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Female chromosome X mosaicism is age-related
and preferentially affects the inactivated X
chromosome
Mitchell J. Machiela et al.#

To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP

microarray intensity data of 38,303 women from cancer genome-wide association studies

(20,878 cases and 17,425 controls) and detected 124 mosaic X events 42 Mb in 97 (0.25%)

women. Here we show rates for X-chromosome mosaicism are four times higher than mean

autosomal rates; X mosaic events more often include the entire chromosome and participants

with X events more likely harbour autosomal mosaic events. X mosaicism frequency

increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and

autosomes. Methylation array analyses of 33 women with X mosaicism indicate events

preferentially involve the inactive X chromosome. Our results provide further evidence that

the sex chromosomes undergo mosaic events more frequently than autosomes, which could

have implications for understanding the underlying mechanisms of mosaic events and their

possible contribution to risk for chronic diseases.

Correspondence and requests for materials should be addressed to S.J.C. (email: chanocks@mail.nih.gov)
#A full list of authors and their affiliations appears at the end of the paper.
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G
enetic mosaicism is classically defined as the coexistence
of clonal cellular populations harbouring two or more
distinct genotypes1. To date, detectable mosaicism has

been reported in apparently healthy individuals as well as in
patients with rare diseases, such as neurofibromatosis type II
(NF2), trisomy 21, naevus sebaceous and Proteus syndrome2–9.
Emerging data from consortia of genome-wide association studies
(GWAS)3,5,6,10–12 have demonstrated large autosomal mosaicism
(events 42 Mb in size) in DNA collected from peripheral
leukocytes and buccal epithelium. These studies suggest that
autosomal mosaicism is associated with aging, hematologic
cancer risk, and possibly ancestry and male sex. Whereas
autosomal mosaicism is detectable in o2% of older individuals,
recent studies indicate that large mosaic events may be far more
common for the Y chromosome, and in particular among older
men who smoke cigarettes13–15.

The functional consequences of detectable chromosomal
mosaicism remain to be fully determined. A number of groups
have reported detectable genetic mosaicism of single-nucleotide
mutations in the general population, particularly in genes
implicated in hematopoietic disorders such as leukaemias and
lymphomas2,4,16. Point-mutation events could reflect early,
preleukemic clones and separately could increase risk for
cardiovascular events4. Moreover, many reports have shown
phenotypic consequences of chromosomal mosaicism that vary
by genomic location of the event, developmental timing, tissue
type involved and percentage of cells affected7–9. In prospective
cohort studies, it has been possible to detect large mosaic
structural events in blood samples of individuals who eventually
develop chronic leukaemia, as early as 14 years before diagnosis,
suggesting detection of a subset of events that eventually become
manifest as part of the molecular profile of leukaemia3,5,17.

To date, reports have not systematically addressed the
frequency and characteristics of X chromosomal mosaicism.
The X chromosome is unique among the human chromosomes in
that normal women carry two copies and normal men carry one.
To compensate for dosage differences between sexes, one copy of
the female X chromosome is rendered transcriptionally inactive
in a process called X inactivation18. In humans, the inactive
X-chromosome (Xi) is randomly chosen early in development.
Once established, X inactivation is generally irreversible and
stably maintained through mitotic divisions. Established
mechanisms for maintaining X inactivation include expression
of the non-coding XIST RNA, chromatin modifications, changes
in nuclear scaffold proteins, and DNA methylation19–23.
Sequence data from cancer genomes suggest that the X
chromosome, particularly the female Xi, has a higher somatic
mutation load of point mutations than the autosomes24. It has
been postulated that the observed higher load of somatic point
mutations could be directly related to the timing of Xi replication,
which occurs late and is faster than either the active
X-chromosome (Xa) or the autosomes25–27. Although these and
other data suggest that X-chromosome mosaicism may be
detectable at a prevalence higher than that observed on the
autosomes28–30, little is known about its frequency in the
population or basic characteristics of the distribution and types
of gains, losses and acquired loss of heterozygosity.

