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Abstract. Natural ecological communities are continuously buffeted by a varying en-
vironment, often making it difficult to measure the stability of communities using concepts
requiring the existence of an equilibrium point. Instead of an equilibrium point, the equi-
librial state of communities subject to environmental stochasticity is a stationary distri-
bution, which is characterized by means, variances, and other statistical moments. Here,
we derive three properties of stochastic multispecies communities that measure different
characteristics associated with community stability. These properties can be estimated from
multispecies time-series data using first-order multivariate autoregressive (MAR(1)) models.
We demonstrate how to estimate the parameters of MAR(1) models and obtain confidence
intervals for both parameters and the measures of stability. We also address the problem
of estimation when there is observation (measurement) error. To illustrate these methods,
we compare the stability of the planktonic communities in three lakes in which nutrient
loading and planktivorous fish abundance were experimentally manipulated. MAR(1) mod-
els and the statistical methods we present can be used to identify dynamically important
interactions between species and to test hypotheses about stability and other dynamical
properties of naturally varying ecological communities. Thus, they can be used to integrate
theoretical and empirical studies of community dynamics.

Key words: community matrix; community stability; multivariate autoregressive process; reac-
tivity; resilience; stationary distribution; stochastic population model; time-series analysis; vector
autoregressive process.

INTRODUCTION

The stability of ecological communities depends on
at least three components of community structure: di-
versity (species richness), species composition, and the
pattern of interactions among species. Much of the cur-
rent scientific discussion of community stability fo-
cuses on diversity, because the relationship between
diversity and community stability is central to argu-
ments for preserving ecological diversity (Ehrlich and
Daily 1993, Schulze and Mooney 1993, Tilman and
Downing 1994, Schläpfer and Schmid 1999). However,
the role of diversity in community stability is intimately
linked to species composition and the pattern of inter-
actions among species (Vitousek 1990, Walker 1992,
Lawton and Brown 1993, Vitousek and Hooper 1993,
Tilman 1996, Hooper and Vitousek 1997, Tilman et al.
1997, Ives et al. 1999b, 2000b). Composition is im-
portant because the presence of particular species with-
in a community could change how the community re-
sponds to particular environmental perturbations (Mc-
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Naughton 1977, 1985, Frank and McNaughton 1991).
For example, a zooplankton species that is particularly
tolerant to low pH could make the total zooplankton
biomass in a community more stable against acidifi-
cation (Frost et al. 1995). The pattern of interactions
among species is important because the responses of
individual species to environmental perturbations de-
pend not only on the direct effect of the perturbation
on their reproduction and mortality rates, but also on
the indirect effects acting through changes in the abun-
dances of other species in the community (May 1974,
Holt 1977, Paine 1980, Pimm 1984, Abrams 1987, Car-
penter et al. 1994b, Ives 1995b, McCann et al. 1998,
Klug et al. 2000). Thus, understanding community sta-
bility requires understanding the combined effects of
diversity, composition, and the patterns of interactions
among species.

Community stability may be measured in many dif-
ferent ways. Most common measures of stability re-
quire systems to have an equilibrium point, or at least
a well defined ‘‘normal’’ state from which deviations
can be measured. Resilience (sensu Pimm 1984) is
measured by the characteristic rate at which the abun-
dances of populations within a community return to
equilibrium following a disturbance. Resistance is a
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measure of the magnitude of displacement of popula-
tion abundances from equilibrium when subjected to a
disturbance. Both of these concepts of stability can be
modified for cases in which there is no strict equilib-
rium point (Steinman et al. 1992, Cottingham and
Schindler 2000). Nonetheless, they are still based on
the responses of systems away from their normal states.
It is difficult to apply these measures to systems that
are continuously buffeted by environmental fluctua-
tions such that the normal state includes frequent dis-
turbances.

An alternative approach is to view the dynamics of
a community as a stochastic process and to define sta-
bility in terms of properties of a stochastic model of
populations within the community. Such a stochastic
model describes how the means, variances, and other
statistical moments of population densities change
through time. The equilibrium of a stochastic model is
the joint stationary distribution of population abun-
dances, and analogues of the deterministic concepts of
the return time, resilience, and resistance can be defined
with reference to this stationary distribution. As we
will describe below, community stability may be mea-
sured by several different properties of the stochastic
model. All of these properties share the advantage of
being readily estimated directly from data. This is im-
portant, because disentangling the effects of diversity,
species composition, and species interactions on com-
munity stability requires robust statistical techniques
to analyze data from different ecological communities.

Our goals here are twofold. First, we describe dif-
ferent properties of stochastic processes that can be
used to define stability. We focus on a particular type
of stochastic process: first-order multivariate (or vec-
tor) autoregressive processes, abbreviated MAR(1)
(Judge et al. 1985, Reinsel 1997). In MAR(1) pro-
cesses, the changes in population abundances from time
point t 2 1 to the next time t depend only on the
population abundances at time t 2 1 and environmental
disturbances occurring between time t 2 1 and t; pop-
ulation abundances and environmental disturbances be-
fore time t 2 1 have no direct effect. The first-order
process implies that enough information can be ob-
tained about a community at a single point in time to
predict the immediate changes in species’ abundances.
In addition, MAR(1) processes assume that the inter-
actions among species, and between species and en-
vironmental variables, are linear (at least after variables
have been suitably transformed). MAR(1) models pro-
vide relatively simple approximations to nonlinear,
non-first-order processes and therefore can be used to
describe the general stochastic properties of complex
communities (Ives 1995a, b).

Our second goal is to provide the statistical tools to
estimate the strengths of interactions between species
and the stochastic properties of the dynamics of com-
munities from time-series data. For a community with
a given number of species, the dynamics depend on

how each species is affected by environmental fluc-
tuations, measured in terms of changes in the species’
population growth rates. The dynamics also depend on
how changes in the abundance of species caused by
environmental fluctuations in turn cause changes in the
population growth rates of other species via species-
species interactions. Interactions between species can
be viewed as a filter that amplifies, either weakly or
strongly, the variability in species’ population growth
rates caused by environmental fluctuations (Ives et al.
2000b). Thus, estimating the stability properties of a
community necessarily requires estimating the strength
of interactions between species. We approach this sec-
ond goal by first describing statistical procedures for
parameter estimation and model selection. We then il-
lustrate these procedures by applying them to an ex-
ample data set taken from a whole-lake experiment
designed to assess the response of planktonic com-
munities to environmental disturbances.

Road map

Developing both the theoretical measures of stability
and the statistical methods to apply these measures to
data is a formidable task, and some readers may want
to skim some sections of this article. Therefore, we
will begin with a road map. The destination is an anal-
ysis of seven years of data taken at weekly intervals
over the summer from three experimentally manipu-
lated lakes. The data set contains many of the features
and puzzles found in other ecological data sets. Pre-
senting a brief overview of the data here will help to
motivate the theoretical and statistical development in
the first parts of the article.

The data consist of weekly samples of zooplankton
and phytoplankton, which for the analyses were divided
into two zooplankton groups (Daphnia and non-Daph-
nia) and two phytoplankton groups (large and small
phytoplankton). Daphnia are large, effective herbi-
vores, and small phytoplankton are particularly vul-
nerable to herbivory, so we anticipated strong inter-
actions between Daphnia and small phytoplankton
groups. The experimental manipulations involved re-
configuring the initial fish composition of one lake so
that the fish community was dominated by planktivo-
rous fish that reduced Daphnia abundance, while the
other two lakes were dominated by piscivorous fish that
reduced the abundance of planktivorous fish, and hence
had high Daphnia abundance. Then, over the course of
seven years, nutrients were added to two of the lakes,
the lake dominated by planktivores and one of the lakes
dominated by piscivores.

The objective of the experiment was to ask how dif-
ferences in the fish food webs among lakes altered the
response of the planktonic community to nutrient ad-
dition (Carpenter et al. 2001). Here, however, we focus
on a different question: How stable are the planktonic
communities in the different lakes? Not surprisingly,
the two lakes subjected to nutrient addition showed
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greater variability over the seven years of the experi-
ment as they responded to this perturbation. But we
are specifically interested in the question: If these direct
responses to the nutrient perturbations were factored
out, thereby creating a theoretical level playing field
for comparison, which lake would be the most stable?
We are not interested in the stability of the lakes in the
face of the nutrient perturbation per se, but instead are
interested in the processes that affect the variability of
the planktonic communities independently of this spe-
cific perturbation. When subjected to continuous en-
vironmental perturbations from all sources, which lake
is most stable, and how do differences in the interac-
tions within and among planktonic groups in the dif-
ferent lakes dictate differences in stability?

We address these questions by fitting a MAR(1) mod-
el to the data, and extracting different measures of sta-
bility from the fitted model. In the article, we begin by
describing the relevant theoretical properties of
MAR(1) processes (section First-order autoregressive
models). Although MAR(1) models are linear (at least
in transformed variables), we show how they can be
derived as approximations to nonlinear systems. We
then describe three different types of measures of sta-
bility (section Stability properties of MAR(1) models).
The first is based on the variability of the stationary
distribution of the stochastic process, whereas the sec-
ond is based on the rate at which the stochastic process
converges to the stationary distribution. The third, re-
activity, is a measure of how strongly population abun-
dances are pulled towards the mean of the stationary
distribution. Much of the mathematical development of
this section is relegated to the Appendix.

We then present statistical methods for fitting
MAR(1) models to data. To begin, we show how to
extend the standard MAR(1) model to account for some
of the complexities likely to be encountered when ad-
dressing ecological data (section Model modifications).
We show how measured environmental factors, such
as nutrient addition in the lake data set, can be factored
into MAR(1) models. We also consider observation
error, the error unavoidable in ecological data that re-
sults from our inability to measure the ‘‘true’’ state of
a system and the environmental variables that affect it.
Methods for parameter estimation are then presented,
including techniques to calculate approximate confi-
dence intervals for not only the parameters of the
MAR(1) model, but also aggregate parameters, specif-
ically, our measures of stability (section Model selec-
tion and statistical inference). After presenting the
needed statistical methods, we apply them to the lake
data set (section Limnological example).

Much of this work is mathematically nontrivial, and
we have not shied away from giving formal mathe-
matical results that are needed to implement and mod-
ify our analyses. To make the concepts more approach-
able, however, we end each section with a descriptive
summary of the major results from the section. Also,

while we present formal results, we generally do not
give proofs, but instead give references where similar
results are derived. Finally, the programs used in our
analyses of the lake data are available in ESA’s Elec-
tronic Archive (Supplement).

FIRST-ORDER AUTOREGRESSIVE MODELS

Below, we review some basic concepts of first-order
autoregressive processes. We begin with the univariate
case for a single species, and then develop the multi-
variate case. We also relate the autoregressive models
to their deterministic counterparts; this makes it pos-
sible to show the correspondence between concepts of
stability in stochastic models to the more familiar con-
cepts applied in the stability analysis of deterministic
models.

Univariate AR(1) process

A deterministic model frequently used to describe
density-dependent population growth is a discrete-time
Gompertz model (Reddingius 1971, Dennis and Taper
1994)

n 5 n exp[a 1 (b 2 1)ln n ].t t21 t21 (1)

Here, nt is population abundance, a is the intrinsic rate
of increase, and b governs the strength of density de-
pendence, with no density dependence corresponding
to b 5 1. As b decreases, density dependence increases,
and when b , 0 overcompensating density dependence
occurs in which population trajectories tend to show
‘‘boom–bust’’ patterns, with high and low densities al-
ternating between successive time points. On a log scale,
the model is a simple linear difference equation

x 5 a 1 bxt t21 (2)

where xt 5 ln nt. The Gompertz equation is only one
of many simple models that have been applied to eco-
logical systems (e.g., Zeng et al. 1998). We start with
the Gompertz equation, because it is a log-linear model
that often gives a reasonable first-order approximation
to other nonlinear models.

Provided b ± 1, this model has an equilibrium point
x` given by

x 5 a/(1 2 b).` (3)

The condition for the equilibrium to be stable can be
seen from the solution of the model given by Eq. 2.
Starting from the initial point x0 and substituting for a
in terms of x`, it is easy to derive through recursion
that

tx 5 x 1 b (x 2 x ).t ` 0 ` (4)

Thus, provided zbz , 1, xt will converge to x`, with
convergence occurring more quickly the closer zbz is
to zero. If 0 , b , 1, convergence will occur mono-
tonically, while damped two-point oscillations will oc-
cur when 21 , b , 0.
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FIG. 1. Examples of two univariate AR(1) processes (Eq.
5) with autoregression parameter (A) b 5 0.6 and (B) b 5
0.95; a 5 0 in both panels. Each panel shows 10 trajectories
starting from the point x0 5 28. The distribution of process
errors Et is normal with mean 0 and s2 5 1, which is depicted
as the shaded area at the right in both panels. The stationary
distribution is also normal and is shown as the heavy line to
the right of the panels.

A stochastic version of Eq. 2 is the univariate AR(1)
process

X 5 a 1 bX 1 E .t t21 t (5)

Here, Xt is log abundance at time t (in upper case to
denote a random process), and Et is a normal random
variable with mean 0 and variance s2, and with E1, E2,
. . . all independent. The random variable Et represents
‘‘process error’’ or fluctuations caused by unspecified
stochastic forces. In ecological terms Et represents en-
vironmentally driven fluctuations in the per capita pop-
ulation growth rate and thus gives the environmental
variability experienced by the population (see Dennis
et al. 1991, Dennis and Taper 1994). The univariate
AR(1) process has been an important model in the the-
ory and statistical testing of density dependence (Den-
nis and Taper 1994 give a review). Properties of AR(1)
processes can be found in texts that emphasize the sta-
tistical theory of time series (Harvey 1993, Box et al.
1994).

Fig. 1 gives two examples of univariate autoregres-
sive processes for b 5 0.6 and b 5 0.95. Each panel
displays 10 separate realizations of the same process.
We will refer to this figure below to illustrate properties
of autoregressive processes.

Univariate stationary distribution
The equilibrium for the AR(1) process Xt is the sta-

tionary distribution, which is the probability distribu-

tion approached by the distribution of Xt as t → `
provided zbz , 1. Note that zbz , 1 is the same criterion
for stability as for the corresponding deterministic
model given in Eq. 2. The stationary distribution for
Xt is a normal distribution with mean m` and variance
y` given by (Box et al. 1994)

m 5 a /(1 2 b) (6)`

2 2y 5 s /(1 2 b ). (7)`

The mean of the stationary distribution is the same as
the deterministic point equilibrium (Eq. 3). The vari-
ance y` around the mean is directly proportional to the
environmental variability, s2. It also depends on b, with
values of b closer to zero corresponding to less pop-
ulation variability. Note that this coincides with values
of b that produce rapid returns to equilibrium in the
corresponding deterministic model (Eq. 4). In Fig. 1,
the stationary distributions are given at the right margin
of each panel (heavy line) along with the distribution
of the process error Et (shaded).

Univariate transition distribution

The transition distribution is the conditional proba-
bility distribution for Xt at any time t given that at time
zero the initial condition is known to be X0 5 x0. The
transition distribution is normal, and both the mean and
the variance depend on time t:

tm 5 m 1 b (x 2 m ) (8)t ` 0 `

2 2 2 2 2 t21y 5 s [1 1 b 1 (b ) 1 · · · 1 (b ) ]t

2 t1 2 (b )
2 2 t5 s 5 y [1 2 (b ) ]. (9)`2[ ]1 2 b

Here mt 5 E[Xt z X0 5 x0] denotes the expected value
of Xt, and yt 5 E[(Xt 2 mt)2 z X0 5 x0] denotes the var-
iance of Xt given the initial condition X0 5 x0. The
formula for mt is identical to the solution trajectory for
xt in the deterministic model (Eq. 4). Note that if zbz
, 1, then mt converges to m` and yt converges to y` as
t becomes large. For small values of t, the transition
distribution starts as a spike of probability near the
initial size x0 and then broadens to the stationary dis-
tribution as t becomes large. Thus, in Fig. 1 all trajec-
tories begin at the same point, but then depart from
each other as the transition distribution approaches the
stationary distribution.

