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RESEARCH ARTICLE

GAIP Interacting Protein C-Terminus
Regulates Autophagy and Exosome
Biogenesis of Pancreatic Cancer through
Metabolic Pathways
Santanu Bhattacharya1, Krishnendu Pal1, Anil K. Sharma1, Shamit K. Dutta1, Julie
S. Lau1, Irene K. Yan3, Enfeng Wang1, Ahmed Elkhanany1, Khalid M. Alkharfy1,2,
Arunik Sanyal1, Tushar C. Patel3, Suresh T. Chari4, Mark R. Spaller5, Debabrata
Mukhopadhyay1*

1. Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of
America, 2. Department of Pharmacy, King Saud University, Riyadh, Saudi Arabia, 3. Departments of
Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America, 4.
Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America, 5.
Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, and Norris Cotton
Cancer Center, Lebanon, New Hampshire, United States of America

*mukhopadhyay.debabrata@mayo.edu

Abstract

GAIP interacting protein C terminus (GIPC) is known to play an important role in a

variety of physiological and disease states. In the present study, we have identified

a novel role for GIPC as a master regulator of autophagy and the exocytotic

pathways in cancer. We show that depletion of GIPC-induced autophagy in

pancreatic cancer cells, as evident from the upregulation of the autophagy marker

LC3II. We further report that GIPC regulates cellular trafficking pathways by

modulating the secretion, biogenesis, and molecular composition of exosomes. We

also identified the involvement of GIPC on metabolic stress pathways regulating

autophagy and microvesicular shedding, and observed that GIPC status

determines the loading of cellular cargo in the exosome. Furthermore, we have

shown the overexpression of the drug resistance gene ABCG2 in exosomes from

GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of

GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that

can be explored as a potential therapeutic strategy to overcome drug resistance in

cancer.
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Introduction

Macroautophagy, commonly termed as autophagy, is an essential catabolic

process that cells implement in diverse biological and physiological activities

[1, 2]. Under normal cellular conditions, this process maintains cellular and tissue

homeostasis in a protective manner by recycling and degrading cellular

components during cell death [2–5]. Previously, it was believed that the

autophagosome, a double-membraned vesicle, engulfs organelles randomly

[1, 2, 5]; however, recent studies have shown that the selection of organelles is

directed by cargo specific factors [6]. Additionally, autophagy plays an important

role in many disease processes, including cancer [7]. In several cancer types,

autophagy can influence the initiation and progression of disease [8, 9] and

promote tumor development under the metabolic stress of hypoxia. Because

mutations of autophagy-related genes have been reported in human cancers

[10, 11], studies have focused on genetic and chemical inhibition of autophagy as

a therapeutic strategy [12].

GAIP interacting protein C-terminus (GIPC) was initially identified as an

interacting partner of the GTPase-activating protein RGS–GAIP for G-protein

coupled receptor subunit GI alpha [13]. The PDZ domain of GIPC stabilizes

many transmembrane proteins, including the Glut1 transporter, Semaphorin-F,

neuropilin-1, TAX viral protein, dopamine D2 and D3, and IGF1R [14–19]. While

the majority of PDZ domain-binding ligands for GIPC are transmembrane

proteins, several of them are cytosolic proteins, such as APPL1 and RGS19

[13, 20]. Functionally, the N-terminal region of GIPC is involved in dimerization

and the C-terminal region of GIPC interacts with myosin VI (MYO6) [21, 22],

highlighting its role as an adaptor molecule for loading PDZ domain-targeted

cargoes onto the MYO6 motor protein for transport. GIPC is also involved in the

trafficking of various transmembrane proteins to endocytic vesicles and essential

for the trafficking of internalized integrins during cell migration, angiogenesis,

and cytokinesis [23–25]. Elevated levels of GIPC expression are reported in several

cancers, including pancreatic and breast cancer, promoting their cellular

proliferation and survival [19, 26-30]. Conversely, depletion of GIPC in cancer

cells inhibits proliferation and promotes apoptosis. Knockdown of GIPC results in

G2 cell-cycle arrest and decreases mortality in MDA-MB231 cells, further

suggesting the role of GIPC in cytokinesis and cell migration [23, 31].

Exosomes are intracellular vesicles (40–100 nm) required for intercellular

communication in multicellular organisms [23]. The molecular machinery

involved in exosome biogenesis includes four multiprotein complexes known as

the endosomal sorting complex responsible for transport (ESCRT)-0, -I, -II, and -

III, and accessory proteins such as Alix and VPS4. The ESCRT-0, -I, and -II

complexes recognize and sequester ubiquitinated membrane proteins at the

endosomal restricting membrane, whereas the ESCRT-III complex is accountable

for membrane budding and the actual removal of intraluminal vesicles (ILVs)

[32]. Recently, Alix (also known as PDCD6IP) was functionally linked to exosome

biogenesis through its interaction with the TSG101 and CHMP4 proteins [33–35].

