathways (common) and those induced by a single pathway (specific), all probes
showing� 2-fold change in expression across all 12 and 24 h time points were concatenated
from each of our treatment pathways, and hierarchically clustered to identify functional gene
clusters. Pathways included in this analysis were PDGF, RZN, and S1P, along with our expand-
ed IL-4 and IL-13 time courses, and our previous data examining TGFβ-induced gene expres-
sion [3]. A total of 2136 probes covering 2081 genes were identified in one or more of the six
pathways considered (Fig. 3); probes not present on both the 4×44k and 8×60k microarray
platforms were excluded from this analysis.

The clustered data revealed several areas of divergence that may be important in the patho-
genesis of SSc (Fig. 3). Cluster 1 is highly enriched for virtually all cell cycle associated genes
present in this dataset and showed induction by PDGF at 12 and 24 h time points, while sub-
stantial downregulated was seen in all other pathways. Clusters 3 and 5 were most strongly as-
sociated with TGFβ signaling, exhibiting a strong decrease in lipid and steroid biosynthesis
(Fig. 3, cluster 3), with increased expression of genes associated with cell differentiation, migra-
tion, and wound healing including CTGF and COL3A1; these genes were largely unaffected in
the five other pathways tested.

Clusters 2 and 6 were selectively upregulated in S1P, exhibiting strong induction of multiple
TLRs and interferon-inducible proteins, indicating a clear role for this pathway in innate im-
munity. Surprisingly, S1P showed a strong induction of the interferon-inducible proteins com-
monly observed in SSc and Lupus PBMC samples [30,31]. IL-8-related signaling (e.g. IL-8,
CXCL1-3) was induced by both S1P and PDGF (Fig. 3, cluster 6), although PDGF lacked many
of the other genes associated with innate immunity induced by S1P, including IL-6, NFKBIA,
NFKBIE, TLR1, TLR2, and TLR4 (Fig. 3).

Cluster 7 was most strongly associated with IL-4/IL-13 signaling. GO terms associated with
this cluster include Jak/STAT signaling, amino acid synthesis and transport, and extracellular
matrix organization. CCL2 was among the genes highly upregulated in this cluster, consistent
with previous findings [4]; however, increased CCL2 expression was also observed in S1P and

Figure 3. Clustering of pathway-regulated genes signatures reveals co-regulated and pathway specific modules. A total of 2136 probes covering
2081 genes were identified which show� 2-fold average change in gene expression at 12–24 h in one or more of the six different pathways examined (IL-4,
IL-13, S1P, TGFβ, PDGF, and RZN). Gene expression data from each of the eight time points (0, 0, 0, 2, 4, 8, 12, and 24 h) from each time course are shown.
Black bars indicate genes that clustered together hierarchically, with the most highly represented GO terms listed alongside each cluster.

doi:10.1371/journal.pone.0114017.g003
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PDGF treatments, illustrating that activation of multiple signaling pathways can induce
CCL2 expression.

In addition to pathway-specific effects, substantial convergence of pathways was also ob-
served. Gene expression patterns are highly similar in both IL-4 and IL-13 signaling pathways
due to their convergence on the shared IL4RA receptor (Fig. 3). Pathway-specific variations
exist, though modest to strong downregulation is seen throughout cluster 4 for IL-4, IL-13,
S1P, TGFβ, and PDGF, while the same pathways show consistent upregulation in clusters 8
and 10. Cluster 8 is most strongly activated in TGFβ, and includes many of the biological re-
sponses associated with fibrogenesis, including robust induction of epithelial to mesenchymal
transition, cell motility, and Wnt signaling; however, this cluster is also upregulated to varying
degrees in IL-4, IL-13, S1P, and PDGF, suggesting widespread convergence on these genes typi-
cally associated with fibrosis. Cluster 10, is consistently upregulated by all six pathways and is
characterized by induction of multiple cellular biological processes including protein complex
synthesis and mRNA regulation.

Together these analyses identify important pathway-specific effects of each agonist, includ-
ing wound healing, cell proliferation, and immune activation. Furthermore, these analyses pro-
vide important data regarding many of the genes associated with fibrosis, and shows their
regulation by multiple pathways in dermal fibroblasts. A pdf containing the full data from
Fig. 3 is available among the supplemental materials (S6 Fig.).