Multivariate AR(1) process

If there are p interacting species, a multivariate ver-
sion of the univariate AR(1) model (Eq. 5) is

X 5 A 1 BX 1 Et t21 t (10)

where Xt is a p 3 1 vector of (log-transformed) pop-
ulation abundances at time t, A is a p 3 1 vector of
constants, B is a p 3 p matrix whose elements bij give
the effect of the abundance of species j on the per capita
population growth rate of species i, and Et is a p 3 1
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vector of process errors that has a multivariate normal
distribution with mean vector 0 and covariance matrix
S. The vectors Et represent stochastic environmental
factors and are assumed to be independent through
time. Nonetheless, the elements in Et may covary with
each other, as measured by the off-diagonal elements
of the covariance matrix S. Thus, if a good time in-
terval for species i is also likely to be good for species
j, then the element sij in S will be positive.

MAR(1) models as approximations to
nonlinear systems

The MAR(1) model can be viewed as a linear ap-
proximation to a nonlinear first-order stochastic pro-
cess. Specifically, consider the model

X 5 f(X , R )t t21 t (11)

where Rt is a q 3 1 normal random variable with mean
0 representing the effects of q environmental variables
on the population growth rate of the species, and f is
a nonlinear function. If the stochastic process defined
by Eq. 11 has a stationary distribution with mean X`,
the right-hand side of Eq. 11 can be approximated using
a first-order Taylor expansion around X 5 X` and
R 5 0 to give

] f
X ø f (X , 0) 1 (X , 0)[X 2 X ]t ` ` t21 `]X

] f
1 (X , 0)R (12)` t]R

where (]f/]X)(X`, 0) and (]f/]R)(X`, 0) denote the par-
tial derivatives of f with respect to the vectors Xt21 and
Rt, respectively, evaluated at Xt 5 X` and Rt 5 0. Thus,
(]f/]X)(X`, 0) is a p 3 p matrix with the i–jth element
given by dfi /dXj, and (]f/]R)(X`, 0) is a p 3 q matrix
with the i–jth element given by dfi /dRj. This approxi-
mation is identical in form to the MAR(1) model given
in Eq. 10, as can be seen by letting B 5 (]f/]X)(X`,
0), A 5 f(X`, 0) 2 BX`, and Et 5 (]f/]R)(X`, 0)Rt.
Note that this explicitly defines the elements of B in
terms of the interaction strengths between species; bij

equals dfi /dXj, the change in the log population growth
rate of species i with respect to changes in the log
population abundance of species j. This approximation
is contingent on the stochastic process being stationary.
This is not an important restriction to our discussion,
however, because all of the concepts of stability that
we address apply to stationary processes.

In addition to being a linear approximation to non-
linear stochastic processes, Eq. 10 gives the stochastic
equivalent of the deterministic multispecies Gompertz
model. More generally, the matrix B contains the same
information as the ‘‘community matrix’’ calculated to
determine the stability properties around equilibrium
of nonlinear deterministic models (May 1974, Pimm
1982). To see this, consider the deterministic version
of the nonlinear stochastic model in Eq. 11

n 5 h(n )t t21 (13)

where nt is a p 3 1 vector of (untransformed) popu-
lation densities, and h is a nonlinear function. The com-
munity matrix of Eq. 13 is (]h/]n)(n`), the partial de-
rivative of h with respect to n evaluated at the deter-
ministic equilibrium, n`. The elements of (]h/]n)(n`)
have the form dhi /dnj. Letting fi 5 ln hi and xj 5 ln nj,

n n] f ](ln h ) ]h ]hj ji i i i5 5 5 (14)) ) ) )]x ](ln n ) h ]n n ]nj j i j i jx n n n` ` ` `

with the last step using the equality hi(n`) 5 ni at equi-
librium. Thus, the matrix B 5 (]f/]X)(X`, 0) differs
from the community matrix (]h/]n)(n`) in having every
row i multiplied by ni and every column j multiplied
by (1/nj). It is straightforward to show that matrix B
and the community matrix have identical eigenvalues.
Since the eigenvalues of the community matrix deter-
mine the population dynamics around equilibrium, ma-
trix B contains the same information as the community
matrix about population dynamics.

In summary, the MAR(1) model given by Eq. 10 is
a linear approximation to more general nonlinear first-
order autoregressive processes. The matrix of species
interactions B is similar to the community matrix used
to calculate the stability properties of nonlinear deter-
ministic models. It is not surprising, therefore, that use-
ful stability properties of the MAR(1) model can be
defined in terms of properties of the matrix B, as we
show next.

MAR(1) stationary distribution

The MAR(1) process Xt has a stationary distribution
provided all eigenvalues of matrix B lie within the unit
circle (Harvey 1989, Reinsel 1997). This is identical
to the criterion for stability of the point equilibrium in
the corresponding deterministic model (May 1974).
When the process error of the MAR(1) process is nor-
mally distributed, the stationary distribution is a mul-
tivariate normal distribution with mean vector m` and
covariance matrix V` given by

21m 5 (I 2 B) A (15)`

V 5 BV B9 1 S (16)` `

where I is the p 3 p identity matrix, and B9 denotes
the transpose of B. Eq. 16 is a matrix equation that
cannot be symbolically solved for the covariance ma-
trix V`. However, one can use the ‘‘Vec’’ operator on
both sides of Eq. 16 to obtain an explicit equation for
the elements of V`. The operation Vec(A) creates a
column vector out of any matrix A by stacking columns
of A on top of each other, with the first column on the
top and the last column on the bottom. The often-handy
algebra of the Vec operator is reviewed by Searle
(1982), and Judge et al. (1985:949–950) provide some
basic identities. The resulting explicit equation for the
elements of V` is
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21Vec(V ) 5 (I 2 B J B) Vec(S). (17)`

The symbol J denotes the Kronecker or direct matrix
product; M J N is formed by scalar multiplying N in
turn by each element of M and arranging the results
into a large matrix. Thus, in Eq. 17 B J B is the p2

3 p2 matrix given by

 b B b B · · · b B11 12 1p

 b B b B · · · b B21 22 2pB J B 5 . (18) 
_ _ _ 

b B b B · · · b Bp1 p2 pp 

Eq. 17 is the multivariate analog to the univariate sta-
tionary variance equation (Eq. 7).

MAR(1) transition distribution

The transition distribution of Xt conditional on the
initial value of X 5 x0 is a multivariate normal distri-
bution with mean vector mt and covariance matrix Vt

that change with time:

tm 5 m 1 B (x 2 m ) (19)t ` 0 `

2 2 t21 t21V 5 S 1 BSB9 1 (B )S(B )9 1 · · · 1 (B )S(B )9.t

(20)

Eq. 20 can be vectorized to obtain

2Vec(V ) 5 [I 1 B J B 1 (B J B) 1 · · ·t

t211 (B J B) ]Vec(S)

t 215 [I 2 (B J B) ][I 2 B J B] Vec(S). (21)

Eqs. 19 and 21 reduce to the univariate counterparts
Eqs. 8 and 9. It is straightforward to show that the
eigenvalues of the Kronecker product B J B are equal
to the products of all the pairs of eigenvalues of B:
lilj, i 5 1, . . . , p, j 5 1, . . . , p (Seber 1984). Thus,
if all eigenvalues of B lie within the unit circle, then
all of the eigenvalues of B J B also lie within the unit
circle. Therefore, Bt → 0 and (B J B)t → 0, and con-
sequently mt → m` and Vt → V` as t → `.

STABILITY PROPERTIES OF MAR(1) MODELS

The stability of a MAR(1) model can be measured
in numerous ways, each highlighting a different aspect
of the dynamics. Here, we constrain the discussion to
stationary processes (in which all the eigenvalues of B
lie within the unit sphere), thus excluding the possi-
bility of species extinction. Our question is therefore
how stable is the system, rather than whether the system
is stable or unstable. All three of the types of measures
of stability that we present in detail have close con-
ceptual and mathematical relationships, and they all
involve the interplay between short-term environmen-
tal fluctuations (vector Et in Eq. 10) and interactions
between species (matrix B).

Our first measure of stability quantifies how the var-
iance of the stationary distribution compares to the

variance of the process error (environmental variabil-
ity). The more stable the system, the lower the variance
of the stationary distribution relative to the variance of
the process error. The second measure of stability de-
pends on the rate at which the transition distribution
approaches the stationary distribution. This is com-
parable to stability measured by characteristic return
rates in deterministic systems (May 1974); rapid ap-
proach to the stationary distribution (i.e., the stochastic
equilibrium) corresponds to a more stable system. Our
final measure addresses the reactivity of the system,
defined as the immediate response of a system follow-
ing a perturbation (Neubert and Caswell 1997). A high-
ly reactive system may frequently move further away
from the mean of the stationary distribution, even
though on average the system remains stable. The more
reactive a system, the less stable it is. The mathematical
details of these measures of stability are given in the
Appendix, and here we just give heuristic descriptions.

Variance of the stationary distribution

Stability measured in terms of the relationship be-
tween the variance of the stationary distribution and
environmental variability can be illustrated using the
ball-in-basin diagram frequently used to illustrate sta-
bility in deterministic systems. In Fig. 2A, the balls in
both the steep and shallow basins are subjected to con-
tinuous perturbations that occur randomly in either di-
rection. Following each perturbation, the ball in the
steep basin rolls rapidly towards the bottom of the ba-
sin, while the ball in the shallow basin rolls to the
bottom slowly. As a result, the ball in the shallow basin
spends more time away from the basin bottom, leading
to a stationary distribution with greater variance than
the ball in the steep basin.

For the multispecies case, the covariance matrix of
the stationary distribution V` depends on the covari-
ance matrix of the process error S and the interactions
between species encapsulated in the matrix B. As a
measure of stability, it is natural to use the variance of
the stationary distribution relative to the variance of
the process error (environmental variability). By stan-
dardizing by the variance of the process error, differ-
ences between the variances of the stationary distri-
butions of different communities can be attributed to
species interactions. In a relatively stable system, spe-
cies interactions will cause the variance of the station-
ary distribution to be only slightly greater than the
variance of the process error. In contrast, in a less stable
system, species interactions will greatly amplify the
environmental variance, thereby creating large vari-
ance in the stationary distribution relative to the var-
iance of the process error.

Fig. 3A and B give an example of two systems con-
taining two competitors having different stability prop-
erties. Both systems experience the same environmen-
tal variance; the distribution of process errors is de-
picted by the shaded circle giving the 95% probability
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FIG. 2. Illustrations of three measures of stability. (A)
The pair of balls-in-basins portray stability measured by the
variance in the stationary distribution of the location of the
ball. If subjected to the same disturbance regime (white ar-
rows), the ball in the shallow basin on the right will spend
more time away from the center of the basin, because the
force to return to the center (solid arrows) is lower. This
creates a stationary distribution with a greater variance. (B)
The pair of balls-in-basins portrays stability measured by the
return rate of the mean of the transition distribution to the
mean of the stationary distribution. In the shallow basin, the
ball will move more slowly to the center of the basin after
being disturbed to the basin rim at location 1. (C) The pair
of balls-in-basins portrays stability measured by the reactiv-
ity. In the steep basin, each successive location (1, 2, and 3)
tends to bring the ball closer to the center of the basin than
is the case for the shallow basin.

bounds of the distribution. In Fig. 3A, intra- and in-
terspecific competition are relatively strong, leading to
low variance in the stationary distribution compared to
the system in Fig. 3B. Thus, the system in Fig. 3A is
the more stable.

Although in this example it is easy to see the dif-
ferences between systems, comparing the variances of
stationary distributions for general, multidimensional
systems is less straightforward. We use two methods,
whose details are developed in the Appendix. The first
involves measuring the variance in the stationary dis-
tribution along axes given by the eigenvectors of B
(Ives 1995a). These eigenvectors are depicted by the
axes in Fig. 3A and B. The variance in the stationary
distribution along an eigenvector corresponding to a
real eigenvalue, denoted `, isỹ

2 2ỹ 5 c /(1 2 l )` (22)

where c2 is the variance of the process error along the
eigenvector, and l is the corresponding real eigenvalue.
From this expression (as with b in Eq. 7 for a univariate
AR(1) process), the closer the value of l is to zero,
the lower the variance of the stationary distribution
along the corresponding eigenvector.

A similar result can be obtained for any complex
eigenvalues of B. Complex eigenvalues occur in con-
jugate pairs, a 6 bi, and the corresponding pair of
eigenvectors defines a plane in the multidimensional
space containing the stationary distribution. The sum
of variances within this plane is

r c r c 2ỹ 1 ỹ 5 (c 1 c )/(1 2 \a 6 bi\ )` ` (23)

where and are variances of the stationary distri-r cỹ ỹ` `

bution along the two eigenvectors, c r and cc are var-
iances of the process error, and \a 6 bi\ is the mag-
nitude of the eigenvalues. Thus, in the plane defined
by the eigenvectors corresponding to a pair of complex
eigenvalues a 6 bi, the closer the magnitude of a 6
bi is to zero, the lower the variance of the stationary
distribution.

The second method for comparing the variance of
probability distributions uses determinants to measure
the ‘‘volume’’ of covariance matrices. For example, in
two-dimensional space the area of the parallelogram
defined by any two vectors equals the determinant of
the matrix containing the two vectors as columns. Since
the covariance matrices V` and S give the variances
of the stationary distribution and process errors, re-
spectively, the volume of the difference V` 2 S mea-
sures the degree to which species interactions increase
the variance of the stationary distribution relative to
the variance of the process error. From Eq. 16

2det(V 2 S) 5 det(V )det(B) . (24)` `

Therefore, the proportion of the volume of V` attrib-
utable to species interactions is det(V` 2 S)/det(V`)
5 det(B)2. The determinant of a matrix equals the prod-
uct of its eigenvalues, so det(B)2 5 (l1l2 · · · lp)2 for
a community with p species. Since the magnitudes of
the eigenvalues are less than one, this implies that
det(B)2 will decrease with increasing numbers of spe-
cies in a system, even if the eigenvalues have com-
parable magnitudes. Therefore, to facilitate compari-
sons among systems with different numbers of species,
we use det(B)2/p 5 (l1l2 · · · lp)2/p. This is simply the
square of the geometric mean of the eigenvalues.

These two methods for comparing the variances of
stationary distributions (Eqs. 22 and 23 vs. Eq. 24) are
related, since Eqs. 22 and 23 contain eigenvalues of
B, and Eq. 24 contains det(B), which is the product of
all eigenvalues. The former method can be compared
to the most common measure of stability for deter-
ministic models, the characteristic return rate. The
characteristic return rate of a deterministic system de-
pends on the dominant eigenvalue (i.e., the eigenvalue
with the largest magnitude) of the community matrix
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FIG. 3. Illustrations of measures of stability: (A, B), variance of the stationary distribution relative to the distribution of
environmental process error; (C, D), characteristic return rates of the transition distribution to the stationary distribution;
and (E, F), reactivity. For each pair of panels, the panel on the top gives the case of greatest stability. Panels A and B give
the stationary distribution of a system made up of two competitors, with (A) B 5 [[0.6, 20.2], [20.2, 0.6]] and (B) B 5
[[0.85,20.1], [20.1, 0.85]]; the MAR(1) process with these matrices was iterated 200 times to give the 200 points in the
panels. The stationary distribution is given by the ellipse that incorporates 95% of the probability density of the stationary
distribution. The shaded circle gives the 95% bounds of the process error, which is the same in panels (A) and (B). The lines
give the eigenvectors corresponding to the eigenvalues (A) 0.8 and 0.4, and (B) 0.95 and 0.75. Panels (C) and (D) give the
transition distributions for two univariate AR(1) processes for 50 time steps starting at x0 5 28, with (C) b 5 0.6 and (D)
b 5 0.95. The means of the transition distributions are given by the heavy lines, and the light lines give the mean 6 1 and
2 SD. Panels (E) and (F) give the case of two-competitor systems following MAR(1) processes with (E) B 5 [[0.3, 20.1],
[20.1, 0.3]] and (F) B 5 [[0.6, 20.2], [20.2, 0.6]]. The arrows in each panel give the expected density (tip of the arrow)
at time t for 10 points at time t 2 1 (base of the arrow) selected from the stationary distribution.