In this report, we investigate the frequency of large-scale
chromosome X mosaicism (42 Mb) in blood or buccal samples
from 38,303 women. We observe an overall frequency of X
mosaicism of B0.25%, roughly four times the mean autosomal
rate. The frequency of X mosaicism increases with increasing age,
but is not associated with non-haematologic cancer risk.
Further investigations by methylation analyses suggest the
inactive X chromosome is preferentially gained or lost in X
mosaic events.

Results
Detected chromosome X events. Using a segmentation
algorithm, we conducted a systematic scan of large structural
detectable mosaicism on the X chromosomes of 38,303 women
(20,878 cancer cases and 17,425 cancer-free controls), who had
been previously examined for autosomal mosaicism3,11,12. In
total, 124 mosaic events greater than 2 Mb in size were detected
on the X chromosomes of 97 of the 38,303 women who were
scanned (0.25%, Supplementary Table 1, Supplementary Table 2);
all detected cases of trisomy X and XO (Turner’s syndrome) were
removed from subsequent analyses (n¼ 5). Of the 97 women
with detected X events, 15 (15%) had more than one event
detected on their X chromosome, with one woman having as
many as five events. The base-pair adjusted rate of mosaic X
events was 1.07 events per 10,000 Mb, over fourfold higher
than the mean 0.25 events per 10,000 Mb rate observed across
the autosomes12 (P value¼ 1.32� 10� 5, Fig. 1). Significantly
elevated rates were observed for the X chromosome in compari-
son with all autosomes except for chromosome 20 (chr20¼ 0.89,
chrX¼ 1.07 events per 10,000 MB; P value¼ 0.29). The 124
mosaic X events consisted of 59 mosaic losses, 43 mosaic
copy-neutral events and 22 mosaic gains (Fig. 2, Supplementary
Fig. 1). These events mostly included the whole chromosome,
with a fraction (37%) mapping to the interstitial region (Table 1).
Few events were found at either the centromeric or telomeric
ends. Most whole-X-chromosome events were mosaic losses.
Interstitial events were primarily mosaic copy-neutral loss of
heterozygosity, which have been less extensively documented in
the cytogenetic literature on chromosome X (Supplementary
Table 3). Two notable clusters of interstitial mosaic copy-neutral
events are centered at approximately 26 and 49 Mb (NCBI36/
hg18, Fig. 2). While X-chromosome mosaic events were more
common than autosomal events, the mean proportion of cells
with X-chromosome mosaicism tended to be lower than the
mosaic proportion with autosomal events overall (X¼ 0.299,
autosomes¼ 0. 359, P value¼ 0.01, Supplementary Fig. 2),
however, this association was not observed in cancer-free
individuals (P value¼ 0.10). Women with an X-chromosome
mosaic event had a significantly higher likelihood of harbouring
an autosomal event relative to women without detectable X
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Figure 1 | Adjusted mean rate of events by chromosome. A comparison of

detected mosaic events 42 Mb in size in the autosomes to the X

chromosome (X events¼ 124, Autosomal events¼430).
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mosaicism (unadjusted odds ratio (ORunadj)¼ 16.7, 95%
confidence interval (CI)¼ 8.3-33.6, P value¼ 2.5� 10� 15), even
after adjusting for age (adjusted odds ratio (ORadj)¼ 15.6, 95%
CI¼ 7.3-33.0, P value¼ 8.6� 10� 13).

Validation by qPCR. Detected X mosaic events were
experimentally validated using a set of 12 quantitative PCR assays
(qPCR) across chromosome X. Specifically, we estimated
copy-number ratios for 26 events across 25 females with
single-nucleotide polymorphism (SNP) microarray-detected X
mosaicism with a range of mosaic proportions from 6 to 88%. In
the 18 mosaic samples with events that spanned the entire X
chromosome, the concordance rate was 100% for gains and 80%
for losses (Supplementary Table 5). An inspection of the
discordant copy-loss samples called as copy-neutral events
revealed qPCR copy-number values near the calling threshold, or
samples with low mosaic proportions. For detected mosaic events
spanning only a portion of the X chromosome, four of the eight
(50%) showed evidence for mosaic copy-number changes by
qPCR, although only 25% were concordant in copy-number state
with qPCR (Supplementary Table 5), suggesting the limited
subsets of qPCR probes that spanned events may have been
insufficient to adequately call copy-number states.