Curation of NF-κB-related signaling pathways and the imatinib response
signature
Next, additional microarray data probing the response of dermal fibroblasts to a wide range of
immunological perturbations were downloaded from the NCBI GEO database (Table 1). These
pathways are particularly relevant to SSc due to the inflammatory gene expression observed in
our skin biopsy dataset. In vitro fibroblast treatment data were obtained for TNFα, IFNα,
lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (poly(I-C)), ionomycin plus phorbol-
12-myristate-13-acetate (ionomycin-PMA), and dexamethasone (DEX), [13]. TNFα and IFNα
are among the first cytokines expressed during an innate immune response, and are important
for the generation of adaptive T cell responses [32]. TNFα plays a major role in both acute
and chronic inflammation [33], while IFNα acts as an important mediator of antiviral activity
[34]. Both LPS and poly(I-C) initiate innate immune responses through Toll-like receptors,
activating TLR4 and TLR3, respectively. Ionomycin-PMA raises intracellular Ca+ levels, and
induces protein kinase C (PKC) activation [35,36]. DEX is a synthetic glucocorticoid steroid
which functions as a potent anti-inflammatory. Due to differences in platforms, gene annota-
tion, and experimental design, microarray data from each of these treatments were processed
independently; genes represented by multiple probes were averaged across all probes for
both the treatment and MPH datasets. Each set of genes constitutes a ‘signature’ for that
pathway.

The final set of data included in this study was taken from a case report study performed by
Chung, et al. [5] examining the effect of imatinib mesylate on two dSSc patients. Imatinib is a
selective tyrosine kinase inhibitor which blocks phosphorylation of Abelson kinase (Abl), a tar-
get of both TGFβ and PDGF, as well as the PDGF receptor (PDGFR). Microarray analyses
were performed using skin biopsies collected before and after treatment, with the imatinib re-
sponse signature determined based upon a p-value cutoff. We used the list of 1050 imatinib re-
sponse genes as published by Chung et al. [5] (Table 1).
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Contributions of individual pathways within each intrinsic subset of
disease
To identify the contribution of each pathway to the overall gene expression profile observed in
patient biopsies, Pearson’s correlations were performed comparing each of the thirteen gene
expression signatures against the corresponding probes extracted from the MPH skin biopsy
dataset. Due to differences in DNAmicroarray platforms, not every probe or Entrez gene ID
induced by a pathway was present in the MPH dataset. The number of probes and Entrez gene
IDs for each pathway, and the corresponding number present in the MPH dataset are shown in
Table 2. Correlations were then averaged for each intrinsic gene expression subset, as indicated
by the colored coded dendrogram (Fig. 4A).

The relative contributions of each of the thirteen pathways to the differential gene expres-
sion that defined the four intrinsic subsets are represented by their average Pearson’s correla-
tion scores (Fig. 4B) and associated p values (Fig. 4C). The strongest correlation between any
intrinsic subset and pathway signature was seen between the fibroproliferative subset and
PDGF (average correlation = 0.194; p< 0.001; Fig. 4B and C); the only other pathway showing
a significant positive correlation to the fibroproliferative subset was IL-4, which exhibited mod-
est, but consistent activation across the inflammatory subset, and variable activation in the
fibroproliferative subset (average correlation = 0.053; p = 0.045; Fig. 4B and C). Surprisingly,
the average TGFβ correlation for the entire fibroproliferative subset was only 0.040 (p = 0.244;
Fig. 4B and C), indicating that sustained TGFβ expression is variable across patients in this
subset. This observation was surprising however, given previous results obtained using the
same TGFβ time courses and skin biopsy microarray data solely from Milano, et al. [3]. The
fibroproliferative subset of arrays originally described in Milano, et al. does continue to show a
positive correlation with TGFβ, however this average correlation is significantly lower than
that seen with PDGF (TGFβ average correlation = 0.088; p = 0.011 vs. PDGF average correla-
tion = 0.258; p< 0.001). RZN exhibited a significant negative correlation to this subset (average
correlation = −0.188; p = 0.033; Fig. 4B and C), due primarily to the strong downregulation of
cell cycle genes seen in this pathway.