GIPC Regulates Autophagy and Exosome Biogenesis

PLOS ONE | DOI:10.1371/journal.pone.0114409 December 3, 2014 2 / 20



A recent study suggests that the formation and release of arrestin domain-

containing protein 1-mediated microvesicles (ARMMs) at the plasma membrane

depends upon the recruitment of TSG101 protein [36].

There is accumulating evidence that GIPC plays an important role in cellular

trafficking. In particular, GIPC acts as a scaffold to control receptor-mediated

trafficking [20, 22, 37] and after receptor internalization, GIPC transiently

associates with a pool of endocytic vesicles close to the plasma membrane [15].

Exosome biogenesis as well as formation of the autophagosome involves

endocytotic vesicles. However, there is no clear evidence that these two

mechanisms of vesicle formation crosstalk with each other [38]. In this present

study, we reveal a unique regulatory role of GIPC on autophagy through

metabolic pathways and the modulation of exosome secretion. We also

demonstrate that depletion of GIPC from cancer cells sensitizes them to

chemotherapeutic drugs such as gemcitabine, an avenue that can be further

explored as a potential therapeutic strategy against drug resistance.

Materials and Methods

Cell culture & GIPC knockdown cell lines

Pancreatic cancer cell lines AsPC-1 and PANC-1 were purchased from the

American Type Culture Collection (ATCC, Rockville, MD). Cell lines were

cultured in RPMI 1640 media (for AsPC-1) or high glucose DMEM (for PANC-1)

supplemented with 10% fetal bovine serum (FBS), 5% L-glutamine, and 1%

penicillin/streptomycin (Invitrogen, Carlsbad, CA). Cells were maintained at 37 C̊

in an atmosphere containing 95% air-5% CO2 (v/v). Stable GIPC knockdown cell

lines were generated using lentivirus shRNA. The lentivirus particles were

prepared using 293T cells co-transfected with the gag-pol expression plasmid

pCMVD8.91, the VSVG envelope expression plasmid pMD-G, and the vector

plasmid pLKO.1 encoding cDNAs for the expression of GIPC/Synectin shRNA

(59-CCGGGCAAATGCAATAATGCCCTCACTCGAGTGAG-GGCAT-

TATTGCATTTGCTTTTTG-39). GIPC/Synectin shRNA in pLKO.1 was pur-

chased from Open Biosystems. Supernatant was collected 48 h post-transfection

and frozen at 280 C̊. PANC-1 or AsPC-1 cells were then infected overnight at

37 C̊ and stable colonies were isolated after puromycin selection (1 mg/ml). To

ensure the efficiency of the GIPC/Synectin knockdown, protein lysates were

analyzed by immunoblot for GIPC/Synectin. Control cells were transduced with

an empty protein vector. Retroviral pBABE-puro mCherry-EGFP-LC3B plasmid

from Addgene (Addgene plasmid 22418) was used to prepare retrovirus particles

using 293T cells following standard procedure. AsPC-1 or PANC-1 cells were

infected with retrovirus particles and stable colonies were isolated after puromycin

selection (1 mg/ml). Experiments were performed at 70–80% cell confluency and

confirmed in at least three independent experiments.

GIPC Regulates Autophagy and Exosome Biogenesis
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RNA interference, transfection

After a 24-hour incubation with antibiotic-free medium, cells were transfected

with anti-GIPC small interfering RNA (siRNA) using the DharmaFECT 2

Transfection Reagent (Dharmacon, Lafayette, CO). Seventy-two to 96 h after

transfection, GIPC knockdown was confirmed by Western blot analysis. A similar

siRNA approach was adopted for anti-Atg7 and anti-Beclin1 knockdown. For

glucose starvation experiments, both control siRNA and GIPC siRNA treated

AsPC-1 cells were kept in glucose free RPMI supplemented with 10% FBS for final

16 h of the 96 h experiment. For autophagic flux experiments, both control

siRNA and GIPC siRNA treated AsPC-1 and PANC-1 cells were treated with

indicated concentrations of Pepstatin-A and E-64d for final 24 h of the 96 h

experiment.

Antibodies and immunoblot analysis

Whole cell lysates were prepared in NP-40 lysis buffer supplemented with a

protease inhibitor cocktail (Sigma, St. Louis, MO) and Halt phosphatase inhibitor

cocktail (Thermo Scientific, Waltham, MA). Supernatant was collected after

centrifugation at 13,000 rpm for 10 min at 4 C̊ and separated by SDS-PAGE.

Anti-GIPC, anti-PLCc, and the horseradish peroxidase-conjugated secondary

antibodies were purchased from Santa Cruz Biotechnology. Antibodies against

ABCG2, mTOR, phospho-mTOR, p70S6K, phospho-p70S6K, Atg7, Beclin1,

AMPK-a, and phospho-AMPK-a were purchased from Cell Signaling

Technologies. Anti-CHMP4b and anti-TSG101 was purchased from Abcam; anti-

b-actin was purchased from Sigma; and the Alix antibody was purchased from

Thermo Scientific. Western blots were developed using the SuperSignal West Pico

substrate (Thermo Scientific) and immunoprecipitations were performed as

previously described [19].