(see the discussion after Eq. 14). Similarly, from Eqs.
22 and 23, the variance of the stationary distribution
relative to the variance of the process error is greatest
along the eigenvector corresponding to the dominant
eigenvalue of B, max(lB). Note, however, that a com-
plete description of the variance of the stationary dis-
tribution depends on all of the eigenvalues of B, not
just the one with the greatest magnitude.

Rate of convergence of the transition distribution

When measuring the stability of deterministic mod-
els in terms of characteristic return rates, the equilib-
rium towards which the system returns is a point or
(more rarely) some form of stable limit cycle. In sto-
chastic models, the equilibrium is the stationary dis-
tribution. The rate of return to the stochastic equilib-
rium can be measured by the rate at which the transition
distribution converges to the stationary distribution
from an initial, known value of the system. The more

rapid the convergence, the more stable the system. This
is depicted for balls-in-basins in Fig. 2B, where the
initial locations of the balls (labeled 1) are far from
the bottom of the basin (the mean of the stationary
distribution).

Different moments of the transition distribution may
approach those of the stationary distribution at differ-
ent rates. For simplicity, consider the univariate case.
The rate at which the mean of the transition distribution
approaches the mean of the stationary distribution is
given by Eq. 8; if Dx0 is the initial displacement of the
mean of the transition distribution from the mean of
the stationary distribution m`, then the displacement at
time t is Dxt 5 btDx0. Thus, the characteristic rate at
which Dx approaches 0 increases as zbz gets smaller. In
comparison, the variance of the transition distribution,
yt, approaches the variance of the stationary distribu-
tion, y`, more rapidly, with the characteristic rate of
return scaling with b2 (Eq. 9).
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The rate of convergence of the transition distribution
for a MAR(1) process is similar to the univariate pro-
cess. The rate of return of the mean vector of Xt is
governed by B (Eq. 19), and as in the deterministic
case, the dominant eigenvalue of B, max(lB), limits the
return time of the mean to m`. The rate of return of the
covariance matrix, by contrast, involves the Kronecker
product B J B (Eq. 21). The eigenvalues of the matrix
B J B are the products of all the pairs of eigenvalues
of B: lilj (i 5 1, . . . , p; j 5 1, . . . , p). When the
stationary distribution exists, the eigenvalue pair-prod-
ucts all have magnitudes smaller than max(lB). Thus,
the elements of the covariance matrix of the transition
distribution approach their equilibrium values rapidly
compared to the elements in the mean vector. As in the
case of the mean, the rate of return of the covariance
matrix of the transition distribution to equilibrium is
limited by the magnitude of the dominant eigenvalue
of B J B, \max(lBJB)\, which equals \max(lB)\2.

The rate of convergence of the transition distribution
to the stationary distribution is illustrated for a uni-
variate system (Eq. 5) with b 5 0.6 (Fig. 3C) and b 5
0.95 (Fig. 3D) graphed as the mean 6 1 SD and 6 2
SD of the transition distribution; these give the same
univariate processes as Fig. 1. In the univariate case,
b is the single eigenvalue of the systems. In addition
to showing that the mean of the transition distribution
converges to that of the stationary distribution more
rapidly when the magnitude of b is smaller, Fig. 3D
also shows that the variance of the transition distri-
bution approaches that of the stationary distribution
more rapidly than the mean.

The rate of convergence of the transition distribution
to the stationary distribution must be interpreted dif-
ferently from the rate of convergence of the population
size to equilibrium in deterministic models. In deter-
ministic models, rapid return rates to equilibrium in a
sense make a system more predictable. If there is some
unknown perturbation at time t 5 0, the population size
will be close to equilibrium shortly thereafter if the rate
of return to equilibrium is rapid. In stochastic models,
the rate of convergence of the transition distribution to
the stationary distribution is measured from some
known observation X0 5 x0. At time t 5 0, we have
full knowledge of the state of the system, because the
variance of the transition distribution is zero. Through
time, the variance of the transition distribution increas-
es monotonically to that of the stationary distribution
(Eqs. 9 and 19). Therefore, if the state of the system
is known at a given point in time, information about
the state of the system (i.e., the variance of Xt condi-
tional on X0 5 x0) is lost more rapidly if the variance
of the stationary distribution returns to steady state
more rapidly. This illustrates that, although there is a
correspondence between the convergence rates to equi-
librium in deterministic systems and the convergence
rates of the mean of the transition distribution to the
mean of the stationary distribution in stochastic sys-

tems, convergence rates of higher moments of sto-
chastic processes do not have a counterpart in deter-
ministic systems.

Reactivity

Neubert and Caswell (1997) warn that the commonly
used concepts of stability involve long-term properties.
For example, the rate of return of a deterministic system
to equilibrium given by the dominant eigenvalue on
the community matrix, max(lB), formally gives the as-
ymptotic rate of return after short-term dynamics have
dissipated following a perturbation. For management
and other applications, properties of short-term system
behavior might be of interest. Neubert and Caswell
proposed various measures of transient system re-
sponse to perturbations. One in particular is reactivity:
a highly reactive system tends to move farther away
from a stable equilibrium immediately after a pertur-
bation, even though the system will eventually return
to the equilibrium point. They proposed the concept of
reactivity for continuous-time deterministic models,
and here we develop the concept for stochastic models
in discrete time.

Reactivity is illustrated in Fig. 2C. For a highly sta-
ble (unreactive) system, disturbances (depicted by the
open arrows) may push a ball away from the bottom
of the basin, yet on average the ball is pulled strongly
towards the bottom of the basin between each succes-
sive time step. In contrast, in the shallow basin the
same disturbances on a ball starting the same distance
from the bottom of the basin may leave the ball farther
from the bottom, because the ball is not brought strong-
ly back towards the bottom between successive dis-
turbances. This represents a more reactive system than
that of the steep basin.

Fig. 3E and F give a numerical depiction of reactivity
in the stochastic systems containing two competitors
like in Fig. 3A and B. For each of 10 points, the arrows
show the expected value of the system at the next time
point. The system in Fig. 3E is unreactive, with the
expected values of the system moving much closer to
the mean of the stationary distribution between suc-
cessive time steps. Conversely, in the more reactive
system in Fig. 3F, the system moves only weakly to-
ward the mean.

We use two methods to quantify the reactivity of a
MAR(1) process. Both involve taking the mean of the
expected change in distance from the mean of the sta-
tionary distribution between successive time steps,
where this average is taken over the stationary distri-
bution. Letting Xt21 denote the vector of population
abundances at time t 2 1, the squared Euclidean dis-
tance between Xt21 and the mean of the stationary dis-
tribution, m`, is \Xt21 2 m`\2 5 (Xt21 2 m`)9(Xt21 2
m`). For a given value of Xt21, the expected value of
Xt is E [Xt z Xt21] 5 E [A 1 BXt21 1 «t21] 5 A 1« «t21 t21

BXt21. In Fig. 3E and F, if the base of a given arrow
is Xt21, the tip of the arrow is the expectation given by
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A 1 BXt21. The squared Euclidean distance of this
expectation from the mean of the stationary distribution
is \A 1 BXt21 2 m`\2 5 \B(Xt21 2 m`)\2; here we have
used the relationship that A 5 (I 2 B)m` (Eq. 15).
Therefore, the change in the squared Euclidean distance
to m` between Xt21 and the expected value of Xt is
\B(Xt21 2 m`)\2 2 \Xt21 2 m`\2.

As the first method for quantifying the reactivity of
a MAR(1) process, we use the expectation of this dif-
ference when Xt21 is distributed according to the sta-
tionary distribution, scaled by the expectation of \Xt21

2 m`\2. In the Appendix, we show that

2 2E [\B(X 2 m )\ ] 2 E [\X 2 m \ ]X t21 ` X t21 `` `

2E [\X 2 m \ ]X t21 ``

tr[S]
5 2 (25)

tr[V ]`

where tr[S] and tr[V`] are the traces of S and V`. The
trace of a covariance matrix is simply the sum of var-
iances of the constituent random variables, so tr[V`] is
the sum of variances of individual species abundances.
If the variance of the stationary distribution measured
by tr[V`] is large relative to environmental variance
measured by tr[S], then the reactivity is relatively high.
In other words, high reactivity corresponds to the case
in which species interactions greatly amplify the en-
vironmental variance to produce a stationary distri-
bution with high variances in the abundance of indi-
vidual species.

In order to calculate the reactivity as quantified by
Eq. 25, it is necessary to calculate the covariance ma-
trix of the stationary distribution (Eq. 17). Thus, unlike
the previous measures of stability, this requires infor-
mation not only about B but also about the covariance
matrix of the process error, S, which is involved in
determining the stationary distribution. This restriction
can be removed using a second method to quantify
reactivity. This involves calculating the ‘‘worst-case’’
scenario for reactivity, i.e., the maximum value of the
quantity on the left-hand side of Eq. 25. In the Ap-
pendix, we show

2 2E [\B(X 2 m )\ ] 2 E [\X 2 m \ ]X t21 ` X t21 `` `

2E [\X 2 m \ ]X t21 ``

# max(l ) 2 1 (26)B9B

where max(lB9B) is the dominant eigenvalue of the ma-
trix B9B, the transpose of B multiplied by B. Thus,
using max(lB9B) 2 1 gives a method to characterize the
‘‘worst-case’’ reactivity of a system that depends only
on the matrix B.

Summary of stability properties

We have defined three types of measures of stability
of a MAR(1) process. All three depend on the species
interactions given in the matrix B. The first type asks
how interactions among species determine the variance

of the stationary distribution relative to the environ-
mental variance. Interactions between species act as a
filter to amplify the environmental variability given by
the process error Et. When species interactions greatly
amplify the environmental variability, the variance of
the stationary distribution is much greater than the var-
iance of the process error, and the system can be said
to be less stable. We give two ways to quantify the
degree to which species interactions amplify environ-
mental variability. The amplification can be measured
by the eigenvalues of B, which quantify the amplifi-
cation in the directions given by the corresponding ei-
genvectors (Eqs. 22 and 23). The amplification can also
be summarized by the quantity det(B)2/p, which gives
a measure of the overall volume of the stationary dis-
tribution relative to the volume of the distribution of
process error (Eq. 24).

The second type of measure of stability addresses
the rate at which the transition distribution converges
to the stationary distribution from a known point. The
rate of convergence of the mean of the transition dis-
tribution is limited by the dominant eigenvalue of B,
max(lB) (Eq. 19). Therefore, max(lB) serves the same
role as the dominant eigenvalue of the community ma-
trix in the stability analysis of deterministic models.
The rate of convergence of the variance of the transition
distribution depends on the eigenvalues of B J B, the
maximum of which equals \max(lB)\2 (Eq. 21). Since
for a stationary process \max(lB)\ . \max(lB)\2, the
rate of convergence of the variance is more rapid than
the rate of convergence of the mean.

The third measure of stability addresses the short-
term dynamics occurring from one time point to the
next. Reactivity is a measure of the displacement of
the expected value of Xt from the mean of the stationary
distribution relative to the displacement of Xt21 at the
preceding time point. Reactivity can be quantified as
the expectation over the stationary distribution of this
change in displacement (Eq. 25). Alternatively, reac-
tivity can be quantified for the ‘‘worse-case’’ scenario,
which gives an expression for reactivity depending
only on the matrix of species interactions, B (Eq. 26).
The greater the variance of the individual species abun-
dances relative to the variance of the process error, the
higher the reactivity of the system, and hence the lower
the stability. Therefore, just like the first measure of
stability, greater variability of the stationary distribu-
tion relative to the environmental variability indicates
lower stability.

MODEL MODIFICATIONS

The MAR(1) processes discussed above can be mod-
ified to encompass a wide range of ecological situa-
tions. In addition to the state variables (variates) of the
system (log population abundances), we may also have
information about covariates, such as temperature, nu-
trient inputs, or other environmental factors that affect
the dynamics of the system. These covariates can be
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included in the MAR(1) model, thereby making it pos-
sible to account for long-term environmental trends and
to address questions concerning the response of the
system to known external disturbances. It is also pos-
sible to constrain the MAR(1) based on prior biological
information. For example, elements of the matrix B
(giving species interactions) may be set to zero if it is
known that species do not interact, or the sign of an
element could be set to positive or negative if the type
of interaction between species is known. As a further
modification, the MAR(1) model can be constructed to
incorporate observation error. Observation error refers
to any variability between the true values of variates
and covariates in the MAR(1) model and the values
that are observed. The most obvious source of obser-
vation error is measurement error, but more generally
observation error occurs whenever the true variates and
covariates that interact in the MAR(1) process are not
known precisely. For example, even if air temperature
were known without error, the temperature experienced
by terrestrial animals would vary with wind speed,
background substrate, topography, etc., making air
temperature an imprecise estimate of the animals’ true
thermal regime. Observation error is ubiquitous in eco-
logical systems and adds some complexities to fitting
MAR(1) models to data.

Covariates and constraints

The MAR(1) model in Eq. 10 can be modified to
include covariates:

X 5 A 1 BX 1 CU 1 Et t21 t t (27)

where Ut is a q 3 1 vector containing the values of q
covariates at time t, and C is a p 3 q matrix whose
elements cij give the strength of effect of covariate j
on species i. The covariates Ut can be any factors that
affect the system and may be transformed based upon
either biological information about how the factors af-
fect species’ per capita population growth rates or the
statistical properties of the MAR(1) model (see Model
selection and statistical inference). Furthermore, while
covariates may often be abiotic factors such as tem-
perature, biotic factors may also be used. For example,
in a study of interactions among phytoplankton and
zooplankton, fish predation on the zooplankton may
vary with the (known) number of fish in a lake. Because
the system of interest consists of the phytoplankton and
zooplankton, fish predation can be treated as a covariate
(e.g., Ives et al. 1999a); the model includes the effect
of fish predation on zooplankton, but does not consider
the reciprocal effect of zooplankton on fish.

The covariates Ut differ from the other sources of
environmental variability contained within the process
error, Et, not only by being measured, but also by their
statistical properties. The process error Et is assumed
to be temporally uncorrelated; E1, E2, . . . are all in-
dependent. In contrast, the covariates Ut need not be
temporally uncorrelated, and in fact generally will not

be. Thus, Ut can incorporate the effects of relatively
slow environmental changes. For example, for data sets
in which many samples are taken over the course of a
season, it is reasonable to include seasonality; this can
be done, for example, by including a sinusoidal func-
tion of day-of-year, or by including day-of-year and
(day-of-year)2 as covariates to model seasonal factors
as a quadratic function (Ives et al. 1999a). Known and
measured periodic environmental drivers can similarly
be included. In addition, Ut may include categorical
variables to fit the MAR(1) to data sets collected si-
multaneously at different locations. For example, sup-
pose the MAR(1) model is being fitted simultaneously
to the communities in two different lakes, and the re-
searcher wants to include the possibility of differences
in mean densities between lakes that are not explained
by differences in measured covariates. The appropriate
model would include a categorical variable Uj,t equaling
zero for one lake and one for the other. The regression
coefficients Cj calculated for Uj,t give the differences
between lakes in the constant terms of the autoregres-
sion equations for each variate. Specifically, the con-
stant terms for the first lake are A, while the constant
terms for the second lake are A 1 Cj.