The data of Chung et al. [5] suggested that dSSc patients in the fibroproliferative subset
were most likely to benefit from tyrosine kinase inhibitor therapy. A direct comparison of the
imatinib response signature to the MPH dataset supports this view, with a significant negative
correlation evident for the fibroproliferative subset (average correlation = −0.086; p = 0.012;
Fig. 4B and C). Imatinib also shows a strong negative correlation to the PDGF gene signature
(= −0.824); this correlation is significantly stronger than with TGFβ (= −0.220), suggesting that
the PDGF gene expression signature may also be a good predictor of response to imatinib.

The inflammatory subset is positively associated with the widest array of pathway signa-
tures, likely due to the convergence of many of these pathways at NF-κB. The LPS, TNFα, S1P,
poly(I-C), and TGFβ gene signatures are all significantly enriched within this subset (p< 0.001
for all; Fig. 4B and C). The IFNα gene signature is also enriched in this subset, though this cor-
relation fails to reach statistical significance due to the relatively small number of genes in this
pathway (average correlation = 0.116; p = 0.083). Enrichment of TGFβ signaling within this
subset was surprising based on our prior findings; from these data it suggests that TGFβ
signaling spans both the inflammatory and fibroproliferative subsets. TGFβ has been shown to
induce both pro- and anti-inflammatory responses depending upon the presence of other cyto-
kines [37], and can activate NF-κB by means of TGFβ-associated kinase 1 (TAK1) [38,39]. The
strong correlation between S1P and the inflammatory subset, but not the fibroproliferative sub-
set, was also surprising given the well documented roles for S1P in fibrosis, cell proliferation,
and immune activation. Evidence from these analyses indicates a much stronger role for S1P in
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Figure 4. Correlations between pathway-specific gene signatures and patient gene expression profiles. Pearson correlations were performed
between each of the thirteen pathway-specific gene signatures and the corresponding probes in the MPH dataset. A. Pathway gene signatures are defined
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immune activation in SSc. Combined, these correlations suggest a role for innate immune sig-
naling through NF-κB as an important mediator of pathology within the inflammatory subset.

Consistent with our prior studies, both the IL-4 and IL-13 gene signatures are associated
with the inflammatory subset. The IL-4 pathway is significantly enriched suggesting a role for
TH2-like immune responses (average correlation = 0.059; p = 0.027; Fig. 4B and C) in this sub-
set. Despite its strong correlation with IL-4 (= 0.942; p< 0.001), the IL-13 signature initially
showed only weak correlation to this subset (p = 0.521); however this difference was largely an
artifact of 2-fold cutoff, as the IL-4 signature is almost twice the size of the IL-13 signature
(1415 genes for IL-4 vs. 759 genes for IL-13). An equivalently sized 1415 gene signature from
the IL-13 treatment showed enrichment in the inflammatory subset, although this correlation
failed to reach statistical significance (p = 0.101).

The limited and normal-like subsets show very similar gene expression, exhibiting negative
correlations to almost all of the pathways tested. These negative correlations were particularly
strong among the pathways activated in the inflammatory subset; S1P, TGFβ, TNFα, LPS, and
poly(I-C) (p< 0.05 for all; Fig. 4B and C), indicative of a more immunologically quiescent
form of disease. The primary distinction between the two subsets was the high level of gene ex-
pression associated with lipid signaling in the normal-like subset. Surprisingly, the RZN gene
signature exhibited no enrichment within this subset despite being an agonist for many of the
upregulated genes. This absence of correlation is likely due to the low number of genes posi-
tively affected by RZN in the fibroblast, indicating that that fibroblasts are not the primary
source of lipid signaling seen in these patients.