Immunofluorescence

Cells (26104) were seeded on a coverslip in antibiotic-free medium for 24 h. Cells

were then transfected with GIPC siRNA or scrambled siRNA (Dharmacon) and

the medium was changed 48 h post- transfection. After 96 h, cells were washed

and fixed with 4% paraformaldehyde. After blocking with 10% goat serum for

15 min, the cells were permeabilized with 0.2% Triton X-100 at room temperature

for 5 min. The slides were then stained with primary antibodies against LC3 for

2 h in 1% goat serum. After incubating the slides with secondary antibodies

conjugated to AlexaFluor 488 (1:200; Life Technologies, Grand Island, NY) for

1 h, slides were mounted with Vectashield (Vector Laboratories, Burlingame, CA)

containing 49,6-diamidino-2-phenylindole (DAPI) and confocal microscopy was

performed. In another set of experiments, cells expressing mCherry-EGFP-LC3B

were seeded in coverslips and transfected with GIPC siRNA or scrambled siRNA.

After 96 h, cells were washed and fixed with 4% paraformaldehyde. Slides were

mounted with Vectashield containing DAPI as previously described.
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Glucose uptake and Intracellular glucose measurement assay

Stable cells, either transfected with GIPC shRNA or the control vector, were

seeded in 6-well plates and cultured for 48 h. Glucose uptake was measured using

the Glucose Uptake Cell-Based Assay Kit (Cayman Chemical, Ann Arbor, MI)

using a fluorescently labeled deoxyglucose analog. For an intracellular glucose

concentration measurement, the Amplex Red Glucose Assay Kit (Life

Technologies) was used with a slight modification to the manufacturer’s protocol

as described previously [39]. Cells were collected by centrifugation and the

resulting cell pellet was washed twice in PBS and dispersed in 1X reaction buffer

from the kit. Cells were lysed by probe sonication with three cycles of 10 seconds

on, 30 seconds off at 20% power while continuously maintained on ice. Fifty ml of

reaction solution (10 mM Amplex Red, 10 U/ml HRP, 100 U/ml glucose oxidase,

50 mM sodium phosphate buffer, pH 7.4) was added to 50 ml of cell lysate in a

96-well plate and incubated in the dark at 37 C̊ for 30 min. The fluorescence

(excitation: 544, Emission: 590) was then measured using a SpectraMax plate

reader and values were expressed as Relative Fluorescence Units (RFU)/mg

protein.

Exosome isolation

Exosomes were isolated from conditioned medium of PANC-1 and AsPC-1 cells

by differential centrifugation. Cells were grown to 70–80% confluency and media

was replaced with media containing 10% fetal bovine serum deprived of

microparticles through centrifugation (60 min at 100,0006g). After 72 h of

incubation, supernatants were collected and cleared of cellular debris and dead

cells with two sequential spins at 4 C̊, 3,0006g for 10 min. Cleared supernatants

were then further centrifuged at 4 C̊, 60,0006g for 70 min. The resulting

exosome pellets were washed with phosphate-buffered saline (PBS) solution, and

then centrifuged again at 4 C̊, 100,0006g for 70 min. The final exosome pellets

were re-suspended in PBS or water depending on the experiment.

Electron microscopy

Freshly prepared exosomes re-suspended in water were further dispersed in

Trump’s fixative solution, composed of 4% (v) formaldehyde and 1% (v)

glutaraldehyde in 0.1 M phosphate buffer at pH 7.2. The exosomes were then

washed with 0.1 M phosphate buffer, 1% osmium tetroxide in 0.1 M phosphate

buffer, distilled water, 2% (v) uranyl acetate, distilled water, ethanol, and absolute

acetone in sequence. Finally, exosomes were placed on a TEM grid for

examination using a Philips Technai T12.

Proteomics analysis

Protein identification was performed via in-gel trypsin digestion using nanoLC-

MS/MS with hybrid orbitrap/linear ion trap mass spectrometry. Briefly, protein

GIPC Regulates Autophagy and Exosome Biogenesis
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from the exosomes of GIPC-deficient stable cell lines was resolved on a 4–12%

NuPage gel (MOPS buffer) with 20 ml of SDS-PAGE sample buffer containing

50 mM DTT. The gels were stained with BioSafe colloidal blue dye (BioRad) and

the desired bands were excised from the gel for mass spectrometry analysis using

the following procedures. Colloidal blue stained gel bands were destained in 50%

acetonitrile/50 mM Tris pH 8.1 until clear. The bands were then reduced with

50 mM TCEP/50 mM Tris, pH 8.1 at 55 C̊ for 40 min and alkylated with 20 mM

iodoacetamide/50 mM Tris pH 8.1 at room temperature for 60 min in the dark.