X mosaicism in men. We also examined X-chromosome
mosaicism in men. Although we identified 187 men with
suggestive evidence of X-chromosome mosaicism (from 43,735
scanned participants), results from qPCR validation in 39 men
with available DNA were poor (15% concordance). Calling
X-chromosome mosaicism is inherently more challenging in men

as their possession of a single X-chromosome precludes analysis
with the B-allele frequency (BAF). Although certainly of interest,
further refinement of the calling algorithm is required before we
can reliably call detectable X mosaicism in men. All subsequent
analyses of X mosaicism reported herein are restricted to women.

X mosaicism associations. Detectable X mosaicism increases
with age, with more events in older women than in younger
women. The estimated frequency of X mosaicism was 0.11% in
women under 50 years of age and 0.45% in women 75 years or
older (Fig. 3). Multivariate analyses adjusted for ancestry, cancer
status and study found a statistically significant association with
an OR of 1.04 per 1-year increase in age (95% CI¼ 1.01–1.06,
P value¼ 0.005), with a 20-year increase in age resulting in
over twice the odds of a acquiring a mosaic event on the X
chromosome. Altogether with prior evidence from autosomes and
the Y chromosome12,13, our data suggest that each human
chromosome is susceptible to age-related structural deterioration
related to clonal mosaicism, but at distinct rates. Y mosaic
events are more common than X events, and X events are more
common than those in autosomes. These frequencies may reflect
intrinsic differences in the mechanisms by which each type of
chromosome is replicated or protected against age-related DNA
damage26.

Comparable to what we reported for the autosomes (in over
127,000 individuals scanned), we found little to no evidence
for an overall association between X mosaicism and non-
haematologic cancer (P value¼ 0.19)3,5,12. An analysis by
cancer site found at most a marginally significant association
between X mosaicism and lung cancer risk (OR¼ 1.89, 95%
CI¼ 1.02–3.50, P value¼ 0.042; 26 lung cancer cases with
mosaicism). However, we had only a limited sample size, were
unable to adequately adjust for the major lung cancer risk factor,
cigarette smoking and we did not consider multiple comparisons
across cancer types. We did not detect an association between
X mosaicism and ancestry (three continental populations:
European, African and East Asian, P value¼ 0.40) that was
detected in prior autosomal mosaicism analyses12. In addition, we
did not find evidence for an association between X mosaicism
and smoking for a subset of women with available smoking
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Figure 2 | Detected mosaic events on the X chromosome. Mosaic

losses (N¼ 59) are in red, mosaic gains (N¼ 22) are green, and mosaic

copy-neutral events (N¼43) are in blue.
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information (N¼ 19,197, ever smoker versus never smoker
P value¼ 0.54). Interestingly, an association was found between
DNA source and X mosaicism in which X mosaicism was more
frequent in buccal cells as compared with leukocytes (OR¼ 3.50,
95% CI¼ 1.45–8.46, P value¼ 0.005). Larger studies are required
to confirm these findings.

Methylation analysis. To investigate the molecular basis
of X-chromosome mosaicism, we used Illumina Human-
Methylation450 microarray data for a subset of mosaic females
with sufficient DNA to determine whether mosaic events are
preferential for either the Xa or Xi. Established sex-specific
differences in chromosome X promoter methylation31,32 provide
an opportunity to determine whether the pattern of large
structural mosaic events parallels what has previously been
reported for analyses of somatic mutations in cancer, namely,
events more likely occurring in the inactive X-chromosome24.
After we completed a rigorous quality control process for
methylation microarray data in a control population of 1,665
men and 136 women, probes in gene promoter sites on the X
chromosome were extracted and filtered to focus analyses on a
reference set of probes that were differentially methylated
between men and women, as these are the locations that are
inactivated on Xi (Supplementary Fig. 3)31,32. Methylation beta
values for the resulting set of 1,888 probes were evaluated for
differences from normal expected values in women (beta values
greater than expected suggest mosaic gain of Xi and less than
expected suggest mosaic loss of Xi) (Fig. 4). Of the 21 women