TGFβ is associated with increased disease severity while IFNα is
associated with early disease
Pearson’s correlations for each of the thirteen pathways were compared against clinically rele-
vant factors including age, sex, skin score (MRSS), biopsy site, and disease duration to identify
specific associations between individual pathways and disease outcomes. Clinical variables in-
cluding lung disease, gastrointestinal involvement, renal disease, Raynaud’s severity, race, and
autoantibody profile were not considered due to insufficient data across the multiple skin biop-
sy cohorts analyzed. Clinically limited SSc, morphea, and eosinophilic fasciitis patients were ex-
cluded from this analysis due to underlying differences in MRSS, age, and disease duration
between clinical subsets, which limited to the analysis solely to dSSc patients. We limited the
analysis to a single microarray per patient per time point collected; in cases where both lesional
and non-lesional biopsies were collected only the lesional biopsy was considered.

Multiple signaling pathways exhibited strong correlations with MRSS (Table 3). Of the six
agonists with significant correlation to MRSS (S1P, RZN, IL-4, TGFβ, TNFα, and imatinib),
TGFβ was by far the strongest overall predictor of severity of skin involvement, with a correla-
tion score nearly double that of the next highest pathway (average Pearson’s correlation =
0.385 for TGFβ vs. 0.210 for IL-4).

In addition to MRSS, the TGFβ gene signature was also strongly associated with biopsy site,
showing a significant increase in TGFβ activation in lesional skin (average correlation = 0.058 vs.
0.002 in forearm and back, respectively; p = 0.001; Table 3). Alternatively, PDGF signaling

as all probes exhibiting� 2-fold average change in gene expression across all 12 and 24 h time points for a given treatment (Table 2). Correlations were
repeated across each of the 329 arrays and aligned using the array dendogram from Fig. 1. Boxes representing each of the four intrinsic subsets (normal-
like = green, fibroproliferative = red, inflammatory = purple, limited = yellow) are shown; arrays not clustering with any defined subset are indicated in
black. B. Average Pearson’s correlations for each pathway across each of the intrinsic subsets are provided. C. P values quantifying the enrichment of
pathway signatures within individual subsets were calculated based upon the average Pearson’s correlation, with statistically significant correlations
highlighted in bold.

doi:10.1371/journal.pone.0114017.g004
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appears elevated in non-lesional back skin (average correlation = 0.126 vs. 0.078 in back and fore-
arm, respectively; p = 0.048; Table 3). These observations suggest subtle, but reproducible differ-
ences between lesional and unaffected skin [2,6,15], and may reflect differences between TGFβ
and PDGF-driven disease.

Disease duration showed a significant negative correlation to IFNα pathway activation
(Table 3), indicating a spike in IFNα signaling early in disease pathogenesis (defined as� 2
years after first non-Raynaud’s symptoms), followed by downregulation of this pathway as dis-
ease progresses. Other inflammatory signals, including S1P and IL-4 were also higher in early
disease though these signals did not reach statistical significance (p> 0.05; Table 3).

Finally, comparisons between the inflammatory and fibroproliferative subsets are suggestive
of a weak association between disease stage and subset, with the fibroproliferative subset con-
taining 8 of 11 patients with disease lasting� 8 years, though this enrichment was not statisti-
cally significant (p = 0.104 by Chi-squared test). Both age and sex were comparable
between subsets.

Taken together, these data suggest that IFNα signaling and other immune activation path-
ways may play a role in early disease pathogenesis, while TGFβ signaling is most strongly asso-
ciated with disease severity. The observation that TGFβ spans the inflammatory and
fibroproliferative subsets suggests a mechanistic connection may exists between these groups,
driven in part by TGFβ signaling.

Discussion
Scleroderma is a clinically heterogeneous disease that is likely to be caused by a network of
pathways with distinct and overlapping effects. One way of determining the degree to which
each pathway contributes to disease pathogenesis is to have a list of genes induced by each
pathway in the primary cell type of interest, dermal fibroblasts. The data presented here

Table 3. Associations with clinical outcomes.