Proteins were digested in situ with 30 ml (0.005 mg/ml) trypsin (Promega

Corporation, Madison WI) in 20 mM Tris pH 8.1/0.0002% Zwittergent 3–16, at

55 C̊ for 2 h, followed by peptide extraction with 10 ml of 2% trifluoroacetic acid

and then 60 ml of acetonitrile. The pooled extracts were concentrated to less than

5 ml on a Speed-Vac concentrator (Savant Instruments, Holbrook, NY) and then

brought up in 0.2% trifluoroacetic acid for protein identification by nano-flow

liquid chromatography electrospray tandem mass spectrometry (nanoLC-ESI-MS/

MS) using a ThermoFinnigan Orbitrap Elite Hybrid Mass Spectrometer (Thermo

Fisher Scientific, Bremen, Germany) coupled to an Eksigent nanoLC-2D HPLC

system (Eksigent, Dublin, CA). The digested peptide mixture was loaded onto a

250 nl OPTI-PAK trap (Optimize Technologies, Oregon City, OR), custom-

packed with Michrom Magic C8 solid phase (Michrom Bioresources, Auburn,

CA). Chromatography was performed using 0.2% formic acid in both the A

solvent (98% water/2% acetonitrile) and B solvent (80% acetonitrile/10%

isopropanol/10% water), and a 2% B to 45% B gradient over 70 min at 300 nl/

min through a hand-packed PicoFrit (New Objective, Woburn, MA)

75 mm6200 mm column (Michrom Magic C18, 3 mm). The Orbitrap Elite mass

spectrometer experiment was set to perform a FT full scan from 340-1500 m/z

with resolution set at 120,000 (at 400 m/z), followed by linear ion trap CID MS/

MS scans on the top fifteen ions. Dynamic exclusion was set to 1 and selected ions

were placed on an exclusion list for 30 seconds.

Database searching

Tandem mass spectra were extracted by msconvert (version 3.0.4019;

ProteoWizard) and all MS/MS samples were analyzed using Mascot (Matrix

Science, London, UK; version 2.4.0), Sequest (Thermo Fisher Scientific; version

27, rev. 12) and X1 Tandem (The GPM, thegpm.org; version CYCLONE

(2010.12.01.1)). Mascot, Sequest, and X1 Tandem were set up to search the

February 2012 Swissprot database, restricted to human with a decoy reverse

database, and assuming the digestion enzyme trypsin. Mascot and X1 Tandem

were searched with a fragment ion mass tolerance of 0.60 Da and a parent ion

tolerance of 10.0 PPM. Sequest was searched with a fragment ion mass tolerance

of 0.60 and a parent ion tolerance of 0.01 Da. Oxidation of methionine and

iodoacetamide derivative of cysteine were specified in Mascot, Sequest, and X1

Tandem as variable modifications.
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RNA isolation and Quantitative PCR analysis

Total RNA was isolated from cell lines and exosomes using the miRCURY RNA

Isolation Kit – Cell & Plant (Exiqon, Woburn, MA) followed with spectro-

photometry (NanoDrop, Thermo Scientific) for quantification and qualitative

analysis. Equal amounts of total RNA was reverse-transcribed by oligo (dT)

priming using the iScript cDNA Synthesis kit (Bio-Rad, Hercules, CA) following

the manufacturer’s instructions. Real-time PCR was performed using the ABI

7500 Real-Time PCR System (Applied Biosystems, Foster City, CA) and the SYBR

Green PCR Master Mix (Applied Biosystems) as described previously [40]. Glut1

and b-Actin primers were purchased from SABiosciences (Frederick, MD).

Drug sensitivity assay

Briefly, 56103 cells were seeded per well in triplicate, in 96-well flat-bottom plates

with 100 ml of medium. After 24 h, variable concentrations of gemcitabine (mg/

ml) were added and the cells were incubated for an additional 72 h. At the end of

the treatment period, 20 ml of MTS solution containing PMS (MTS: PMS 520:1

vol. ratio) were added to each well and the cells were incubated at 37 C̊ for 1 to

2 h. The absorbance at 490 nm was recorded using a SpectraFluor PLUS

(Molecular Devices, Sunnyvale, CA) and the half maximal inhibitory concentra-

tion (IC50) values were calculated as concentrations corresponding to a 50%

reduction of cellular growth. Prior to the drug sensitivity testing, cell viability was

determined by the MTS assay (Promega, Madison, WI).

Statistical analysis

The data in the bar graphs represent the mean ¡ standard deviation of at least

three independent experiments, each performed with triplicate samples. Statistical

analyses were performed using a Student’s t test, with a two-tailed value of P,0.05

to be considered significant.

Results

GIPC depletion induces autophagy in pancreatic cancer cells

Utilizing the GIPC-depleted AsPC-1 and PANC-1 pancreatic cell lines, we

investigated whether GIPC modulated autophagy by assessing the autophagy-

related microtubule-associated protein light chain 3 (LC3) conversions (LC3-I to

LC3-II) via Western blot analysis. It is well known that the conversion of the light

chain 3-I (LC3-I), upon conjugation to phosphatidylethanolamine (PE), forms

the conjugate light chain 3-II (LC3-II) which is then recruited to the membranes

of autophagosomes [13, 20]. LC3 expression has been widely used to monitor and

establish the status of autophagy as the amount of LC3II correlates with the

number of autophagosomes [41]. After a thorough investigation of the LC3-II

level in the pancreatic stable cell lines, we observed an elevated LC3-II level in cells