with mosaic losses, 16 had evidence for a loss of the Xi
chromosome. Similarly, all 5 women with mosaic gains had
evidence suggesting a mosaic gain of Xi. For mosaic copy-neutral
events, 6 women showed evidence for a loss of a portion of the Xa
and a replacement with Xi and one woman showed evidence for a
loss of a portion of Xi and a replacement with the Xa. Our
combined data for mosaic gains and losses suggest that Xi is
preferentially involved in mosaic copy-number changes, with Xi
more commonly altered in mosaic losses and preferentially
gained for mosaic gains (P value¼ 0.002). Mosaic events on the X
chromosome that do not follow this trend, particularly the five
mosaic losses with evidence for a loss of the Xa, could represent
normal variation, perhaps due to different DNA extraction
techniques, noise in the methylation assay or statistical outliers.
Alternatively, chromosome X events could occur early in female
development, perhaps at a time that precedes X-inactivation, and
thus X-inactivation could only occur in cells with more than one
X chromosome.

Discussion
Our analysis using SNP microarray intensities identified
detectable mosaic events on the female X chromosome that
occur at higher frequencies than mosaic events on the autosomes.
We observed evidence that individual women with mosaic events
of the X chromosome are also more likely to have mosaic events
of the autosomes. Furthermore, X mosaic events are more likely
to involve the inactive X chromosome than the active X
chromosome, and thus might be phenotypically neutral. As with
autosomal and Y mosaicism, X mosaicism increases with age.

For decades, it has been apparent that an appreciable fraction
of paediatric developmental disorders are directly attributable to a
spectrum of mosaic events (for example, from point mutations to
large structural alterations) that can also influence clinical
course9,33–35. Our data indicate that substantial numbers of
adults also possess mosaic chromosomes in blood and buccal
cells, suggesting the genome undergoes somatic alterations that
either are generated later due to less efficient protective
mechanisms or were perhaps tolerated from early age and
subsequently expanded due to less efficient mechanisms for
retaining genomic stability.

A limitation of our analysis is the low level of validation for
partial chromosome copy-neutral events. Because of both the
smaller event size and the need for log R ratio (LRR) baseline
correction, our array-based detection algorithm together with
qPCR-based validation yielded a low level of concordance.
Further work is needed to improve the calling algorithms, which
could also be accelerated by the analysis of larger samples sizes,
ultimately leading to more precise measurement of mosaic
X-chromosomal events.

It is striking that the frequency of large megabase mosaicism is
higher in the inactive X as well as the Y chromosome compared
with the autosomes. This higher frequency of mosaicism on sex
chromosomes could be a reflection of less cell selection because
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Table 1 | Chromosomal arm location of detected mosaic
autosomal and X events.

Autosomes X chromosome

Interstitial 148 (34.4%) 46 (37.1%)
Spans centromere 17 (4.0%) 2 (1.6%)
Telomeric p 95 (22.1%) 4(3.2%)
Telomeric q 148 (34.4%) 12 (9.7%)
Whole 22 (5.1%) 60 (48.4%)

430 (100%) 124 (100%)
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the inactive X is transcriptionally inactive while the Y
chromosome has the smallest number of genes. Future studies
are needed to understand the mechanisms responsible for the
generation and selection of these mosaic alterations in sex and
autosomal chromosomes, which occur at different frequencies. In
turn, insights into the underlying mechanisms as well as the
differences in frequencies of large structural genetic mosaicism
should provide an important foundation for understanding their
contribution to health and chronic diseases6,36,37.

Methods
Study population. The data set was drawn from cancer GWAS of solid tumours
performed at the National Cancer Institute Division of Cancer Epidemiology and
Genetics and the Cancer Genome Research Laboratory. In total, peripheral
leukocyte or buccal epithelial DNA was available for 20,878 solid tumour cancer
cases and 17,425 cancer-free controls. DNA was genotyped on one or more
commercially available Illumina Infinium Human SNP array (Hap300, Hap240,
Hap550, Hap610, Hap660, Hap 1, Omni Express, Omni 1, Omni 2.5 and Omni 5).
Quality control procedures were applied after genotyping and samples were
clustered in batches to optimize accuracy and minimize batch effects. All GWAS
studies were reviewed by the Institutional Review Board of the National Cancer
Institute and those of the participating study centers. Informed consent was
received for each study participant before study enrollment.