With the addition of multiple covariates, the number
of parameters in the MAR(1) model can become large,
particularly when the number of species is large. There-
fore, it is often desirable to reduce the number of pa-
rameters in the model based upon biological infor-
mation about the system. For example, in a study of
phytoplankton and zooplankton, nutrient input should
have no direct effect on zooplankton, and therefore the
coefficients in C for the effects of nutrient input on
zooplankton can be set to zero. Similarly, the sign of
elements of B and C may be known a priori. Therefore,
when fitting the MAR(1) model these sign constraints
may be imposed by setting to zero any spurious pa-
rameter estimates that arise when fitting a parameter-
rich model, or by other techniques for constrained es-
timation. There are no set rules about how to structure
the MAR(1) model; ecological knowledge of the par-
ticular system under study is essential.

The measures of stability we developed (see section
Stability properties of MAR(1) models) apply only to
basic MAR(1) processes with no covariates (Eq. 10).
Nonetheless, there is no ambiguity in applying them
to the MAR(1) model with covariates (Eq. 27). Most
of the stability measures depend only on the matrix B,
so the estimates of this matrix from Eq. 27 can be used
directly. One measure of reactivity, Eq. 25, depends on
the covariance matrix of the stationary distribution, and
the stationary distribution in Eq. 27 depends on the
covariates. We can, however, estimate the stationary
distribution that would occur if the covariates were held
constant by using B and the covariance matrix of the
process error, S, estimated from the full model with
covariates, Eq. 27, thereby enabling the calculation of
reactivity. When any measure of stability is applied to
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a model with covariates, the measures assess the dy-
namics of the corresponding MAR(1) model in which
the effects of the covariates have been factored out.

Observation error

Observation error occurs whenever the true values
of the variates and covariates of the MAR(1) process
are not precisely known. Observation error can be for-
mally introduced into the MAR(1) model by separating
the true values of the variates and covariatesX* U*t t

from those which are observed, Xt and Ut:

X* 5 A 1 BX* 1 CU* 1 E*t t21 t t

U* 5 Q(U* , U* , . . . , j , j , . . .)t t21 t22 t t21

X 5 X* 1 Gt t t

U 5 U* 1 H (28)t t t

where is the true process error, and Gt and Ht areE*t
normal random variables with mean 0 and covariance
matrices SG and SH giving the observation error. This
model assumes that observation errors are normally
distributed (on a log scale) and are not temporally cor-
related. Also, if observation error for different vari-
ables taken at the same time are independent, then SG

and SH will be diagonal matrices. The effects of ob-
servation error in the covariates on parameter esti-
mation depend on the temporal autocorrelation struc-
ture of the covariates. Therefore, we assume the co-
variates are an autoregressive integrated movingU*t
average (ARIMA) process (Box et al. 1994) governed
by the linear function Q in which values of mayU*t
depend on values in previous samples and normal ran-
dom variables jt with mean 0 and covariance matrices
Sj. For generality, we leave the order of the ARIMA
process unspecified.U*t

The statistical complexity of the MAR(1) model with
observation error can be illustrated using the univariate
case with a single covariate. Writing Eq. 28 in terms
of the observed variables Xt and Ut,

X 5 a 1 bX 1 cU 1 (G 2 bG 2 cH 1 E*).t t21 t t t21 t t

(29)

This is no longer an AR(1) process, for two reasons.
First, the total error terms Et 5 (Gt 2 bGt21 2 cHt 1

) are not temporally independent, since Et and Et21E*t
both depend on Gt21. Thus, the total error term Et is a
moving average process (Box et al. 1994). Second, the
total error term depends on the parameters b and c. If,
for example, the value of b were positive, then the term
Gt 2 bGt21 would cause the total error to be a moving
average process with negative autocorrelation. This il-
lustration demonstrates that analysis of the MAR(1)
model with observation error must explicitly account
for the covariance structure of the error term that in-
cludes both observation and process error.

Observation error can be incorporated into data anal-
yses in several ways (Fuller 1987, Carpenter et al.
1994a, Hilborn and Mangel 1997). First, if independent
estimates of observation error (matrices SG and SH) are
available, these can be incorporated directly (although
care must be taken to estimate SG and SH under the
same transforms as the data). Second, if the variance
of the observation error is known relative to the var-
iance of the process error, then this ratio can be in-
corporated into the model. Third, the variance of the
observation error can be estimated from the data at the
same time as the parameters and process error are es-
timated. This uses information about the correlation
structure of the observed errors (Eq. 28) to estimate
the elements of SG and SH. We recommend against this
third approach, however, because time-series data from
ecological systems are often not extensive enough for
accurate estimates of observation variances. We feel it
is better to use even a rough independent estimate of
the observation variance (in either absolute terms or
relative to the process error) and then perform a sim-
ulation sensitivity analysis of the effect of observation
error on the conclusions.

Summary of model modifications

The basic MAR(1) model (Eq. 10) can be modified
to include covariates Ut for environmental factors other
than species abundances (Eq. 27). This makes it pos-
sible to estimate how the system responds to measured
external driving variables. It is also possible to struc-
ture the MAR(1) model to disallow interactions (set
parameters to zero) or constrain the sign of interactions.
Finally, observation error can be included (Eq. 28),
although this produces a process that is no longer
MAR(1) in the observed variates and therefore must
be analyzed accordingly. With these modifications,
however, the measures of stability that we derived in
the preceding section remain unchanged; stability, as
measured by the way in which interactions among spe-
cies determine the properties of the stochastic process,
still depends on the matrix B. Covariates and obser-
vation error will certainly affect the estimated model
of the observed process. Nonetheless, the measures of
stability can still be interpreted unambiguously in terms
of the stochastic properties of the true (unobserved)
system in the absence of variability in the external
drivers (covariates).

PARAMETER ESTIMATION

Parameters of the MAR(1) model can be estimated
using conditional least squares (CLS), maximum like-
lihood (ML), or a Bayesian framework (Schnute 1994).
The first two approaches are described for general eco-
logical time-series models by Dennis et al. (1995), and
here we present the specific procedures for the MAR(1)
model. In some situations the estimates from CLS and
ML are identical, and in most situations the estimates
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are close. Observation error requires a more compli-
cated treatment, which we present in brief.

Conditional least squares (CLS)

The CLS estimates of parameters in the MAR(1)
model are those values that minimize the squared dif-
ference between the observed population abundances
at time t and those predicted by the MAR(1) model,
conditional on the population abundances at time t 2
1. To make the calculations explicit, it is easiest to state
the MAR(1) model in full matrix form. For a data set
with T 1 1 data points, let X be the T 3 p matrix whose
column i contains all of the observed data for species
i, excluding the last observation at time T; X 5 [X0,
X1, . . . , XT21]9. Similarly, let Y be the T 3 p matrix
of observed data excluding the first observation; Y 5
[X1, X2, . . . , XT]9. Finally, let U 5 [U1, U2, . . . , UT]9
be the T 3 q matrix of observed covariates and E 5
[E1, E2, . . . , ET]9 be the T 3 p matrix of process error
terms. Then the MAR(1) model of Eq. 27 has the form

Y 5 1A9 1 XB9 1 UC9 1 E (30)

where 1 is the T 3 1 vectors of ones. The CLS estimates
of the parameters minimize, for each species i, the
squared difference between predicted and observed
population abundances one time step in advance, (Yi

2 Ŷi)9(Yi 2 Ŷi), where Ŷi 5 (âi 1 1 ), andˆ ˆXB9 UC9i i

Ŷi, âi, B̂i, and Ĉi are the ith rows of the corresponding
matrices of estimated parameters. Letting Z 5 [1, X,
U] be the T 3 (1 1 p 1 q) matrix with 1, X, and U
concatenated horizontally as columns, and D̂i 5 [âi, B̂i,
Ĉi] be the 1 3 (1 1 p 1 q) vector containing the
estimates of ai, Bi, and Ci, the CLS estimates are given
by the formula

21D̂9 5 (Z9Z) Z9Y .i i (31)

These estimates are exactly the least squares estimates
obtained using standard regression by treating Xt as a
dependent variable, and Xt21 and Ut as independent
variables. Note, however, that although the CLS esti-
mates are the same, inference about the estimates (e.g.,
confidence intervals) are not the same as those one
would obtain from standard regression, because the
data are time series (see Model selection and statistical
inference: Parameter confidence intervals).

The CLS estimators are asymptotically unbiased;
their expected values equal the true parameter values
as the sample size T gets infinitely large (Judge et al.
1985, Tong 1990). For small sample sizes, however,
there can be considerable bias in CLS estimators, and
this bias depends on the initial value X0 of the time
series and the system itself, with systems having slow
convergence to the stationary distribution typically
leading to greater bias (Fuller 1996). Unfortunately,
there is no easy way to estimate this bias or to deter-
mine what are ‘‘small’’ sample sizes. Nonetheless, the
presence of bias and a rough indication of its sign and
magnitude can be obtained from bootstrapping (see

Model selection and statistical inference: Parameter
confidence intervals).

Maximum likelihood

For any set of parameter values, it is possible to
calculate the likelihood of the observed data under a
specific MAR(1) model. The maximum likelihood pa-
rameter estimates are those parameter values that pro-
duce the greatest likelihood of the observed data (e.g.,
Hilborn and Mangel 1997). Under the assumptions that
the process error terms Et have a multivariate normal
distribution with mean vector 0 and covariance matrix
S, and are temporally independent, the ML estimates
are those values which minimize the negative log-like-
lihood function given by

pT T 1
L 5 ln 2p 1 lnzSz 1 [Y 2 (A9 1 XB9 1 UC9)]

2 2 2

213 S [Y 2 (A9 1 XB9 1 UC9)]9. (32)

Note that, unlike CLS estimation, the elements of S
are treated as parameters and are estimated simulta-
neously with the other parameters. If there are no a
priori constraints placed on the parameters (e.g., all
elements of B are estimated), then by matrix differ-
entiation of L it can be shown that the ML estimates
are identical to the CLS estimates. However, when there
are constraints, the ML and CLS estimates differ, al-
though in our experience the differences are small. Like
CLS estimators, ML estimators also may be consid-
erably biased for small sample sizes.

Obtaining the ML estimates requires minimizing L,
which has up to p( p 1 q 1 1) parameters in A, B, and
C, and an additional p( p 1 1)/2 parameters in S. The
Nelder-Mead simplex algorithm is convenient for min-
imization (Press et al. 1992), and many mathematical
and statistical software packages include Nelder-Mead
simplex routines (e.g., Matlab, Mathworks 1996). Al-
though the computations are relatively straightforward,
for systems with many species the computational time
is much greater than that required to calculate the CLS
estimates. Thus, for computationally intensive analy-
ses, CLS estimates have advantages over ML estimates,
particularly since in practice the estimates seem to be
very close in general.

Observation error

Observation error introduces the two problems that
the total error is temporally correlated and depends on
the parameters of the MAR(1) process (see Model mod-
ifications: Observation error). Observation error there-
fore requires explicit attention to the covariance struc-
ture of the total error between successive samples.

What are the consequences of not taking observation
error into account when in fact it occurs? Consider the
simple case of the univariate AR(1) model without co-
variates (Eq. 5):
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FIG. 4. Estimates of parameters b and c in an autore-
gressive model with observation error (Eq. 35) from (A, C)
100 simulated data sets using CLS estimation ignoring ob-
servation error, (B, E) a state–space model assuming obser-
vation error only in the variate, and (C, F) a state–space model
assuming observation error in both variate and covariate. The
true values are b 5 c 5 0.5, and for the simulation the au-
toregression coefficient for the covariate was f 5 0.8. Num-
bers in each panel give the mean of the estimates of the
simulated data sets.

X* 5 a 1 bX* 1 E* X 5 X* 1 G . (33)t t21 t t t t

For large sample sizes, the expectation of the CLS esti-
mate of b computed from the observed variate Xt is

s s bsyx y*x* x*x*ˆE[b] 5 5 5 (34)
s s 1 s s 1 sxx x*x* gg x*x* gg

where syx is the covariance between the observed ran-
dom variables Xt and Xt21, sy*x* is the covariance be-
tween the and , and sxx, sx*x*, and sgg are theX* X*t t21

variances of Xt21, , and Gt (cf., Fuller 1987:3). Thus,X*t21

the CLS estimate of b is biased towards zero, as also
occurs in simple linear regression (Fuller 1987). Since
b 5 1 gives the case of no density dependence (i.e.,
the population dynamics exhibit random-walk behav-
ior), Eq. 34 implies that in the univariate case obser-
vation error falsely increases estimates of the strength
of density dependence (Shenk et al. 1998). For the
multivariate case with covariates, the situation is more
complex, and observation error could either increase
or decrease the naive CLS estimate of density depen-
dence.

We will illustrate an observation-error model for a
univariate AR(1) process with observation error in both
the variate and a single covariate. The effects of ob-
servation error in covariates on the estimates of co-
efficients for both variates and covariates depend on
the temporal autocorrelation of the covariates. There-
fore, it is necessary to analyze the covariates to deter-
mine their temporal structure; this can be done with
standard model identification procedures (e.g., Box et
al. 1994:181–223). For our example, we assume we
know that the covariate follows an AR(1) process. An
AR(1) model with observation error in which a single
covariate follows an AR(1) process is given by

X* 5 a 1 bX* 1 cU* 1 «t t21 t21 t

U* 5 d 1 fU* 1 jt t21 t

X 5 X* 1 gt t t

U 5 U* 1 h (35)t t t

where and are unobserved, and Xt and Ut areX* U*t t

observed values of variate and covariate, respectively;
«t and jt are process errors for the variate and covariate;
gt and ht are observation errors for variate and covar-
iate; and a, b, c, d, and f are regression coefficients. In
addition to these coefficients, the parameters of the
model include the variances of «t, jt, gt, and ht, denoted

, , , and , respectively. Note that Eq. 35 gives2 2 2 2s s s s« j g h

a bivariate AR(1) process in which the covariate isU*t
treated as a variate.

Eq. 35 is in state-space form, and therefore for a
given data set the likelihood function can be computed
using a set of recursion equations known as the Kalman
filter (Harvey 1989). The Kalman filter is a numerical
procedure in which successive estimates of the unob-
served values in a time series are calculated se-X*t

quentially by first predicting from andX* X* U*t t21 t21

using the autoregressive model (Eq. 35), and then up-
dating these estimates using the observed value Xt. This
procedure also computes the likelihood function and
therefore can be used in ML parameter estimation with
numerical minimization. Because the methods are
straightforward and presented excellently by Harvey
(1989), we present only the results of a sample analysis
of Eq. 35.

We generated 100 data sets from Eq. 35 for the case
of a strongly autocorrelated covariate ( f 5 0.8). We
then fit each data set using (1) CLS which ignores
observation error in both Xt and Ut, (2) a state–space
model in which observation error in Ut was ignored
(i.e., setting 5 0 and treating Eq. 35 as a univariate2sh

AR(1) with covariates), and (3) the state-space model
with observation error in both Xt and Ut given by Eq.
35. To fit the data, we assumed that the observation
error variances, and , were known, but then fit all2 2s sg h

other model parameters. Also, for the state–space mod-
els we assumed that the means and variances of the
first observations of each data set equal the estimated
means and variances of the stationary distribution.

Fig. 4 plots the 100 estimates of parameters b and c
using each of the three methods. Ignoring observation
error in both Xt and Ut (Fig. 4A, D) leads to underes-
timates of both parameters, while ignoring observation
error in Ut but not Xt (Fig. 4B, E) overestimates b and
underestimates c. These biases depend on the autocor-
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relation of the covariate Ut ; when this autocorrelation
is zero ( f 5 0), the estimate of b is unbiased, although
the estimate of c remains biased downwards (analyses
not shown). Accounting for observation error in both
variate and covariate, not surprisingly, gave less biased
estimates (Fig. 4C, F), although the estimators are
slightly more variable. Nonetheless, the ML estimates
obtained from Eq. 35 are only asymptotically unbiased,
and when applied to small samples (with ‘‘small’’ de-
pending on the structure of the underlying process) the
ML estimates can be noticeably biased (Fuller 1987:
164–173).