GIPC Regulates Autophagy and Exosome Biogenesis
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deficient for GIPC, indicating the activation of autophagy (Figure 1A). We also

observed an increase in LC3-II (green) puncta formation in the GIPC-depleted

cells by immunofluorescence study (Figure 1B). GIPC knockdown in presence of

lysosomal protease inhibitors, Pepstatin-A and E-64d, further increased LC3-II

levels in a dose-dependent manner compared with GIPC knockdown alone,

indicating enhancement of autophagic flux (Figure S1A). Furthermore, we used a

tandem fusion protein mCherry-EGFP-LC3B containing acid-insensitive mCherry

and acid-sensitive EGFP as an autophagic flux reporter system [42, 43]. During

autophagosome formation, both EGFP and mCherry are detected in autophago-

somes which appear as yellow puncta. However, once autophagosomes fuse with

lysosomes, the green fluorescence is lost because of the degradation of EGFP by

acid lysosomal proteases resulting only red puncta. Therefore, presence of both

yellow and red puncta indicates a functional autophagic flux process. Here we

Figure 1. GIPC induce autophagy in the pancreatic cancer cells. A) AsPC-1 and PANC-1 cells were
infected with lentiviruses expressing shRNAs to GIPC and scrambled control. An equal amount of whole-cell
lysates from AsPC-1 and PANC-1 GIPC depleted cells were analyzed by immunoblotting (IB) with the
antibodies for GIPC and LC3II. b-Actin is used as loading control. B) A representative immunofluorescence
analysis of PANC-1 cells for expression of LC3 II (green) in GIPC depleted PANC-1 cells compared to the
control cells. Cells were counterstained with DAPI (blue).

doi:10.1371/journal.pone.0114409.g001
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have used both AsPC-1 and PANC-1 cell lines stably expressing mCherry-EGFP-

LC3B to show the increase in both yellow and red puncta upon GIPC knockdown

which also indicated an increase in autophagic flux (Figure S1B). These findings

suggested that GIPC knockdown induces the formation of autophagosomes in

pancreatic cancer cells.

We further investigated the effect of two autophagy-related genes, Atg7 and

Beclin1, on GIPC-mediated autophagic regulation. To assess the interaction of

Atg7 and Beclin1, we reduced the level of Atg7 and Beclin1 by RNA interference

(RNAi) in both PANC-1 and AsPC-1 cells. As shown in Figures 2A and 2B, we did

not observe any significant change in Atg7 or Beclin1 expression after GIPC

depletion in both pancreatic cancer cells. As Atg7 and Beclin1 are two key

components for autophagosome biogenesis, we also observed a decrease in LC3 II

conversion from LC3 I upon knockdown of Atg7 and Beclin1 in both the

pancreatic cancer cells. In AsPC-1 cells, we noticed that induction of autophagy

with depletion of GIPC was significantly impeded by reduction of Atg7 and

Beclin1. On the contrary, in PANC-1 cells, Atg7 and Beclin1 could not affect the

LC3II conversion subject to GIPC depletion. We further explored the association

of GIPC with Atg7 and Beclin1 by co-immunoprecipitation experiments and

found Beclin1 to be in the same complex with GIPC (Figures 2C) but did not get

conclusive result for Atg7 (data not shown).

GIPC mediates autophagy through metabolic stress pathways

Glut1 is associated with glucose uptake in cancer cells and GIPC is known to

stabilize Glut1 in the cell membrane as a PDZ domain-containing interaction

partner [14]. In this regard, we examined whether knocking down GIPC in

pancreatic cancer cells would destabilize Glut1 and disrupt glucose uptake into

these cells. As expected, we found a significant decrease in Glut1 expression in

both mRNA and protein level upon GIPC knockdown in AsPC-1 and PANC-1

cells (Figure 3A & 3B). Furthermore, we found that the relative glucose uptake for

AsPC-1 and PANC-1 cells was significantly reduced in the absence of GIPC,

compared to that of control cells (Figure 3C). To determine whether intracellular

levels of glucose were also dependent upon the status of GIPC, we monitored the

intracellular glucose level after GIPC knockdown in the same pancreatic cancer

cell lines and found levels to be significantly reduced when compared to wild type

cells (Figure 3D). Importantly, under stress conditions, cellular AMP usually

regulates the intracellular glucose level. AMP levels were elevated in glucose

starvation, which, in turn, further activated the kinase activity of AMPK-a
through phosphorylation [44, 45]. To investigate this mechanism in pancreatic

cancer cell lines, we examined the AMPK-a status by immunoblot in GIPC stable

knockdown cells. Our results revealed a high level of phosphorylated AMPK-a

upon GIPC depletion (Figure 4A), suggesting that GIPC may modulate the AMPK

pathways.