Detection algorithm. BAF and LRR are two metrics used to detect mosaic events.
BAF is a measure of allelic imbalance and used to quantify deviation of an
individual’s SNP genotype from expected AA, AB and BB genotype clusters.
Contiguous runs of heterozygous SNPs with BAF values that deviate from the
expected value of 0.5 are evidence for mosaicism. The LRR value of an individual’s
SNP is a proxy for copy number. LRR values are the log2 of the ratio of observed
SNP intensity value to expected intensity value. LRR values greater than expected
baseline LRR suggest copy gain and less than expected baseline LRR suggest copy
loss. The expected baseline LRR was calculated from women within each clustering
group based on the ratio of males and females in the original genotyping cluster
group. All BAF and LRR values were calculated using methods described38 and
renormalized as outlined previously3.

For female participants, BAF and LRR values were systematically scanned
across the X chromosome. Chromosomes were segmented for mosaic events using
circular binary segmentation (CBS) on BAF values with the BAF segmentation
package39. Segments o2 Mb in size were filtered out to control the false-positive
rate. Gaussian mixture models were fit to BAF bands to assign event type given the
best-fitting model (2–4 Gaussian components). Event copy-number state was
assigned based on LRR values with baselines adjusted for the number of men
present within original genotyping cluster groups. For whole-chromosome mosaic
X events, LRR deviations of 0.01 and � 0.01 were used to classify events as gain
and losses, respectively. For mosaic X events encompassing only a portion of the X
chromosome, we chose a more conservative threshold of 0.05 and � 0.05 for gains
and losses due to greater LRR variation due to the reduced number of X probes that
spanned the events. Mosaic proportions were estimated using deviation from the
expected BAF given the LRR defined copy-number state. Further details are
outlined in our prior work on autosomal mosaicism3.

Quantitative PCR. qPCR assays were selected to determine copy-number status of
12 regions spanning the X chromosome by normalizing to an autosomal gene,
RNase P, which is present in two copies in a diploid genome (Supplementary
Table 4). One additional assay was run to validate the presence of the
Y chromosome. According to Quant-iT PicoGreen dsDNA quantitation
(Life Technologies, Grand Island, NY), 5 ng of sample DNA were transferred into
LightCycler-compatible 384-well plates (Roche, Indianapolis, IN) in triplicate and
dried down. Two internal standard curves were run separately in each plate, pooled
gDNA samples of males and pooled gDNA samples of females, both with no
detectable X chromosome loss/gain, and serially diluted to 6 concentrations. qPCR
was performed using 5 ml reaction volumes consisting of: 2.5 ml of LightCycler 480
Probes Master Mix (Roche, Indianapolis, IN), 2.0 ul of MBG Water, 0.25 ml of
20� TaqMan Copy Number Reference Assay, RNase P (Life Technologies, Grand
Island, NY), and 0.25 ml of specific 20� TaqMan Copy Number Assay (Life
Technologies, Grand Island, NY). Thermal cycling was performed on a LightCycler
480 (Roche) where PCR conditions consisted of: 95 �C hold for 5 min, denature at
95 �C for 15 s, anneal at 60 �C for 30 s, with fluorescence data collection over
45 cycles. All experimental and control samples were assayed in triplicate on each
plate, separately for all 12 individual target assays.

The LightCycler software (Release 1.5.0) was used for initial analysis of the
raw data, utilizing the absolute quantification analysis with the second derivative
maximum method and high-confidence detection algorithm, to yield a crossing
threshold (Ct) for all replicates. The Ct for each assay was used to interpolate
concentration of target and reference sequences using the standard curves. The
ratio of target to reference was multiplied by 2 to determine the diploid amount of

X chromosome in that region. The ratios of the 12 assays were then averaged to
yield an overall X-chromosome signal ratio. Seventy-five normal copy-number
controls were used to estimate normal probe ratio means and s.d. A value of 3 s.d.
above the normal mean ratio was used as the threshold to call gains and a value of 3
s.d. below the normal mean ratio was the threshold for calling losses.