Summary of parameter estimation

Conditional least squares (CLS) estimation provides
a computationally simple and fast way to fit a MAR(1)
model to data (Eq. 31). The parameter estimates are
those that would be obtained if standard regression
were applied in which Xt were treated as dependent
variables, and Xt21 and Ut were treated as independent
variables. Maximum likelihood (ML) estimates (Eq.
32) are identical to CLS estimates for unstructured
MAR(1) models (i.e., no constraints are placed on the
parameters). Even when there are constraints, in our
experience there is little difference between the CLS
and ML estimates.

When there is observation error, estimates obtained
from either CLS or ML will be biased. Therefore, ac-
counting for observation error is important when de-
termining the stability of a system, because bias in
parameter estimates will also bias estimates of stability.
For example, for simple univariate AR(1) processes,
observation error biases the estimate of b towards zero
(Eq. 34), thereby making the process appear more sta-
ble than it really is by any of the three measures of
stability we propose. Estimation with observation error
can be performed by modeling the process in state-
space form and applying a Kalman filter to compute
the likelihood function (e.g., Eq. 35). When there is
observation error in the covariates, parameter estimates
depend on the temporal autocorrelation structure of the
covariates.

MODEL SELECTION AND STATISTICAL INFERENCE

The preceding section has provided tools to estimate
the parameters of a MAR(1) model, but how should
the appropriate MAR(1) model be selected in the first
place? Model selection has two components: specifying
a particular MAR(1) and then performing diagnostics
to determine whether the MAR(1) model adequately
describes the data. Once a satisfactory model is iden-
tified, it can be used for statistical inference to obtain,
for example, the confidence intervals for the model
parameters. It is also possible to obtain confidence in-
tervals for other estimable quantities, in particular the
measures of stability we derived in the section Stability
properties of MAR(1) models.

Model selection

The general form of the model, such as what variates
and covariates to use, is dictated by the data in hand,
the questions being addressed, and prior biological
knowledge of the system. We can provide only the
obvious rules of thumb that a useful statistical model
is more likely if data sets are long, observation error
is low, and the numbers of variates and covariates are
small. Here, we deal with model selection once these
broad decisions have been made. In particular, given a
set of variates and covariates, what parameters of the
MAR(1) model can be set to zero on statistical grounds,
because their non-zero estimates do not improve the fit
between the model and data?

Two criteria are commonly used in model selection,
Akaike’s Information Criterion (AIC) and the Bayesian
Information Criterion (BIC):

AIC 5 2L /T 1 2Q /Tmin

BIC 5 2L /T 1 Q log(T )/T (36)min

where Lmin is the value of the negative log-likelihood
function calculated at the ML estimates, and Q is the
total number of estimated parameters. The criteria are
applied by selecting that model with the lowest AIC
or BIC score. Both AIC and BIC incorporate a ‘‘penalty
factor’’ for the number of parameters in a model
(2Q/T and Q log(T)/T, respectively), thereby favoring
a model that includes only those parameters which pro-
vide a minimum amount of additional information
about the system (Box et al. 1994, Dennis et al. 1998).
For BIC, the penalty factor is larger, so the BIC selects
models with fewer parameters than the AIC.

The number of possible MAR(1) models from which
to select can be large. There are various strategies for
searching for the AIC or BIC selected model; we de-
scribe one strategy when we analyze our limnological
example (see Analysis of limnological data: model se-
lection). Any strategy will necessarily involve esti-
mating parameters for many models, and obtaining ML
estimates is prohibitively intensive computationally.
Therefore, in searching for a lowest-AIC or lowest-
BIC model, we suggest using the CLS parameter es-
timates rather than the ML estimates in calculating Lmin.
The similarity between the CLS and ML estimates
makes this a pragmatic approach. Computing ML es-
timates with observation error (e.g., Eq. 35) is much
more intensive than ML estimation without observation
error, so we restrict attention to model selection under
the assumption of no observation error. Once a model
is selected, the consequences of observation error for
the parameter estimates can be determined.

Diagnostics

Once a MAR(1) model is selected, it should be ex-
amined to determine whether it gives a reasonable de-
scription of the data set. The diagnostics are based on
the assumptions underlying the MAR(1), focusing on
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the residuals between the observed log densities at t,
Xt, and those predicted from the MAR(1) model and
the log densities Xt21 and covariates Ut. Useful diag-
nostics are (Box et al. 1994, Fuller 1996):

1) Whether the residuals for each species are tem-
porally autocorrelated, which can be determined using
autocorrelation functions (ACF) and partial autocor-
relation functions (PACF).

2) Whether the mean and/or variance of the residuals
are correlated with any of the variates or covariates of
the model, which is most easily determined by graphing
the residuals or partial residuals (Neter et al. 1989:392)
against the variates and covariates.

3) Whether the interactions among species or be-
tween species and covariates are nonlinear, which can
be determined again by graphing the residuals against
the variates and covariates and looking for curved re-
lationships.

4) Whether the residuals are normally distributed,
which can be determined from normal probability plots.
In fact, the residuals need not be normally distributed
to have a well-defined MAR(1) process, and CLS es-
timation does not assume that the error terms Et are
normal (Judge et al. 1985). Nonetheless, ML estimation
and consequently AIC and BIC model selection do as-
sume normality.

5) Whether the model explains much of the variance
of the data. In ordinary (non-time-series) regression, it
is usual to report the proportion of the total variance
of the dependent variables explained by the model. In
time-series analysis, values of Xt21 are used to predict
Xt. Therefore, it is most informative to ask what pro-
portion of the change in log density from time t 2 1
to time t is explained by the MAR(1) model (e.g., Ives
et al. 1999a). This can be measured with the conditional
R2, which is the typical R2 applied to the change in log
densities. Often, a fitted model will explain more of
the total variance in log density than the variance in
the change in log density between consecutive samples,
so the total R2 will generally be greater than the con-
ditional R2.

These diagnostics are simply guides to determine
whether the model fit is adequate and to suggest pos-
sible measures to take to produce a better model, such
as transforming covariates. If the diagnostics show that
the model fails, there are numerous tactics that can be
tried to correct the model (Box et al. 1994).

Parameter confidence intervals

Once a well-fitting MAR(1) model has been found,
the confidence intervals for its parameters can be cal-
culated, thereby giving a statistical assessment of the
values of coefficients contained in the model. Calcu-
lating confidence intervals must account for the co-
variance structure of time-series data. For example,
even though the CLS parameter estimates are the same
as those obtained from standard regression by treating
Xt as a dependent variable and Xt21 as an independent

variable, the variance of the CLS estimator for a time
series is not the same as the variance of the corre-
sponding standard regression estimator, and therefore
the confidence intervals for the parameter estimates
will be different (Dennis and Taper 1994).

To give a simple example of the consequences of
the covariance structure of time-series data, consider
the problem of calculating the mean of the stationary
distribution, m` 5 a/(1 2 b), of a univariate AR(1)
process given by Eq. 5. The sample mean ` 5 X̄ 5m̂
(1/T ) Xt is an unbiased estimator of m`, while itsTSt51

variance is

T1
V[m̂ ] 5 V XO` t[ ]T t51

1
5 V[(a 1 bX 1 E )0 12T

1 (a 1 b(a 1 bX 1 E ) 1 E ) 1 · · ·]0 1 2

T T211 1 2 b 1 2 b
5 V E 1 E 1 · · · 1 E1 2 T2 [ ]T 1 2 b 1 2 b

2 T11 2(T11)s 1 1 2 b 1 2 b
5 T 2 2 1

2 2 21 2T (1 2 b) 1 2 b 1 2 b

2s 1
ø . (37)

2T (1 2 b)

The factor s2/T is the variance of the estimator of the
mean that would apply if the data were not temporally
correlated, while 1/(1 2 b)2 arises from the temporal
autocorrelation of Xt. Obviously, when b is close to 1,
the variance of the estimator of the mean becomes
large. This is not surprising, because it will be difficult
to estimate the mean of an AR(1) process that is close
to a random walk, or in ecological terms, a population
that experiences weak density dependence.

There are two approaches to obtain confidence in-
tervals for parameters of MAR(1) models. The first
uses bootstrapping (Efron and Tibshirani 1993, Dennis
et al. 2001). This approach begins by obtaining param-
eter estimates; ML estimates can be used, although the
computational speed of CLS estimation makes CLS
more practical. Parameter estimation produces a T 3
p matrix of residuals e, with each of the p columns
corresponding to one of the p species in the system.
Under the assumption of the MAR(1) model, the ele-
ments in each column should be uncorrelated and iden-
tically distributed. Therefore, they can be randomly
sampled (with replacement) to create a new set of re-
siduals, erand. To maintain the covariance structure of
errors for different species, the residuals e should be
sampled as rows which contain the p residuals from
the same time point (one for each species). Thus, erand

is a T 3 p matrix whose rows are randomly sampled
rows of the matrix e. A bootstrapped data set is created
by selecting an initial point, x0, calculating the pre-
dicted value for x1 using the MAR(1) model with
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Xt21 5 x0 and Ut 5 u1, adding the first element of erand,
and continuing in this manner for the remaining T 2
1 points. The initial value x0 can be chosen as either
the first observation in the real data set, or the predicted
mean of the stationary distribution conditional on the
observed values of the covariates u0; for long data sets,
this choice makes little difference, while for short data
sets we prefer the former approach if the real data set
has relatively unstable dynamics (e.g., max(lB) . 0.5)
and x0 is therefore likely to be far from the mean. The
parameters are then estimated for the bootstrapped data
set. Repeating this procedure with a new set of residuals
erand for, say, 2000 bootstrapped data sets will produce
2000 bootstrapped estimates for each parameter. The
1 2 a confidence intervals are the intervals given by
a/2 and (1 2 a/2) quantiles of the bootstrapped esti-
mates. Joint confidence intervals can similarly be cal-
culated from the joint distribution of bootstrapped pa-
rameter values. Finally, the bootstrapped data sets can
be used to indicate whether the parameter estimators
are biased (see Parameter estimation). Bias is indicated
if the average parameter values from the bootstrapped
data sets differ sizably and consistently from the es-
timates obtained from the data set from which the boot-
strapped data sets are constructed. Methods for com-
pensating for bias using bootstrapping are reviewed in
Efron and Tibshirani (1993). Any approach, however,
would have to be explored and justified for MAR(1)
models using numerical simulation studies.

The rationale behind the bootstrapping approach is
that, under the assumption that the fitted MAR(1) mod-
el is correct, the residuals form a consistent estimate
of the process error distribution (Efron and Tibshirani
1993). Therefore, the confidence intervals represent the
probability bounds for obtaining parameter estimates
under the fitted MAR(1) process. Often one wants to
know if a parameter differs from zero. In practice, if
the confidence limits do not include zero, the parameter
differs from zero. Departure from zero can be tested
directly by structurally setting the parameter to zero,
refitting the model, and using the refitted, reduced mod-
el to create bootstrapped data sets. The full and reduced
model are fitted to each bootstrapped data set, and the
likelihood ratio test statistic is calculated. The resulting
bootstrapped test statistic values form a consistent es-
timator of the distribution of the test statistic under the
null hypothesis that the parameter in question is zero.
The likelihood ratio statistic for the actual data is com-
pared to the desired percentile of the estimated null
hypothesis distribution to conduct the hypothesis test
(Dennis and Taper 1994). Note that this will test wheth-
er a parameter differs significantly from zero under the
assumption that the values of all of the other parameters
are those estimated from the MAR(1) model with the
parameter in question set to zero. In other words, this
test is conditional on the estimated values of other pa-
rameters.

A second approach to obtaining confidence intervals,
called profile likelihood, takes advantage of the as-
ymptotic chi-square distribution of a likelihood ratio
test statistic. One constructs a likelihood ratio test of
the null hypothesis that a parameter is equal to a known
constant versus the alternative hypothesis that the pa-
rameter is not equal to that constant. The hypothesis
test is inverted into a confidence interval; the set of all
values of the constant for which the null hypothesis
would not be rejected at level a is an approximate 100(1
2 a)% confidence interval for the parameter. The tech-
nique requires that the null hypothesis model has a
stationary distribution; otherwise, the likelihood ratio
statistic does not have an approximate chi-square dis-
tribution. Dennis et al. (1995) demonstrate the profile
likelihood technique for multivariate time-series pop-
ulation models. The technique can be adapted for CLS
estimation using various chi-square statistics that arise
under this type of estimation (Knight 2000).

Both of these approaches for obtaining confidence
intervals assume that there is no observation error.
When there is observation error in the covariates, para-
metric bootstrapping can be used. Parametric boot-
strapping involves producing the bootstrap data sets by
simulating the fitted model, rather than by resampling
residuals. The data sets are created under the obser-
vation error MAR(1) model (Eq. 28), and the model is
then refitted to each of the bootstrapped data sets. For
large data sets with several variates, however, this is
computationally prohibitive. Asymptotic confidence
intervals for the observation error MAR(1) model can
also be obtained from the log-likelihood function (cf.,
Judge et al. 1985), although this suffers from the re-
quirement of large sample sizes.

Finally, we note that these procedures all assume that
the model is known to be correct. In fact, the correct
model is not known, and therefore the parameter con-
fidence intervals are conditional on the model selected.
As suggested by Zeng et al. (1998), it is conceivable
to bootstrap over the collection of all possible models
by creating bootstrapped data sets from the model in-
cluding all admissible parameters, selecting the best-
fitting model using AIC or BIC, and then estimating
coefficients. However, the numerical intensity of this
procedure makes it impractical with present-day com-
puting power.

Confidence intervals for other quantities

Bootstrapping can be used not only to obtain con-
fidence intervals for the parameter estimates, but also
for any function of the parameters. Natural candidates
of interest are the measures of stability in the section
Stability properties of MAR(1) models. The procedure
is the same as that outlined for bootstrapping parameter
estimates; construct bootstrapped data sets using the
best-fitting model, estimate the quantity in question
from the bootstrapped data sets, and determine the con-
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fidence intervals from the resulting distribution of boot-
strap estimates.

Summary of model selection

Once the general form of a MAR(1) model is chosen
(i.e., what variates and covariates to include), the best-
fitting MAR(1) model can be selected based on a num-
ber of criteria; we suggest Akaike’s Information Cri-
terion (AIC) and the Bayesian Information Criterion
(BIC). Model selection involves deciding which pa-
rameters to estimate and which to set to zero. Once the
best-fitted model is selected, diagnostics should be per-
formed to determine whether the fitted MAR(1) model
adequately describes the data. Confidence intervals for
the parameter estimates can be obtained either by boot-
strapping or by profile likelihood. Finally, bootstrap-
ping can also be used to obtain confidence intervals
for any function of the parameters. This makes it pos-
sible to compare statistically the estimates of stability
obtained from different ecological systems.

LIMNOLOGICAL EXAMPLE

To illustrate our measures of stability and the sta-
tistical methods for fitting a MAR(1) model, we use a
data set of phytoplankton and zooplankton in three
lakes. After describing the objectives of the experiment
and the data set, we proceed by analyzing the data:
selecting a MAR(1) model, obtaining parameter esti-
mates, and estimating the stability of the different lake
communities. We use this example to ask two questions
about our approach. Do MAR(1) models yield param-
eter estimates that are sensible ecologically? And do
the measures of stability inform us about differences
in dynamics among lakes?

Objectives of the experiment

The roles of nutrients and predation in ecosystem
dynamics are of great interest in both aquatic and ter-
restrial ecology (Pace et al. 1999, Persson 1999, Polis
1999). To examine the joint effects of nutrients and
predation in lakes, Carpenter et al. (2001) added nu-
trients to two lakes with contrasting food webs, while
a third unmanipulated reference lake was monitored.
They found that nutrient enrichment caused a large
increase in biomass of phytoplankton in Peter Lake, a
system dominated by planktivorous fishes that selec-
tively removed large-bodied Daphnia. In contrast, West
Long Lake was dominated by piscivorous bass that
reduced planktivorous fish and thereby increased
Daphnia abundance. Heavy grazing by large Daphnia
suppressed the response of phytoplankton to the nu-
trient enrichment in West Long Lake.