We further investigated the molecular mechanism of autophagy by examining

downstream molecules of the AMPK-a pathway. We observed decreased levels of
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mTOR phosphorylation after GIPC knockdown in AsPC-1 and PANC-1 cells;

however, total mTOR expression did not change. Additionally, we observed a

decrease in a known downstream effector of mTOR, the phospho-p70S6K to

p70S6k ratio, in GIPC-depleted cell lysates compared to the control parental cells

(Figure 4B). Removal of extracellular glucose further enhanced AMPK-a

phophorylation and reduced mTOR phosphorylation as well as p70S6K

phosphorylation (Figure S2). However, LC3 levels were decreased upon removal

of extracellular glucose which corroborates with previous reports [46] suggesting

extracellular glucose removal kills the cells either by apoptosis or necrosis in stead

of inducing autophagy as a prosurvival effect. Taken together, our results suggest

that GIPC controls autophagy through the regulation of metabolic pathways in

pancreatic adenocarcinoma cells.

Figure 2. The role of Beclin 1 and Atg 7 in GIPC induced autophagy. A) Immunoblot analysis of the Atg7
expression in AsPC-1 and PANC-1 cell lysates transfected with siRNA to GIPC, Atg7 and scrambled control.
b-Actin is used as loading control. B) Immunoblot analysis of the Beclin1 expression in AsPC-1 and PANC-1
cell lysates transfected with siRNA to GIPC, Beclin1, and scrambled control. b-Actin is used as loading
control. C) Co-immunoprecipitation (IP) of the PANC-1 cell lysates transfected with siRNA to GIPC, and
scrambled control using GIPC antibody. Immunocomplexes were analyzed by immunoblotting (IB) with
antibodies to Beclin1 and GIPC.

doi:10.1371/journal.pone.0114409.g002
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GIPC influences exosome secretion and biogenesis

With the exosomes collected from the stable transfectants, we performed

enzymatic assays for acetylcholine esterase activity as described previously [14].

This assay revealed a greater abundance of exosomes in the conditioned media of

GIPC-deficient cell lines. A 3.5 or greater fold increase in exosome production was

observed in conditioned media collected from GIPC-depleted AsPC-1 cells

compared to the control (Figure 5A). We obtained similar result with GIPC-

depleted PANC-1 cells as well (data not shown). We also determined the

concentration of total RNA in these exosomes as another measure of exosome

abundance and found similar results (Figures 5B & 5C). Nanoparticle tracking

analysis using the NanoSight LM10 confirmed the size distribution of our

exosome preparations. With a mode of approximately 100 nm, their size was

consistent with the current exosome definition (Figure 5D).

We then performed morphological characterization of the exosome preparation

with an ultra-structural analysis of the exosome pellets by heavy metal negative

staining and transmission electron microscopy (TEM). Analysis of the TEM

images confirmed the exosome dimensions in our samples. Figure 5E represents

the typical morphology of the overall exosome population in a lower TEM

magnification. Further analysis of the TEM images at higher magnification

Figure 3. GIPC regulates autophagy by interfering with glucose uptake. A) Quantitative PCR and B)
Western blot analysis of Glut1 to analyze the effect of GIPC-depletion in Glut1 expression. b-Actin is used as
loading control. Both Glut1 mRNA and protein levels decreased significantly upon GIPC depletion in AsPC-1
and PANC-1 cells. C) Glucose uptake was significantly decreased in GIPC depleted cells as compared to the
control cells in AsPC-1 and PANC-1 cells (** denotes p,0.01). D) Intracellular glucose levels were also
significantly decreased in the GIPC depleted AsPC-1 and PANC-1 cell lines confirming the role GIPC in
glucose metabolism (** denotes p,0.01).

doi:10.1371/journal.pone.0114409.g003
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confirmed the typical cupped shape structure of exosomes (Figure 5F). These

analyses confirmed that the presence or absence of GIPC did not affect exosome

morphology.

To confirm whether the increased exosomes in GIPC-depleted cells correlated

with activation of the exosome biosynthesis machinery, we checked the expression

of key genes (Alix, TSG101, CHMP4B) involved in exosome biogenesis by

immunoblot. We observed an increased expression of Alix, TSG101, and

CHMP4B in GIPC knockdown cells when compared to control cells (Figure 5G).

GIPC influences exosome content and sensitizes pancreatic

cancer cell lines to chemotherapeutic drugs

To compare exosome content in GIPC knockdown and wild type cells, we

performed proteomics analyses on the exosomes collected from the PANC-1

stable cell lines. For proteome analysis, protein was extracted from the secreted

exosomes and we found that the content of exosomes greatly varied depending on

GIPC status. In support of the robustness and sensitivity of our analysis methods,

proteomics data confirmed the absence of GIPC protein in exosomes isolated

Figure 4. GIPC regulates stress induced metabolic pathways. A) Immunoblot of the cell lysates from GIPC
depleted and control AsPC-1 and PANC-1 cells are being probed with p-AMPK-a, total AMPK-a. b-Actin is
used as loading control. B) Further, immunoblot of cell lysates from above condition were being probed with
p–mTOR, total mTOR, p-p70S6K and total p70S6K. b-Actin is used as loading control.

doi:10.1371/journal.pone.0114409.g004
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from the GIPC deficient cells but not in the control samples. This also

demonstrated for the first time the presence of GIPC in exosomes. Furthermore,

proteomic analysis of the exosomes isolated from the PANC-1 stable cells revealed

a significant enrichment of genes involved in drug resistance (data not shown).