Methylation arrays. After Quant-iT PicoGreen dsDNA quantitation (Life
Technologies, Grand Island, NY), 1,000 ng of sample DNA were treated with
sodium bisulfite using the EZ-96 DNA Methylation MagPrep Kit (Zymo Research,
Irvine, CA) to convert unmethylated cytosine residues to uracils (detected as
thymidines), leaving 50-methylcytosines residues unaffected. Bisulfite-treated
samples were denatured, neutralized and then whole-genome amplified, iso-
thermally, to increase the amount of DNA template. The amplified product was
enzymatically fragmented, precipitated and resuspended in hybridization buffer.
Samples were hybridized overnight on Infinium HumanMethylation450 BeadChips
(Illumina Inc., San Diego, CA), which allowed fragmented DNA to anneal to
locus-specific 50mers (covalently linked to one of over 500,000 bead types).
Single-base extension of oligonucleotides on the BeadChip, using the captured
DNA as template, incorporated tagged nucleotides on the BeadChip, which were
subsequently fluorophore labelled during staining. BeadChips were scanned by an
Illumina iScan at two wavelengths to create image and intensity files. An internal
control, a DNA sample from a lymphoblastoid cell line NA07057 (Coriell Cell
Repositories, Camden, NJ), was utilized to confirm the efficiency of bisulfite
conversion and subsequent methylation analysis.

Methylation beta values are indicators of site-specific methylation with a
theoretical range from 0 to 1, where low values indicate hypomethylation and high
values indicate hypermethylation. Raw beta intensity values were extracted for
probes in promoter sites on the X chromosome and further filtered to include only
probes that are differentially methylated between women (Xa/Xi) and men (Xa).
A control sample of available men (N¼ 1,665) and women (N¼ 136) was used to
determine expected beta value means and s.d. Using the RnBeads R library,
promoter probes were selected that had mean beta values between 0.35 and 0.5 and
s.d. o0.09 in women and mean beta values o0.15 and s.d. o0.05 in men
(Supplementary Fig. 3). This left a total of 1,888 differentially methylated probes
that spanned 212 promoter sites across the X chromosome for analysis. For each
mosaic female, mean beta values and z-scores were calculated for all differentially
methylated promoter probes that spanned detected mosaic X events in an effort to
determine changes in methylation profiles and thus phase mosaic events to the Xa
or Xi chromosomes. The mosaic proportions were calculated from SNP microarray
per cent mosaicism values. Only X events spanning 5 or more promoter regions
were used for the analysis.

Statistical analysis. All statistical analyses were performed on a 64 bit Windows
build of R 3.0.1 "Good Sport". Multivariate analyses used logistic regression models
(glm procedure) with X mosaicism as the dependent variable and adjusted for age
of DNA collection, study indicator variables, cancer status (case¼ 1, control¼ 0),
and genetically inferred ancestry (%European, %African and %Asian) unless
otherwise specified. Inferred ancestry proportions were estimated for each
individual using reference populations from the HapMap project40 with the GLU
software package (https://code.google.com/p/glu-genetics/) using the struct.admix
module. Confidence intervals for plots are Wilson intervals. All reported P values
are two-sided.