Description of the experiment and data set

The experiment is described in detail by Carpenter
et al. (2001) and will be summarized briefly here. The
food web of the reference lake, Paul Lake, was dom-
inated by piscivorous largemouth bass throughout the

experiment. West Long Lake’s food web was domi-
nated by piscivores (largemouth and smallmouth bass)
and benthivorous yellow perch. Peter Lake was ma-
nipulated by removing bass in 1991 to reconfigure the
food web to dominance by planktivorous minnow spe-
cies. Beginning in 1993, Peter and West Long Lakes
were enriched with nitrogen and phosphorus at a ratio
chosen to be near the pre-manipulation ratio and main-
tain limitation by phosphorus. In this paper, we present
data from two pre-enrichment years (1991 and 1992)
and four years in which nutrients were added (1993–
1996). We will refer to Paul, West Long, and Peter
Lakes as the reference, the low planktivory, and the
high planktivory lakes, respectively.

All three lakes were monitored weekly during the
period of summer stratification (approximately mid
May to early September each year). The samples started
in midsummer in 1991, leading to nine samples in that
year, while subsequent years yielded 17, 17, 17, 16,
and 15 samples. The vast majority of summer samples
were taken at 7-d intervals; of the total of 254 intervals
between samples during the summer months, 242
(95%) were 7 d, whereas 3, 8, and 1 were 5, 6, and 8
d, respectively. Although the samples were not all taken
at the same interval, because the vast majority were 7
d apart, we did not account for variation in time be-
tween samples in the analyses. Nutrient additions were
measured directly. Here, we used additions of the most
limiting nutrient (phosphorus) as a covariate. Natural
inputs of phosphorus are small relative to the experi-
mental inputs (Carpenter et al. 2001). We used potential
planktivory on zooplankton as a second covariate. Po-
tential planktivory was calculated as the biomass of
fishes that could potentially consume zooplankton,
based on species and body size. Only two fish samples
were taken per year, at the beginning and end of sum-
mer stratification. We log-linearly interpolated between
these points to obtain estimates of potential planktivory
at the times of plankton samples.

We represented the planktonic food web by four
functional groups. Phytoplankton biomass (as mg chlo-
rophyll/m2, integrated over the photic zone) was par-
titioned into small-particle (passing a 35-mm screen)
and large-particle (retained by 35-mm screen) fractions.
The small phytoplankton are readily consumed by all
zooplankton grazers, while the large phytoplankton are
generally susceptible only to Daphnia. Zooplankton
biomass (as mg dry mass/m2, integrated over the entire
water column) was partitioned into Daphnia and non-
Daphnia biomass, reflecting the important role of
Daphnia as a grazer in these lakes. Methods for field
sampling and laboratory analyzes are reported by Car-
penter et al. (2001).

MAR(1) model selection

We fit the data from all lakes to the MAR(1) model
of the form
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X 5 A 1 DA 1 DA 1 (B 1 DB 1 DB )Xt H L H L t21

1 CU 1 E . (38)t t

Matrix B contains coefficients for the interactions be-
tween variates (small phytoplankton, large phytoplank-
ton, Daphnia, and non-Daphnia), matrix C gives the
effects of environmental covariates (nutrient input and
planktivorous fish biomass) on each species-group, and
A is a vector of constants. Matrices denoted DBH and
DBL represent differences between the B matrix for the
reference lake and the B matrices for the high and low
planktivory lakes, respectively; matrices DAH and DAL

are defined similarly. To estimate the elements of ma-
trices DB, we used the T 3 4 indicator matrices FH

and FL whose elements for each sample equal one for
the high and low planktivory lakes, respectively, and
zero for the other two lakes. Thus, the model included
variables FH and FL to obtain DAH and DAL, and
FH·Xt21 and FL·Xt21 to obtain DBH and DBL, where ·
denotes the element-by-element product of the matrices
(i.e., if P 5 M·N, then the i–jth element of P is mijnij).

Because data were only collected during the summer
months, leading to a long unsampled interval between
years, in the CLS and ML analyses we did not include
transitions from the last sample in the fall and the first
sample in the spring. The ways in which we treated
between-year intervals for bootstrapping parameter
confidence intervals and fitting observation-error mod-
els are discussed below (see Parameter estimation and
diagnostics).

Analyzing the data simultaneously for all lakes has two
advantages over fitting each lake separately. First, dif-
ferences in the B matrices among lakes are captured ex-
plicitly in the matrices DBH and DBL. Therefore, model
fitting and statistical inference to identify differences
among lakes involve determining whether the elements
of DBH and DBL are non-zero. Second, the parameters of
the model are estimated using data from all three lakes,
thereby providing greater precision in estimation.

Rather than consider all possible models, we con-
strained the model on biological grounds. Specifically,
we assumed that the planktivory manipulations had no
direct effect on phytoplankton groups, and the nutrient
addition had no direct effect on zooplankton groups.
Further, we assumed that the Daphnia and non-Daph-
nia zooplankton groups did not have a direct effect on
each other, but only interacted through their shared
consumption of phytoplankton. Finally, we restricted
some signs of interactions, excluding negative effects
of phytoplankton on zooplankton and positive effects
of phytoplankton on each other. To implement these
sign restrictions, if the signs of interactions obtained
in a fitted violated the restrictions, we forced the cor-
responding coefficient to be zero.

We selected the best model structure based on the
AIC criterion in which parameters were estimated using
CLS. To find the model with the lowest AIC, we ran-

domly selected a model by including or excluding co-
efficients with equal probability. For each random ini-
tial model, we either added a coefficient that was ini-
tially excluded or subtracted a coefficient that was ini-
tially included. If the AIC of the resulting model
decreased, we proceeded with the resulting model.
Each coefficient in turn was tested, and then the pro-
cedure was looped so that coefficients were iteratively
tested in sequence. This procedure continued until no
improvements were made in the fit of the model. We
repeated this procedure starting with 500 randomly
constructed initial models. This procedure identified a
best-fitting model and an additional four models with
AIC values within 3 of the best-fitting model. Although
the close values of AIC do not strongly support se-
lecting the best-fitting model over the near alternatives,
all models were similar, differing in only the presence/
absence of single coefficients. Furthermore, the stabil-
ity measures differed little among models; values of
det(B)2/p differed among all five models by 1.0%, 1.0%,
and 3.0% for reference, high, and low planktivory
lakes, respectively.

Parameter estimation and diagnostics

Fig. 5 shows the data from all three lakes, and Table
1 gives the CLS parameter estimates with 95% confi-
dence intervals for the AIC best-fitting model. To ob-
tain confidence intervals, we created bootstrapped data
sets by starting variates at their observed values for
each year of the data set, thereby making no assump-
tions about how densities at the end of one year affect
densities at the beginning of the following year. Normal
probability plots of the residuals (Fig. 6) demonstrate
near normality, with the exception of a few points at
the upper and lower tails of the distribution. The overall
levels of planktivory (fish biomass) were very different
among lakes, and using log-transformed planktivory
reduced this difference. Therefore, we also performed
the analyses using untransformed fish biomass, but the
results were quantitatively very close to those obtained
using log-transformed fish biomass, so we only report
the results using log-transformed fish biomass. The
PACFs of the residuals showed little evidence of au-
tocorrelation (Fig. 7), although there was a high pos-
itive lag-4 partial autocorrelation of residuals of large
phytoplankton; we have no biological explanation for
this and believe it is not biologically significant.

The residuals obtained from CLS estimation were
nearly normal. Therefore, it is not surprising that the
ML estimates of model parameters are close to those
obtained by CLS (Table 2). We calculated ML estimates
only for the best-fitting model obtained using CLS due
to the computational intensity of finding the best-fitting
model using ML estimation. Thus, we assumed that
ML and CLS estimates are similar enough to give the
same best-fitting model.

We also estimated parameters with the observation-
error model of Eq. 28 (Table 2), using independent
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FIG. 5. Data from the limnological example. The top four panels for each lake give the log biomasses of the variates:
large phytoplankton, small phytoplankton, Daphnia, and non-Daphnia. The total number of sample points for each lake is
91. Data are plotted as consecutive samples, with the lines broken between years. The lower two panels for each lake give
the rate of nutrient (phosphorus) addition in the experimentally manipulated lakes and the log-biomass of planktivorous fish.
The planktivorous fish biomasses were estimated only at the beginning and end of the summer stratification, so we interpolated
the data for the analyses.

estimates of the variances of observation errors in var-
iates and covariates, and , respectively. For the2 2s sg h

two phytoplankton and two zooplankton variates, we
set to 0.04 and 0.16, respectively. These correspond2sg

to standard deviations of 0.2 and 0.4, which are roughly
twice the standard deviations estimated by Carpenter
et al. (1994a) for phytoplankton and zooplankton; for
the present analysis we doubled the previous estimates
to magnify the potential effects of observation error.
Thus, on a log scale the observed values of the phy-
toplankton and zooplankton densities have a roughly
95% chance of lying within 60.4 and 60.8 units. The
planktivory covariate was given an observation vari-
ance of 0.36, corresponding to a standard deviation of
0.6; this corresponds roughly to the typical observation
error for planktivorous fish obtained using sampling
methods similar to those used for our data (He 1990).
Incorporating observation error in a covariate requires
specifying its autocorrelation structure and treating it
as a variate of a state-space model (e.g., Eq. 35). Be-

cause planktivory was interpolated from two points
each summer, it cannot easily be incorporated into a
state–space model. Nonetheless, we treated interpolat-
ed planktivory data as an AR(1) process. The first-order
autocorrelation of planktivory, estimated simulta-
neously with the other model parameters, was high
(0.97); although this is an artifact of the interpolation,
the true autocorrelation in planktivory will also be high,
since abundances of planktivorous fish will change
slowly over a summer relative to changes in zooplank-
ton and phytoplankton abundances. Because nutrient
loading was experimentally manipulated, we assumed
it had no observation error.

For fitting the observation–error model (Eq. 28), we
factored out changes in variates between the end of
summer in one year and the beginning of summer in
the next year by restarting the Kalman filter procedure
each year. The initial values of the variates each year
were set equal to the observed values in the initial
samples, and the initial estimates of the variance of the
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TABLE 1. Parameter estimates and bootstrapped 95% confidence intervals for the AIC best-fitting autoregressive model,
Eq. 27, fit to the limnological data using CLS estimation.

A) Fit of the model

Variate Total R2 Conditional R2

Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.31
0.74
0.91
0.44

0.27
0.34
0.17
0.25

B) Parameter estimates for interactions between variates

Parameter
Large

phytoplankton
Small

phytoplankton Daphnia Non-Daphnia

BR (reference lake)
Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.50 [0.36, 0.58]
0.61 [0.47, 0.68]

0.10 [0.014, 0.20]

20.019 [20.032, 20.004]
0.76 [0.64, 0.82]
0

0
0.56 [0.43, 0.63]

BH (high planktivory lake)
Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.50 [0.36, 0.58]
20.077 [20.19, 0.04] 0.61 [0.47, 0.68]

0.33 [0.15, 0.56]
0.10 [0.014, 0.20]

20.019 [20.032, 20.004]
0.95 [0.91, 0.97]
0

0
0.56 [0.43, 0.63]

BL (low planktivory lake)
Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.50 [0.36, 0.58] 20.36 [20.68, 20.05]
0.072 [20.13, 0.21]

0.10 [0.01, 0.20]

20.019 [20.032, 20.004]
0.76 [0.64, 0.82]
0

20.10 [20.27, 20.04]
0
0.56 [0.43, 0.63]

C) Parameter estimates for the effects of covariates on variates, C

Parameter Nutrient addition Planktivory

Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.19 [0.08, 0.33]
0.31 [0.25, 0.40]
0
0

0
0

20.14 [20.26, 20.03]
20.047 [20.12, 0.02]

Note: Units are: zooplankton, log(mg dry mass/m2); phytoplankton, log(mg chlorophyll/m2), nutrient addition, mg P·m22·d21;
planktivory, log(g).

FIG. 6. Normal probability plots of the residuals for the
four variates from the AIC best-fitting model using CLS pa-
rameter estimates.

process error each year were set to the global estimated
value (Harvey 1989).

The coefficient estimates in the observation-error
model are similar to the CLS estimates. The largest
differences occurred for the intraspecific effect of small
phytoplankton on itself in the low planktivory lake
(0.072 for CLS; 0.25 with observation error) and for
the effect of Daphnia on small phytoplankton (20.02
for CLS; 20.17 with observation error). Other param-
eter estimates increased or decreased, demonstrating
that observation error can have different effects on dif-
ferent coefficients in the MAR(1) model.

The parameter estimates from the MAR(1) models
make ecological sense. Daphnia had a negative effect
on small phytoplankton, as expected from this effective
grazer (Vanni 1986, Carpenter and Kitchell 1993). The
non-Daphnia zooplankton had a measurable negative
effect on small phytoplankton only in the low plank-
tivory lake. Small phytoplankton had a positive effect
on the non-Daphnia group in all lakes, and had a strong
positive effect on Daphnia in the high planktivory lake,
which experienced a strong response of small phyto-
plankton to nutrient addition. The lack of a detectable
effect of small phytoplankton on Daphnia in the ref-



322 A. R. IVES ET AL. Ecological Monographs
Vol. 73, No. 2

FIG. 7. Partial autocorrelation coefficients of residuals
(PACFs) for the four variates in the AIC best-fitting auto-
regressive model with CLS parameter estimates (Table 1).
Lines give the approximate 95% confidence limits calculated
as 62 SE, where SE 5 T21/2 and T is the length of the set of
residuals (Box et al. 1994:68). The length of the set of re-
siduals changed from 237 (lag 1) to 165 (lag 5), because
partial autocorrelation between points from different years
were not included.

TABLE 2. Parameter estimates for the AIC best-fitting model fit to the limnological data using ML estimation, Eqs. 27 and
38, and the observation-error model, Eq. 28.

A) Parameter estimates for interactions between variates

Variate

ML

Large
phyto-

plankton

Small
phyto-

plankton Daphnia
Non-

Daphnia

Observation error

Large
phyto-

plankton

Small
phyto-

plankton Daphnia
Non-

Daphnia

BR (reference lake)
Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.50
0.60

0.10

20.02
0.77
0

0
0.55

0.48
0.70

0.10

20.17
0.74
0

0
0.60

BH (high plankitovory lake)
Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.50
20.066 0.60

0.34
0.10

20.02
0.95
0

0
0.55

0.48
20.076 0.68

0.36
0.10

20.17
0.97
0

0
0.60

BL (low planktivory lake)
Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.50 20.39
0.076

0.10

20.02
0.77
0

20.10
0
0.55

0.48 20.39
0.25

0.10

20.17
0.74
0

20.11
0
0.60

B) Parameter estimates for the effects of covariates on variates C

Variate

ML

Nutrient addition Planktivory

Observation error

Nutrient addition Planktivory

Large phytoplankton
Small phytoplankton
Daphnia
Non-Daphnia

0.20
0.32
0
0

0
0

20.13
20.048

0.25
0.25
0
0

0
0

20.14
20.045

erence and low planktivory lakes is likely due to the
low variance of small phytoplankton in these lakes.
Detectable competitive interactions between large and
small phytoplankton only occurred in the high and low
planktivory lakes. Nutrient input had greater impact on
small phytoplankton than large phytoplankton. Surface
area/volume considerations suggest that small phyto-
plankton exploit nutrients more effectively than large
phytoplankton (Chisholm 1992). Planktivory had
greater impact on Daphnia than on non-Daphnia. This
is consistent with the preference for Daphnia shown
by size-selective planktivores (Brooks and Dodson
1965, Hall et al. 1976).