Among these genes, the most notable was the ATP-binding cassette sub-family G

member 2 (ABCG2). Mass spectrometry analysis identified ABCG2 to be

overexpressed in GIPC deficient exosomes by 13 fold when compared to control

exosomes (data not shown). We have verified this observation for exosomes at the

protein level as shown in Figure 6A. We did not observe any change in ABCG2

expression in cell lysates.

Figure 5. GIPC increase exosome secretion and biogenesis. Exosomes were isolated from culture media of AsPC-1 and PANC-1 GIPC depleted and
control cell culture. For qualitative measurement same amount of cells were seeded in culture plates. A) A comparison of activity of acetylcholine esterase is
depicted for exosomes collected from GIPC depleted and control AsPC-1 cell line. B&C) A comparison of total RNA content of the exosome preparation from
AsPC-1 and PANC-1 cell culture is displayed. D) A representative size distribution profile of the exosome preparation is obtained using Nanosight. E) A
representative transmission electron micrograph (TEM) of exosomes is presented in this figure. Scale bar is 500 nm. F) A higher magnification TEM image
of exosomes is presented. The scale bar is 200 nm. G) Immunoblot conducted with cells lysates collected from GIPC knockdown cells as well as control
cells were being probed with TSG 101, Alix, and CHMP 4B. PLC c is used as loading control.

doi:10.1371/journal.pone.0114409.g005
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To verify the role of ABCG2 in drug sensitivity, we tested gemcitabine, a

frontline pancreatic cancer drug, at different concentrations in GIPC-depleted

PANC-1 cells. Our results show that gemcitabine treatment sensitized the GIPC

deficient PANC-1 cells by decreasing the IC50 values of the drug from 26 nM to

6 nM. The results suggest the involvement of GIPC in pancreatic cancer drug

response and make more resistance phenotypes (Figure 6B).

Discussion

GIPC has already been identified as an important regulatory molecule for

stabilizing transmembrane proteins. It acts as a scaffold to control receptor-

mediated trafficking [20, 22, 37]. Following receptor internalization, GIPC

transiently associates with a pool of endocytic vesicles close to the plasma

membrane [15]. Because GIPC is directly involved in the trafficking of

endocytotic vesicles, it was therefore logical to investigate its influence on

autophagy. In this work, we report a novel role for GIPC as a master regulator for

both autophagy and exosome biogenesis. We show in pancreatic cancer cells that

depletion of GIPC created an environment of metabolic stress. This, in turn,

induced autophagy and microvascular shedding. We also observed that the GIPC

status determined the cellular message sent to the extracellular space via exosome

secretion.

To perform this study, stable GIPC-deficient pancreatic cancer cell lines were

generated and the status of autophagy was monitored by assessing the expression

of LC3-II, a protein that serves as a marker for autophagy. The increase in LC3-II

expression as well as the abundance of LC3-II positive vesicles in GIPC-deficient

cells clearly illustrated the involvement of GIPC in autophagy.

However, an increase in LC3-II level or a greater number of LC3-II positive

vesicles cannot confirm whether autophagosome formation is upregulated or

autophagic degradation is blocked. Therefore, we performed autophagic flux

experiment in presence of lysosomal protease inhibitors [47]. A further increase in

LC3-II levels were observed in presence of lysosomal protease inhibitors,

indicating that GIPC knockdown was really inducing autophagosome formation.

Increased abundance of both yellow and red LC3-II puncta in AsPC-1 and PANC-

1 cells expressing mCherry-EGFP-LC3B upon GIPC knockdown also confirmed

this observation.

We further investigated the role of the autophagy-associated genes Beclin1 and

Atg7 in our stable pancreatic cell lines. Our results show that the expression of

Beclin1 and Atg7 did not change in GIPC-deficient cells. These findings suggest

that GIPC induced autophagy through an alternate mechanism independent of

Beclin1 and Atg7.

Rapidly growing and proliferating cells, such as cancer cells, require elevated

metabolism. Cancer cells for biosynthesis and energy production, in particular,

preferentially consume glucose. Glucose uptake is an essential step in glucose

metabolism and is achieved by facilitative glucose transporters (Glut family
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members). Glut1 facilitates glucose transport across the plasma membranes of

mammalian cells [21, 48, 49] and helps maintain the low-level basal glucose

uptake required to sustain respiration in all cells. GIPC is known to interact with

many transmembrane proteins, including Glut1, through the C-terminal PDZ

domain-binding motif and help in their stabilization [14]. With GIPC depletion,

Glut1 expression and glucose uptake decreases. We observed a similar

phenomenon in our pancreatic cancer cell lines where Glut1 expression as well as

glucose uptake and intracellular glucose levels dropped with GIPC knockdown.