IL-4 IL-13 PDGF RZN S1P TGFβ DEX IFNα Iono-
PMA

LPS PolyIC TNFα Imatinib

mRSS Pearson 0.210 −0.108 0.134 −0.210 0.183 0.385 0.095 −0.057 0.073 0.117 0.098 0.179 −0.182

n = 116 P value 0.023* 0.136 0.064 0.004* 0.011* � 0.001* 0.189 0.431 0.312 0.106 0.178 0.013* 0.011*

Age Pearson 0.003 0.040 −0.106 0.069 −0.017 −0.038 −0.054 0.034 −0.033 0.033 0.025 −0.023 0.203

n = 116 P value 0.979 0.584 0.144 0.344 0.812 0.601 0.461 0.641 0.647 0.654 0.730 0.749 0.005*

Disease
Duration

ANOVA 2.386 0.372 0.868 0.453 2.141 0.084 2.998 5.098 2.240 0.075 0.145 1.313 3.067

n = 115 P value 0.125 0.543 0.354 0.502 0.146 0.773 0.086 0.026* 0.137 0.785 0.704 0.254 0.083

Sex ANOVA 0.002 1.451 0.150 0.013 0.278 0.480 0.201 0.428 0.749 0.590 0.768 0.142 0.060

n = 116 P value 0.963 0.230 0.699 0.910 0.599 0.489 0.654 0.514 0.388 0.443 0.382 0.707 0.806

Biopsy
Site

ANOVA 0.012 0.335 3.962 2.325 0.613 12.170 0.986 3.311 2.273 0.719 1.476 0.551 7.097

n = 152 P value 0.914 0.564 0.048* 0.129 0.435 0.001* 0.322 0.071 0.134 0.398 0.226 0.459 0.009*

Pearson’s correlations comparing each of the arrays and pathways tested were used to quantify the overall contribution of a given pathway within an

individual patient. These scores were then compared against clinically relevant factors including age, sex, modified Rodnan skin score (MRSS), biopsy

site, and disease duration to assess the predictive value of each pathway for disease outcomes. Early disease was defined as disease � 2 years after first

non-Raynaud’s phenomenon symptoms. Comparisons were performed with clinically diffuse patients only, using a single array per patient for each time

point collected. Comparisons of biopsy site were limited to clinically diffuse patients which provided paired lesional and non-lesional biopsies at a given

time point; n denotes the number of patients included in each analysis. Continuous variables were compared using Pearson’s correlation; categorical

variables were analyzed by ANOVA.

* denotes p < 0.05.

doi:10.1371/journal.pone.0114017.t003
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provide a framework by which we can query and dissect the molecular signaling pathways that
contribute to each of the intrinsic subsets.

The inflammatory subset shows strong positive correlations with a wide array of signaling
pathways, with significant overlap in the induced genes. The most obvious point of conver-
gence is NF-κB, a signaling intermediary shared between LPS, poly(I-C), IFNα, TNFα, S1P,
and TGFβ. Indeed, many of these pathways appear to be directly linked in SSc; TLR signaling
was found to induce strong upregulation of both type I IFNs (IFNα and IFNβ) and TGFβ in
SSc skin and fibroblasts [40], providing a mechanism through which these signals may be
linked. This convergence on TLRs and NF-κB is consistent with reports implicating innate im-
mune activation in SSc pathogenesis [41].

In addition to NF-κB-mediated signaling, activation of other pathways within the inflam-
matory subset suggests distinct cell populations that may contribute to SSc pathology, provid-
ing hypotheses that can be tested experimentally. Strong IL-4-related gene expression in the
inflammatory subset is consistent with TH2-like immune responses in these patients. Com-
bined with the clear co-occurrence of TGFβ and innate immune signals, these data suggest a
central role for alternatively activated (M2) macrophages in the inflammatory subset of SSc.
M2 macrophages are known to be induced by a combination of TH2 cytokines, such as IL-4
and IL-13, in combination with TGFβ [42], and likely play key roles in SSc pathogenesis. Evi-
dence for M2 macrophages has been observed in SSc lesional skin [43], lung [44–46], and
serum [47], showing that these cells are likely to be involved in the initiation of fibrosis.