Comparison of stability among lakes

We used several measures to quantify the stability
of the three lakes (Table 3). To measure stability in
terms of the variance of the stationary distribution rel-
ative to the variance of the process (environmental)
error, we computed the eigenvalues of B (Eqs. 22 and
23) and det(B)2/p (Eq. 24) from the CLS parameter es-
timates for each lake. The return rate of the transition
distribution to the stationary distribution is measured
by the dominant eigenvalue of B, max(lB), which gives
the asymptotic rate of return of the mean (Eq. 19), and
the dominant eigenvalue of B J B, max(lBJB), which
gives the asymptotic rate of return of the variance (Eq.
21). Finally, to measure reactivity, we used both
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TABLE 3. Stability measures for the AIC best-fitting autoregressive model, Eq. 10, with
parameters estimated using CLS.

Parameter Reference High planktivory Low planktivory

Eigenvalues

det(B)2/p

max(lBJB)
2tr(S)/tr(V`)
max(lB9B) 2 1

0.74 [0.64, 0.82]
0.59 [0.47, 0.68]
0.54 [0.43, 0.63]
0.48 [0.36, 0.58]
0.33 [0.27, 0.39]
0.55 [0.42, 0.67]

20.58 [20.67, 20.47]
20.45 [20.58, 20.25]

0.93 [0.88, 0.96]
0.60 [0.49, 0.71]
0.54 [0.43, 0.63]
0.48 [0.36, 0.58]
0.38 [0.31, 0.44]
0.86 [0.78, 0.93]

20.24 [20.32, 20.14]
0.07 [20.08, 0.30]

0.74 [0.64, 0.82]
0.51 [0.37, 0.62]
0.48† [0.36, 0.58]
0.07† [20.12, 0.25]
0.12 [0.03, 0.22]
0.55 [0.41, 0.67]

20.60 [20.70, 20.49]
20.44 [20.57, 20.25]

† In 43 of 2000 bootstrapped data sets, two eigenvalues for the low planktivory lake were
complex. These are ignored in calculating the 95% confidence bounds (shown in brackets).

TABLE 4. Stability measured by max(lB) and det(B)2/P for
the AIC best-fitting model with parameters estimated with
CLS (Eq. 10), ML (Eq. 38), and observation error (Eq. 28).

Parameter and
estimation method Reference

High
planktivory

Low
planktivory

max(lB)
CLS
ML
Observation error

0.74
0.76
0.74

0.93
0.93
0.95

0.74
0.76
0.74

det(B)2/p

CLS
ML
Observation error

0.33
0.36
0.38

0.38
0.40
0.44

0.12
0.14
0.24

2tr[S]/tr[V`] (Eq. 25) and max(lB9B) 2 1 (Eq. 26). To
calculate 2tr[S]/tr[V`], it is necessary to compute the
covariance matrices for the process error and stationary
distribution for each lake. For the covariance matrix of
process errors, S, we used the residuals from the data
for each lake when all three lakes were fitted simul-
taneously. We then calculated the stationary distribu-
tion from Eq. 17 using the lake-specific matrices B.
All of these measures of stability factor out the vari-
ability caused by covariates and therefore assess the
dynamics around the conditional stationary distribution
for fixed values of the covariates.

Comparison of the eigenvalues of B for the three
lakes reveals two patterns. First, the maximum eigen-
value in the high planktivory lake is much larger than
the other two lakes. This is due to the large coefficient
of Daphnia on itself, b33, in BH (Table 1), indicating
that the dynamics of Daphnia in the high planktivory
lake are highly autocorrelated and show near-random-
walk behavior. Second, the minimum eigenvalue for
the low planktivory lake is much smaller than the other
two lakes. This is due to the small value of the coef-
ficient of small phytoplankton on itself, b22, in BL (Table
1), indicating that the dynamics of small phytoplankton
are highly intraspecifically regulated. These two pat-
terns explain differences among the results of the re-
maining measures of stability.

When measured by det(B)2/p, the low planktivory
lake is the most stable of the lakes; the lack of overlap
of the 95% confidence intervals of det(B)2/p for the low

planktivory lake and the other two lakes provides
strong statistical support for this difference. In contrast,
the other measures of stability identify the high plank-
tivory lake as the least stable, but do not distinguish
between the reference and low planktivory lakes. The
high planktivory lake has slower rates of returns of the
mean and variance of the transition distribution to the
stationary distribution (max(lB) and max(lBJB)) and has
greater reactivity (max(lB9B) 2 1 and 2tr[S]/tr[V`]).
This contrast between det(B)2/p and the other measures
of stability can be explained by differences in the ei-
genvalues of the B matrices. The dominant eigenvalue
corresponds to the ‘‘slowest’’ dimension of the mul-
tidimensional dynamics; specifically, the approach of
the transition distribution to the stationary distribution
is slowest in the direction given by the eigenvector
corresponding to the dominant eigenvalue. Because the
dominant eigenvalue for the high planktivory lake is
greater than the other two lakes, measures of stability
that are influenced strongly by the dominant eigenvalue
of B distinguish this lake from the other two. Not only
are the rates of return of the mean and variance of the
transition distribution to the stationary distribution dic-
tated by the dominant eigenvalue, reactivity is also
strongly influenced by the ‘‘slowest’’ dimension of the
system. In contrast, det(B)2/p measures the size of the
stationary distribution relative to the size of the dis-
tribution of process error. Because det(B)2/p depends on
all of the eigenvalues and hence all of the dimensions
of the system, it is sensitive to the low value of the
smallest eigenvalue found for the low planktivory lake.

To compare estimates of stability obtained from pa-
rameter estimates by CLS, ML, and our observation–
error model, Table 4 gives estimates of max(lB) and
det(B)2/p for all three parameter estimation procedures.
All three sets of estimates are similar, with the greatest
difference being the increase in det(B)2/p for the low
planktivory lake with the inclusion of observation er-
ror, reflecting the increase in the smallest eigenvalue
with observation error (Table 2).

Finally, we determined the sensitivity of the stability
estimates to observation error by varying the magni-
tude of the predetermined observation error relative to
the process error and calculating stability according to
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FIG. 8. The sensitivity of two measures of stability of the
reference, high planktivory, and low planktivory lakes to ob-
servation error. (A) gives the dominant eigenvalue of B,
max(lB), and (B) gives det(B)2/p. For the variates and covar-
iate (planktivory), the ‘‘relative observation error’’ is the ratio
of the observation error variance to the variance of the un-
observed process error, g (Eq. 28).

max(lB) (Eq. 22) and det(B)2/p (Eq. 24). We set the
variance of observation errors Gt and Ht (Eq. 28) equal
to g times the variances of the process errors Et and jt.
Thus, g is related to reliability ratio K (Fuller 1987:5)
by g 5 (1 2 K)/K. As g increases from zero, relatively
more of the total error in the observed variates and
covariates is attributed to observation error. We re-
stricted the analysis to the model structure of the best-
fitting AIC model (Table 1).

Increasing observation error has little effect on max(lB)
(Fig. 8A). With increasing values of observation error
variance, the values of det(B)2/p increase for all lakes (Fig.
8B), thus implying that accounting for observation error
leads to decreases in the estimates of stability of the sys-
tems. Note, however, that values of det(B)2/p in all lakes
increase in parallel, so observation error has not affected
our conclusions about the relative stabilities of the three
lakes as measured by det(B)2/p.

Why are the stability properties of the
lakes different?

By all measures of stability, the low planktivory lake
is more stable than the high planktivory lake, whereas
the reference lake has similar stability to the high plank-
tivory lake when measured by det(B)2/p but similar sta-
bility to the low planktivory lake when measured by the
other stability properties. Since the reference lake was
unmanipulated, our measures of stability did not simply

identify the lakes that experienced the greatest experi-
mental disturbance. Furthermore, the standard deviations
of log biomasses of small and large phytoplankton, Daph-
nia, and non-Daphnia were 0.66, 0.36, 2.0, and 0.52 in
the reference lake; 1.1, 0.66, 1.3, and 0.88 in the low
planktivory lake; and 1.3, 1.2, 3.8, and 0.92 in the high
planktivory lake. With the exception of Daphnia, the var-
iability of plankton in the reference lake was lower than
the other two lakes, and Daphnia variability was only
moderately higher than in the low planktivory lake (2.0
vs. 1.3). Therefore, our measures of stability did not sim-
ply identify the lakes with higher variability. This is be-
cause all of the measures of stability are determined by
the endogenous processes summarized by the B matrix
in the MAR(1) model. The measures of stability assess
how systems respond to environmental fluctuations, not
how variable the systems are; more stable systems are
those that respond less to the same severity of environ-
mental fluctuations.

Visualizing the differences in stability among lakes
is complicated by the two sources of environmental
variability that differed among lakes: variability in the
covariates Ut and process error Et. To portray the data
in a way that equalizes both types of environmental var-
iability, we generated time series from the equation

ˆx 5 Bx 1 et t21 t (39)

where B̂ is the estimated B matrix (different for dif-
ferent lakes), and et are CLS residuals for each lake
divided by their within-lake standard deviation; this
division causes the variance of the process error to be
the same for each lake. For the initial point of each
year, we used the difference between the observed ini-
tial point and the mean of the stationary distribution
that would occur if the covariates maintained their
yearly mean values for each year. In order to give a
univariate portrayal of the data, we then projected the
time series xt onto the axis given by the eigenvector
corresponding to the dominant eigenvalue, max(lB), of
the B̂ matrix for each lake. Along this axis, the time
series are described by a univariate AR(1) process with
the autoregression coefficient given by max(lB). The
resulting plots in Fig. 9 are comparable to those of
simulated AR(1) processes in Fig. 1.

Fig. 9 shows that abundances in the high planktivory
lake wander slowly up and down, while abundances in
the other two lakes are drawn more tightly to the mean
of the stationary distribution (from Eq. 39, this mean
is zero). For all three lakes, the eigenvector corre-
sponding to max(lB) is nearly parallel to the axis of
log Daphnia biomass; this is the reason the dominant
eigenvalues for all three lakes are close to the coeffi-
cient for Daphnia on itself given by b33 in the B ma-
trices. Thus, Daphnia is largely responsible for differ-
ences in stability among lakes as measured by max(lB),
a result similar to that obtained by Cottingham and
Schindler (2000) using deterministic measures of sta-
bility. The importance of Daphnia is also seen in the



May 2003 325ECOLOGICAL INTERACTIONS AND TIME SERIES

FIG. 9. Univariate depictions of the dynamics of the ref-
erence, high planktivory, and low planktivory lakes. The six
lines in each panel give the dynamics in each of six years
(Eq. 39). The vertical axis gives the projection of the log
biomasses onto the eigenvector corresponding to the domi-
nant eigenvalues of the estimates of B for each lake. The
projections are standardized such that variances of the resid-
uals along the eigenvectors are the same for each lake. Dif-
ferences in dynamics caused by differences in the variances
of the covariates in each lake are removed as described in
the text (Eq. 39).

raw data in Fig. 5; despite experiencing quantitatively
similar perturbations due to nutrient addition as the
high planktivory lake, the abundances of Daphnia re-
mained relatively constant in the low planktivory lake.

Biologically, the lack of self-regulation of Daphnia
in the high planktivory lake was probably caused by
high planktivory lowering Daphnia densities relative
to the other lakes. With low Daphnia densities and
corresponding high densities of small phytoplankton,
the Daphnia population had the potential to increase,
causing Daphnia densities to fluctuate more broadly in
response to environmental variability.

A further difference in stability among lakes revealed
by det(B)2/p is the greater stability of the low plankti-
vory lake caused by strong self-regulation of small phy-
toplankton (b22 in BL). This occurred even though the
mean biomass of small phytoplankton was lower in the
low planktivory than in the high planktivory lake dur-
ing the experimental manipulations. The stability of
the low planktivory lake could be a consequence of the
high Daphnia abundance. Because Daphnia have a
high phosphorus requirement, phosphorus recycling in
lakes dominated by Daphnia may be slow, leading to
nutrient limitation in the small phytoplankton (Elser et
al. 1996). Nutrient limitation may contribute to the self-
limitation term for small phytoplankton, b22, estimated
by the model.

Summary of limnological example

We fit a MAR(1) model to data from three lakes that
were manipulated as part of an experiment to determine
the response of phytoplankton and zooplankton to nu-
trient addition and planktivory. The MAR(1) identified
interactions that were anticipated to be important on
biological grounds. According to all of the measures
of stability we used, the low planktivory lake was more
stable than the high planktivory lake, whereas the ref-
erence lake was indistinguishable from either the low
or high planktivory lakes depending on the measure of
stability used. Analyses incorporating observation er-
ror did not change the general conclusions. The dif-
ferences in stability among lakes were largely deter-
mined by the self-regulation of Daphnia and small phy-
toplankton, given by the corresponding diagonal terms
of the B matrices.

DISCUSSION

MAR(1) models

We used MAR(1) models to characterize the station-
ary distribution and stability properties of multispecies
time-series data. Is a MAR(1) process a biologically
plausible model of an ecological community? Probably
not, at least not in detail. But the more important ques-
tion is: Can a MAR(1) model describe ecological inter-
actions within communities and the stochastic charac-
teristics of the dynamics they produce? For many com-
munities, we believe the answer will be yes.

Many models of multispecies interactions are de-
signed to explore different mechanisms that underlie
population dynamics. Since many of these mechanisms
involve nonlinearities, they demand nonlinear models
(May and Oster 1976, Hastings et al. 1993, Carpenter
et al. 1994a, Costantino et al. 1997, Ives et al. 2000a).
In contrast to nonlinear mechanistic models, MAR(1)
models give simple log-linear depictions of species in-
teractions. This is not to say that MAR(1) models are
not mechanistic. They include interactions among spe-
cies and interactions between species and environmen-
tal factors. But they summarize these interactions as
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linear dependencies of log population growth rates on
log densities of species and (possibly transformed) en-
vironmental covariates. Thus, while MAR(1) can be
viewed as purely empirical descriptions of data, they
can also be used to explore the mechanisms by which
species interactions affect multispecies dynamics.

An important advantage of using MAR(1) models is
that their dynamical properties can be computed in a
straightforward way. If a MAR(1) model is used as an
approximation of a nonlinear process, then the stationary
distribution computed from the MAR(1) model is likewise
an approximation of the stationary distribution of the true
nonlinear process. Interpreting a MAR(1) model as a log-
linear approximation to a nonlinear process is appropriate
when analyzing complex multispecies time series with
multiple environmental covariates. Even though the un-
derlying biological processes may be nonlinear, identi-
fying these nonlinearities will be difficult unless they are
very strong (Ives et al. 1999a). As a log-linear approxi-
mation, parameters in the MAR(1) model give the average
strengths of species–species and species–environment in-
teractions. When making comparisons among similar
types of communities, as in our example of planktonic
lake communities, potential biases caused by the log-
linearity of MAR(1) models will likely be similar among
communities, thereby reducing the chances of nonlinear-
ities confounding the comparison of stability among com-
munities.

Measures of stability

The three types of measures of stability that we de-
fined for stochastic systems are similar in spirit to sta-
bility concepts applied in deterministic settings. The
most frequently used deterministic measure of stability
is the characteristic return rate, as measured by the
dominant eigenvalue of the community matrix (May
1974). The interaction matrix B in a MAR(1) model
serves the same role as the community matrix, with the
dominant eigenvalue of B determining the character-
istic return rate of the mean of the transition distri-
bution to the mean of the stationary distribution. The
square of the dominant eigenvalue measures the char-
acteristic return rate of the variance of the transition
distribution, so the variance of the transition distri-
bution converges more rapidly to that of the stationary
distribution than does the mean.