With this glucose deprivation, we further observed high levels of phosphorylated

AMPK-a During nutrient deprivation and metabolic stress, AMPK is allosterically

activated by an elevated intracellular AMP/ATP ratio [50], followed by the

phosphorylation of threonine 172 within its a subunit [44]. Additionally, AMPK

is known to negatively regulate mTOR signaling [45, 51–54] and we observed

decreased phosphorylation of mTOR after activation of AMPK in the GIPC-

deficient cells. Under different stress situations, a linear relationship exists

Figure 6. GIPC modulates expression of drug resistance associated gene ABCG2 and sensitizes
pancreatic cancer cell lines to gemcitabine. A) ABCG2 expression was confirmed at protein level by
western blot in GIPC knockdown and control cells as well as in corresponding exosomes. PLC c is used as
loading control for exosomes and b-Actin is used as loading control for cell lysates. B) GIPC +/- PANC-1 cells
were treated with different concentration of the gemcitabine for 72 h. Effect of the drug treatment was
evaluated using MTS cell viability assay. The horizontal bar represents the IC50 level.

doi:10.1371/journal.pone.0114409.g006
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between the degree of phosphorylation of ribosomal protein S6 and the

percentage of inhibition of autophagic proteolysis [55]. Our results are in

agreement with already published data and we have observed a similar effect with

p70S6K. Removal of extracellular glucose further increased AMPK-a phosphor-

ylation and reduced phosphorylation of both mTOR and p70S6K. However, LC3

levels were decreased upon extracellular glucose removal which suggests that not

all forms of starvation induce autophagy [46].

Previous studies have reported that GIPC plays an important role in cellular

trafficking by acting as a scaffold. There is substantial evidence that after receptor

internalization, GIPC transiently associates with a pool of endocytic vesicles close

to the plasma membrane. The known role of GIPC in cellular trafficking

prompted us to hypothesize that GIPC may play a role in exosome secretion. We

prepared exosomes from the stable GIPC deficient cell lines and their wild type

controls. To confirm the quality of our exosome preparation, we measured the

abundance of exosomes by acetylcholine esterase enzymatic assays and RNA

quantification. Despite the conflicting reports in the literature regarding the

definition of microvesicles and exosomes, our transmission electron micrograph

(TEM) and NanoSight results confirmed that our samples contained exosomes

based on size (40 to 100 nm) and morphology.

In this study, we report increased exosome secretion after GIPC knockdown.

This observation was not only confined to pancreatic cancer cell lines but also in

the renal cancer cell line 786-O (data not shown). Because the same number of

cells was plated for exosome collection, the variation in exosome secretion was

attributed to the influence of GIPC. We further investigated the status of exosome

biogenesis in these cells. Exosome production is initiated by the formation of

MVEs and budding through the plasma membrane. In this study, we observed

that in the absence of GIPC, the expression of Alix, TSG101, and CHMP4B

increased in comparison to the GIPC control cells. These findings suggest that in

absence of GIPC, the MVE synthesis machinery is overactive and stimulates

exosome secretion.

In addition to exosome secretion and biogenesis, the molecular composition of

the exosomes varied significantly in physiological and disease states. Therefore, we

investigated the effect of GIPC depletion at the protein level by mass spectrometry

analysis. Interestingly, we identified the drug resistance gene ABCG2 to be

significantly upregulated in our exosome preparations and evaluated the effect of

gemcitabine on GIPC depleted and control cells. We found an increased

sensitivity to gemcitabine in GIPC-deficient pancreatic cancer cells.

In summary, GIPC modulates autophagy in pancreatic cancer cells through the

metabolic pathways and glucose deprivation. GIPC not only controls exosome

biogenesis but also influences exosome content. Most likely, the absence of GIPC

promotes the depletion of the drug resistance molecule ABCG2 through exosome

exocytosis. As a result, GIPC-deficient cells become more drug sensitive.

Alternatively, depletion of GIPC in cancer cells may result in the sequestering of

ABCG2 in vesicles, rendering it inaccessible and therefore, nonfunctional. This

then sensitizes the cells to gemcitabine. These findings can be further explored as a
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novel therapeutic approach to overcome the drug resistance so often observed in

cancers.

Supporting Information

Figure S1. GIPC knockdown induces autophagic flux. A) GIPC knockdown in

presence of lysosomal protease inhibitors showed an increase in LC3-II levels

compared with GIPC knockdown alone in both AsPC-1 and PANC-1 cells

indicating an increase in autophagic flux. PLCc is used as loading control. B)

AsPC-1 and PANC-1 cell lines stably expressing mCherry-EGFP-LC3B showed an

increase in both yellow and red puncta upon GIPC knockdown which indicated

an increase in autophagic flux. Scale bar 550 mm.

doi:10.1371/journal.pone.0114409.s001 (DOC)

Figure S2. Glucose Starvation does not induce autophagy. Removal of

extracellular glucose engages starvation signals by increasing AMPK-a phos-

phorylation and decreasing phosphorylation of both mTOR and p70S6K in AsPC-

1 cells. However, LC3 levels were decreased upon removal of extracellular glucose.

doi:10.1371/journal.pone.0114409.s002 (DOC)
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