In addition to TH2-like immune responses, growing evidence suggests a role for TH17 cells
in the pathogenesis of SSc with clear differences between diffuse and limited disease [48–52].
TH17-like immune responses have been implicated in a wide range of autoimmune conditions,
including multiple sclerosis, systemic lupus erythematosus, psoriasis, neuromyelitis optica,
Crohn’s disease, inflammatory bowel disease, and rheumatoid arthritis, suggesting a common
mechanism of pathology associated with autoimmunity [53–56]. Parallels drawn between SSc
and other autoimmune diseases may help to explain some of the contradictory signals seen in
SSc, including activation of type I IFNs within the inflammatory subset. Under normal condi-
tions type I IFNs are potent inhibitors of TH17 activity [51]; however, in many autoimmune
diseases these signals actually enhance TH17 responses, exacerbating disease [53]. While the
TGFβ and TNFα gene expression signatures seen in some patients in the inflammatory subset,
in conjunction with pervasive inflammatory infiltrates, are consistent with a TH17-like im-
mune response [37], additional pathway analyses examining other cytokines, such as IL-6 and
IL-17, will be necessary to determine the relative contribution of TH17-like responses in each
of the intrinsic subsets, as well as the presence of these signals over time.

Analysis of clinical covariates revealed a clear association between the TGFβ gene signature
and increased MRSS severity, consistent with previous findings [3]. The strong association be-
tween the TGFβ gene signature and clinically affected forearm skin likely reflects the increased
fibrosis at these sites.

The gene expression signature most strongly associated with the fibroproliferative subset
was PDGF, which was not measured in our prior work [3]. The association is driven primarily
by the strong upregulation of cell cycle and other proliferation-related genes, in contrast to
TGFβ, which is traditionally regarded as an inhibitor of cell proliferation. Emerging evidence
suggests that TGFβ signaling may span the inflammatory and fibroproliferative subsets, pro-
viding a potential mechanistic link between these two groups (Mahoney et al., Submitted). If
we were to consider an interpretation of the intrinsic subsets as mechanistic stops in disease
progression rather than independent groups, expression of TGFβ during the initial inflamma-
tory phase may play a role in the initiation of fibrosis, while sustained expression of TGFβmay
induce greater expression of PDGF [57], leading to a more proliferative form of disease.
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In addition to TGFβ, the timing of IFNα signaling may play a role in regulating the transi-
tion from the inflammatory to fibroproliferative subset. Under certain conditions, type I inter-
ferons are capable of inhibiting both PDGF activation and PDGF-mediated collagen
expression [58]. Downregulation of IFN signaling would remove these inhibitory signals, has-
tening the transition to a more PDGF-driven, proliferative form of disease. Such a process may
explain some of the negative treatment outcomes associated with anti-IFNα therapy in SSc, in-
cluding a worsening of disease symptoms following therapy [59]. Such an outcome highlights
the need for a better understanding of the interrelationship of SSc associated pathways, how
they may change during disease progression, and if combination therapies could more effec-
tively stop disease progression.

Beyond the actions of TGFβ alone, the maintenance and progression of fibrotic phenotypes
has been shown to be driven in part by the mechanical environment [60]. Specific evidence re-
garding this phenomenon has recently been extended to SSc, with changes in the cell-matrix
sufficient to perpetuate pro-fibrotic responses, even in the absence of other stimuli [61]. As
heightened matrix stiffness has been shown to increase signaling through PDGFR [62], this
suggests a mechanism by which physical changes in affected tissues can perpetuate disease
after the initial inflammation has been resolved. Clearance of inflammation alone may there-
fore be insufficient for resolving disease phenotypes.

Patients clustering to the limited and normal-like subsets exhibited near-zero to negative
correlations against all thirteen agonists tested, indicative of a non-proliferative, immunologi-
cally quiescent state of disease. Further longitudinal studies will be necessary to determine how
these patients progress from a clinical standpoint, and whether they transition into another
more active subset of disease over time.

One possible model suggested by our analysis of patient biopsy data is that of a cascade of
signaling pathways generating the progressive disease we know as SSc. A progressive model of
pathogenesis, in which each intrinsic subset represents a distinct phase of disease progression,
provides the simplest interpretation of the data. A weakness of this model is that we have not
been able to capture patients changing subsets when analyzing patients longitudinally over 6 to
12 months. However, this could simply mean that patients move between intrinsic subsets very
slowly over time or in a way that is difficult to capture experimentally with longitudinal
biopsies.