The suite of eigenvalues of B also measures the de-
gree to which the environmental process error along
the corresponding eigenvectors is amplified by species
interactions, with greater amplification occurring for
eigenvalues with larger magnitude. This amplification
can be understood by referring to the deterministic re-
sult that the return rates to equilibrium along the ei-
genvectors are set by the corresponding eigenvalues.
If eigenvalues are large, deterministic return rates are
slow, and in the stochastic system the perturbations
caused by environmental variability are not brought
quickly back to the mean of the stationary distribution.

The same idea underlies the concept of reactivity,
which is based on the expected change in the distance
from the mean of the stationary distribution from one
time point to the next. If, on average, the expected
change does not bring the population much closer to
the mean, then the system will be less stable. High
reactivity (when deviations do not tend strongly to-
wards the mean) coincides with slow average return
rates and eigenvalues of B with large magnitudes.

An important feature to all three types of stability mea-
surements is that they separate endogenous and exoge-
nous components of system variability. The endogenous
component of variability is captured in the B matrix of
species interactions, while exogenous sources are given
as either measured environmental factors (covariates) or
unmeasured environmental fluctuations (process error).
What constitutes endogenous vs. exogenous components
of variability is explicitly defined by the structure of the
MAR(1) model. For example, if we had decided to focus
only on phytoplankton in our analyses, we could have
treated grazing by zooplankton as an exogenous factor,
rather than an endogenous factor. In this case, Daphnia
and non-Daphnia biomasses would be used as covariates
rather than variates. Treating zooplankton as exogenous
covariates would not change the CLS estimates for the
coefficients of interactions between phytoplankton, al-
though ML estimates might change, and the best-fitting
model (as determined by the AIC or some other criterion)
might include different interactions from the best-fitting
model obtained when treating zooplankton as endogenous
variates.

The measures of stability are most useful to make com-
parisons among systems. In our example of planktonic
communities, our analyses identified the low planktivory
lake as having higher stability than the high planktivory
lake, with the reference lake similar to one or the other
lake depending on the measure of stability applied. The
most important result of the analyses is that they pose
the question: Why are the dynamics of the three lakes
different? The analyses give some general insight into the
answer to this question; they finger Daphnia and small
phytoplankton as the key groups in explaining the dif-
ferences in stability among lakes. Nonetheless, we view
this as only the starting point to understanding the stability
of these planktonic communities.

Other stability properties

We have used components of the stationary distri-
bution of population abundances to obtain measures of
system stability, but other concepts of stability can be
derived from other system characteristics. A common
question asked about ecosystems is how much a system
will change in response to a long-term environmental
trend, such as climate change or lake eutrophication
(Schindler 1974, Schindler et al. 1985, Frost et al.
1995). This question can be placed in the MAR(1)
framework: How will mean species abundances change
when there is a change in the mean value of one or
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more covariates (Ives et al. 1999a)? All of the measures
of stability we have developed apply to the time-in-
variant stationary distribution; even though we have
included covariates, we have used these to factor out
the time-dependency on long-term environmental
trends so we can obtain information about the corre-
sponding time-invariant stationary distribution deter-
mined by the B matrix. Nonetheless, the problem of
how the mean of the stationary distribution would
change in response to a change in the mean of the
distribution of a covariate is related to the measures of
stability we have derived.

As a simple example, consider the univariate AR(1)
process given by

X 5 a 1 bX 1 cU 1 E .t t21 t t (40)

If the covariate Ut is a stationary stochastic process
with long-term mean f`, then the mean of the station-
ary distribution of Xt is

a 1 cf`m 5 . (41)` 1 2 b

If a change Df in f` occurs, the corresponding change
in m` is

cDf
Dm 5 . (42)

1 2 b

Thus, smaller values of b imply smaller changes in the
mean of the stationary distribution relative to the
change in the mean of the covariate Ut. This result is
similar to that for the variance of the stationary dis-
tribution; Eq. 5 shows that the variance in the stationary
distribution relative to the environmental variance
equals 1/(1 2 b2), which decreases with b as long as
b is positive. In the multivariate case, the change in
the mean of the stationary distribution relative to
changes in the mean of covariates can be calculated
from the B matrix (Ives 1995b). Therefore, all of the
statistical techniques we have described can be em-
ployed to predict how ecosystems will change in re-
sponse to long-term environmental trends.

Another type of question that can be asked is whether
the composition of a community remains stable in the
face of environmental fluctuations, or whether species
will be lost. In our analyses, we have assumed that
extinction does not occur. Our analyses might give
some information about which species in a community
are at risk of extinction if, for example, species having
low mean and high variance in abundance are more
likely to drop to extinction. Nonetheless, this question
is not addressed directly. Extinction implies that the
MAR(1) process is not stationary and therefore requires
investigating the properties of nonstationary processes
(e.g., Chesson and Case 1986, Chesson 1994).

Conclusions

The chief advantage of MAR(1) models is that they
can easily link data and theory, thereby making many

theoretical ideas statistically testable. Thus, they allow
the exploration of many theoretical ideas with data. Al-
though we have focused on stability, other properties of
species interactions could be tested using a MAR(1)
framework. For example, it would be possible to test
which species in a community are most sensitive to a
particular environmental factor, or which species have
relatively large impacts on other species in the commu-
nity. It is also possible to use MAR(1) models to predict
the response of communities to novel environmental dis-
turbances if the effects of these disturbances on the pop-
ulation growth rates of different species are known (Ives
et al. 1999a). Finally, although we have applied MAR(1)
to community variables (biomass of different functional
groups), the same techniques can be applied to ecosystem
variables, such as primary productivity and nutrient con-
tent in different pools in an ecosystem.

Given the growing concerns about the effects of en-
vironmental disturbances on communities over large
spatial and temporal expanses, MAR(1) models can
give us insights into changes that we have already ob-
served, and changes that we should anticipate.
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APPENDIX

DERIVATION OF STABILITY PROPERTIES

Variance of the stationary distribution

The first of the two methods we use to measure the variance
of the stationary distribution relative to the variance of the
distribution of the process error (Eqs. 22 and 23) involves
transforming matrix B according to axes given by its eigen-
vectors (Ives 1995a). Specifically, B can be written in real
canonical form (Cronin 1980) as B 5 SJS21, where J is a
block-diagonal matrix whose elements consist of either a real
eigenvalue of B (the scalar l), or a 2 3 2 matrix of the form
[[a, b], [2b, a]] corresponding to a pair of complex conjugate
eigenvalues a 6 bi of B. Matrix S consists of the eigenvectors
associated with the eigenvalues of J; the real eigenvectors
corresponding to real eigenvalues are entered as columns of
S, while complex conjugate pairs of eigenvectors correspond-
ing to complex pairs of eigenvalues are entered as two col-
umns, one containing the real and the other the imaginary
parts of the eigenvectors. Matrix S can be used to transform
the autoregressive process (Eq. 10) into a new coordinate
system given by the eigenvectors of B. Let X̃t 5 SXt and Ẽt

5 SEt be, respectively, vectors containing linear combina-
tions of the population densities and process errors in the new
coordinate system, and let Ã 5 SA. Then from Eq. 10
˜ ˜ ˜ ˜X 5 SX 5 SA 1 SBX 1 SE 5 A 1 JX 1 E . (A.1)t t t21 t t21 t

Thus, the transformation produces a description of the au-
toregressive process in which species interactions are encap-
sulated in the block-diagonal matrix J. The covariance matrix
of the environmental variables in the new coordinate system
is C 5 SSS9.

Since J is a block-diagonal matrix, along the eigenvectors
corresponding to a real eigenvalue l, the dynamics are given
by an equation of the form

˜ ˜ ˜X 5 ã 1 lX 1 Et t21 t (A.2)

where X̃t and Ẽt are the population densities and process errors
along the same eigenvector. Thus, from Eq. 7 the variance in
the stationary distribution along this eigenvector is

2 2ỹ 5 c /(1 2 l )` (A.3)

where c2 is the corresponding diagonal element of the co-
variance matrix C. This is Eq. 22 in the text.

A similar result can be obtained for complex eigenvalues.
In the plane defined by the columns of S consisting of real
and imaginary components of a complex set of eigenvectors
corresponding to an eigenvalue pair a 6 bi, the dynamics
are given by

r r c r˜ ˜ ˜ ˜X 5 ã 1 aX 1 bX 1 Et t21 t21 t

c r c c˜ ˜ ˜ ˜X 5 ã 2 bX 1 aX 1 E (A.4)t t21 t21 t

where superscripts r and c denote values along the axes given
by the real and imaginary components of the complex ei-
genvector pair, respectively. Ives (1995a) shows that the sum
of variances along these axes is

r c r c 2ỹ 1 ỹ 5 (c 1 c )/(1 2 \a 6 bi\ )` ` (A.5)

where \a 6 bi\ is the magnitude of the eigenvalues a 6 bi.
This leads to Eq. 23 in the text.

Reactivity

Reactivity is a measure of how strongly short-term (over
one time step) changes tend to bring population abundances
towards the mean of the stationary distribution. Consider first
the deterministic case. Let Dxt 5 xt 2 x` be a vector of
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departures of species abundances from their equilibrium val-
ues and consider the linear deterministic model

Dx 5 BDx .t t21 (A.6)

For a given perturbation xt21 from equilibrium, the squared
Euclidean distance between xt21 and x` is \Dxt21\

2 5
. How much farther from or nearer to equilibriumDx9 Dxt21 t21

will xt be? Scaling the difference between \Dxt21\
2 and \Dxt\

2

by the initial magnitude of the perturbation, we find that

2 2\Dx \ 2 \Dx \ Dx9 B9BDxt t21 t21 t215 2 1. (A.7)
2\Dx \ Dx9 Dxt21 t21 t21

The term BDxt21/ Dxt21 is known as the RaleighDx9 B9 Dx9t21 t21

quotient and can be used to calculate the ‘‘worst-case’’ sce-
nario for the reactivity of the system (i.e., the maximum dis-
tance xt will be from x`). If B has full rank (i.e., no eigenvalues
are zero), then the symmetric matrix B9B is positive definite
(i.e., Dx (B9B)Dxt21 . 0 for all nonzero vectors Dxt21). Also,9t21

B9B has all real and positive eigenvalues. The worst-case
scenario is when the perturbation Dxt21 happens to be in the
same direction as the eigenvector of B9B associated with the
largest eigenvalue, max(lB9B). In this case, the Raleigh quo-
tient attains its maximum value of max(lB9B), and the farthest
distance from equilibrium that xt can advance beyond xt21 is
max(lB9B) 2 1 (Eq. A.7 evaluated at its maximum value).
Thus, max(lB9B) is a measure of reactivity, with values of
max(lB9B) . 1 giving worst-case scenarios in which the sys-
tem initially moves farther from equilibrium following a per-
turbation. On the other hand, when max(lB9B) , 1 the system
always moves immediately back towards equilibrium.

This analysis of the deterministic case is restricted to the
worst-case scenario. For stochastic systems it is possible to
ask how far, on average, is the system likely to change from
one time step to the next with respect to the mean of the
stationary distribution. Let Xt denote the random variable for
the population size at time t, and let DXt 5 Xt 2 m` be the
difference between Xt and the mean of the stationary distri-
bution. The expectation of DXt given DXt21 is E [DXt z DXt21]«t21

5 BDXt21. Let \E [DXt z DXt21]\ denote the squared Eu-«t21

clidean distance of the expectation of DXt given DXt21 from
the mean of the stationary distribution, m`. Thus, if the Eu-
clidean distance of a given value of DXt21 from m` is \DXt21\

2,
then the expectation for the change in distance from m` be-
tween times t 2 1 and t is \E [DXt z DXt21]\2 2 \DXt21\

2.«t21

Because DXt21 itself is a random variable, reactivity depends
on the expectation taken over the distribution of DXt21, and
to obtain a measure comparable to reactivity defined for de-
terministic systems (Eq. A.7), we define reactivity for sto-
chastic systems as

2 2E [\E [DX z DX ]\ ] 2 E [\DX \ ]X « t t21 X t21t21 t21 t21 . (A.8)
2E [\DX \ ]X t21t21

The smaller this quantity, the greater the tendency for the
population to move towards the mean of the stationary dis-
tribution between successive time steps. Below we derive an
expression for this quantity.

Because B9B is a symmetric matrix, it can be decomposed
such that B9B 5 KqK9 where q is a diagonal matrix con-
taining the eigenvalues of B9B, and K is a matrix with col-
umns containing the corresponding eigenvectors. The matrix
B9B is positive definite and symmetric, and therefore its ei-

genvalues are real and its eigenvectors are orthogonal, so KK9
5 I. Let Zt21 5 K9Xt21 be the population size measured with
respect to axes given by the eigenvectors of B9B, and let nt21

5 K9mt21 be the mean of Zt21. Then
2E [\E [DX z DX ]\ ]X « t t21t21 t21

5 E [DX9 B9BDX ]X t21 t21t21

5 E [{(X 2 m ) 1 (m 2 m )}9X t21 t21 t21 `t21

3 B9B{(X 2 m ) 1 (m 2 m )}]t21 t21 t21 `

5 E [(X 2 m )9B9B(X 2 m )]X t21 t21 t21 t21t21

1 (m 2 m )9B9B(m 2 m )t21 ` t21 `

5 E [(Z 2 n )q (Z 2 n )]Z t21 t21 t21 t21t21

1 (m 2 m )9B9B(m 2 m )t21 ` t21 `

p

5 w g 1 (m 2 m )9B9B(m 2 m ) (A.9)O i ii t21 ` t21 `
i51

where wi are the eigenvalues of B9B and gii are the diagonal
elements of the covariance matrix of Zt21.

Eq. A.9 gives the general case for an arbitrary distribution
of Xt21. To obtain the reactivity of the system averaged over
a long time period, we can let the distribution of Xt21 be the
stationary distribution, Xt21 5 X`. In this case, the second
term in Eq. A.9 becomes zero, and gii are the diagonal ele-
ments of the covariance matrix of stationary distribution
transformed according to axes given by the eigenvectors of
B9B. Thus, reactivity is given as

p

w gO i ii2 2E [\E [DX z DX ]\ ] 2 E [\DX \ ]X « t t21 X t21 i51` t21 ` 5 2 1.p2E [\DX \ ]X t21` gO ii
i51

(A.10)

The reactivity of the process at the stationary distribution
depends on the average of the eigenvalues of B9B weighted
by the variances of the stationary distribution gii. The worst-
case scenario is when all of the variance in the process error
occurs along the eigenvectors corresponding to the dominant
eigenvalue of B9B, max(lB9B). In this case

2 2E [\E [DX z DX ]\ ] 2 E [\DX \ ]X « t t21 X t21` t21 ` 5 max(l ) 2 1.B9B2E [\DX \ ]X t21`

(A.11)

This leads to Eq. 26 in the text.
An alternative expression for reactivity in stochastic sys-

tems can be obtained for the case in which Xt21 5 X`.
Because the expression is in quadratic form,DX9B9BDX` `

E ] 5 tr[B9BV`] (e.g., Judge et al. 1985:[DX9B9BDXDX ` ``

16), the trace of the matrix product B9BV`. Furthermore,
since V` is symmetric, tr[B9BV`] 5 tr[BV`B9]. Finally, from
Eq. 16 tr[BV`B9] 5 tr[V`] 2 tr[S]. Thus, since

[\ [DXt z DXt21]\2] 5 ,E E E [DX9B9BDX ]X « X ` `` t21 `

2 2E [\E [DX z DX ]\ ] 2 E [\DX \ ] tr[S]X « t t21 X t21` t21 ` 5 2 .
2E [\DX \ ] tr[V ]X t21 ``

(A.12)

This is Eq. 25 in the text.

SUPPLEMENT

Programs and data for many of the analyses of the limnological data set are available in ESA’s Electronic Data Archive:
Ecological Archives M073-003-S1. Programs are written in Matlab (MathWorks 1996), and data are given as text files formatted
to be accessed by the programs.
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