Data availability. Original study data has been posted in dbGaP
(http://www.ncbi.nlm.nih.gov/gap) under accession numbers phs000093.v2.p2,
phs000336.v1.p1, phs000351.v1.p1, phs000361.v1.p1, phs000652.v1.p1,
phs000716.v1.p1, phs000734.v1.p1, phs000396.v1.p1, phs000147.v2.p1,
phs000346.v2.p1, phs000863.v1.p1 and phs000206.v5.p3. Data on called event
features, location and individual characteristics are available in Supplementary
Table 1. Methylation array beta values for events are presented in Supplementary
Table 6 and raw data is posted in dbGaP under accession number phs001112.v1.p1.
The methylation data has been deposited in dbGaP under accession code
phs001112.v1.p1
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Medical Sciences, Beijing 100730, China. 83 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain.
84 Division of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, UK. 85 Centro de Investigación Biomédica
en Red de Enfermedades Raras (CIBERER), Barcelona 28029, Spain. 86 Quantitative Genomic Medicine Laboratory, qGenomics, Barcelona 08003, Spain.
87 Karmanos Cancer Institute and Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan
48201, USA. 88 Human Genetics Foundation (HuGeF), Torino 10126, Italy. 89 Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment,
Nanjing Medical University, Nanjing 210029, China. 90 Department of Epidemiology, Nanjing Medical University School of Public Health, Nanjing 210029,
China. 91 Department of Preventive Medicine, Chonnam National University Medical School, Gwanju 501-746, Republic of Korea. 92 Department of Medicine,
Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. 93 Baylor College
of Medicine, Houston, Texas 77030, USA. 94 Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21218, USA. 95 Ministry of Education
Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China. 96 State Key Laboratory of Genetic
Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China. 97 Information Management Services Inc., Calverton, Maryland 20904, USA.
98 University of California San Francisco, San Francisco, California 94143, USA. 99 Department of Pathology, Li Ka Shing Faculty of Medicine, The University of
Hong Kong, Hong Kong, China. 100 Institute of Occupational Medicine and Ministry of Education Key Laboratory for Environment and Health, School of Public
Health, Huazhong University of Science and Technology, Wuhan 430400, China. 101 Department of Epidemiology, The University of Texas MD Anderson
Cancer Center, Houston, Texas 77030, USA. 102 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical
Sciences, Guangzhou 515200, China. 103 Division of Urologic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA.
104 Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10617, Taiwan. 105 Department of Population Health, New York
University School of Medicine, New York, New York 10016, USA. 106 Department of Epidemiology, School of Public Health, China Medical University,
Shenyang 110001, China.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11843 ARTICLE

NATURE COMMUNICATIONS | 7:11843 | DOI: 10.1038/ncomms11843 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications

	Dartmouth College
	Dartmouth Digital Commons
	6-13-2016

	Female Chromosome X Mosaicism is Age-Related and Preferentially Affects the Inactivated X Chromosome
	Mitchell J. Machiela
	Weiyin Zhou
	Eric Karlins
	Joshua N. Sampson
	Neal D. Freedman
	See next page for additional authors
	Recommended Citation
	Authors


	title_link
	Results
	Detected chromosome X events

	Figure™1Adjusted mean rate of events by chromosome.A comparison of detected mosaic events gt2thinspMb in size in the autosomes to the X chromosome (X events=124, Autosomal events=430)
	Validation by qPCR
	X mosaicism in men
	X mosaicism associations

	Figure™2Detected mosaic events on the X chromosome.Mosaic losses (N=59) are in red, mosaic gains (N=22) are green, and mosaic copy-neutral events (N=43) are in blue
	Figure™3Unadjusted age relationship with X mosaicism.Dashed line represents the mean overall proportion with mosaic X events across all age groups and error pars represent 95percnt Wilson confidence intervals (N=31,982)
	Methylation analysis

	Discussion
	Figure™4Chromosome X methylation beta values by estimated mosaic proportion.Average beta values (range: 0.0-1.0) indicate amount of methylation at a genomic locus where low values indicate hypomethylation and high values indicate hypermethylation. X methy
	Table 1 
	Methods
	Study population
	Detection algorithm
	Quantitative PCR
	Methylation arrays
	Statistical analysis
	Data availability

	StrachanT.ReadA. P.StrachanT.Human Molecular Genetics xxv781Garland Science2011GenoveseG.Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequenceN. Engl. J. Med.371247724872014JacobsK. B.Detectable clonal mosaicism and its relationship 
	Some individuals, studies, and centers received individual support as follows: Broad Center for Genotyping and Analysis (U01HG04424); Cancer Prevention Study-II (American Cancer Society); Center for Inherited Disease Research (U01HG004438, HHSN26820078209
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information