Direct validation of this progressive model of disease pathogenesis has not been performed
due to the absence of appropriate model systems, and the duration of time necessary to observe
these changes in patients; however, all of the agonists and cell types implicated in this model
have been well documented in SSc. Agonists such as TGFβ [3,63,64], PDGF [20,65], IL-4 [66],
IL-13 [4,66], IFNα [67], S1P [68], and TNFα [69] are present in the skin, sera, and bronchoal-
veolar fluid of SSc patients, while cell types such as M2 macrophages [43,45] and TH2 cells [70]
have also been described. While considerable effort will be necessary to validate such a model,
it provides a framework from which to link seemingly divergent observations into a single,
comprehensive model of disease pathogenesis. Longitudinal studies examining gene expression
and cytokine profiles, along with direct confirmation of the cell types involved in each step, will
be necessary to clearly define the processes underlying each stage of disease progression.

Supporting Information
S1 Fig. Principal Component Analysis of Merged Datasets. The statistical significance of
batch bias before and after adjustment was assessed using guided principal component analysis
(gPCA) and the first two unguided principal components were inspected. The proportion of
the variance associated with each unguided principal component is labeled on the axes. P
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values� 0.05 are indicative of significant batch bias.
(EPS)

S2 Fig. Hierarchical clustering recreates intrinsic subsets.Hierarchical clustering of the
ComBat-merged MPH dataset recreates clear normal-like, fibroproliferative, inflammatory,
and limited subsets. Clustering was performed on 2316 probes covering 2189 genes at an FDR
of 0.65%, chosen based upon their consistent expression within an individual patient, along
with high variance between patients. The array tree is color coded to indicate new intrinsic
subset designations (yellow = limited, green = normal-like, purple = inflammatory, red =
fibroproliferative, and black = unassigned). Below the array tree, hash marks are used to indi-
cate the original subset designation (TOP: green = normal-like, red = fibroproliferative, pur-
ple = inflammatory, yellow = limited, black = unassigned), the dataset of origin (MIDDLE:
blue = Milano, green = Pendergrass, red = Hinchcliff), and the clinical diagnosis (BOTTOM:
green = normal, red = diffuse scleroderma, yellow = limited scleroderma, black = morphea or
eosinophilic fasciitis). Black bars indicate genes that clustered together hierarchically, with the
most highly represented GO terms listed alongside each cluster.
(EPS)

S3 Fig. Hierarchical clustering of PDGF time courses.Normal human dermal fibroblasts and
SSc-derived dermal fibroblasts were treated with 30 ng/mL PDGF, with samples harvested at 0,
2, 4, 8, 12, and 24 h. Data shown include all probes exhibiting� 2-fold change in expression
relative to untreated controls across all 12 and 24 h time points. Genes were clustered using
Cluster 3.0, and visualized with Java TreeView.
(EPS)

S4 Fig. Hierarchical clustering of RZN time courses. Normal human dermal fibroblasts were
treated with 10 μMRZN, with samples harvested at 0, 2, 4, 8, 12, and 24 h. Data shown include
all probes exhibiting� 2-fold change in expression relative to untreated controls across all 12
and 24 h time points. Genes were clustered using Cluster 3.0, and visualized with Java
TreeView.
(EPS)

S5 Fig. Hierarchical clustering of S1P time courses.Normal human dermal fibroblasts and
were treated with S1P, with samples harvested at 0, 2, 4, 8, 12, and 24 h. Data shown include all
probes exhibiting� 2-fold change in expression relative to untreated controls across all 12 and
24 h time points. Genes were clustered using Cluster 3.0, and visualized with Java TreeView.
(EPS)

S6 Fig. Searchable version of Fig. 3. A searchable version of Fig. 3 including gene names for
all probes exhibiting a� 2-fold average change in gene expression at 12–24 h in one or more of
the six different pathways examined.
(EPS)

S1 Table. Patients included in this study. Full clinical data and associated pathway correlation
scores for all patients and biopsies included in this study.
(XLS)

S2 Table. 2-fold IDs for all pathways included in this study. Agilent probe IDs and Entrez
gene IDs of all genes up- or downregulated� 2-fold across all 12 and 24 h time points for each
pathway tested.
(XLSX)
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