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Does the normal stress parallel to the sliding plane affect the
friction of ice upon ice?

Andrew L. FORTT, Erland M. SCHULSON

Ice Research Laboratory, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000, USA
E-mail: andrew.l.fortt@dartmouth.edu

ABSTRACT. Sliding experiments were performed at —10°C on smooth surfaces of freshwater columnar-
grained S2 ice sliding against itself at a velocity of 8 x 10*ms™', with the purpose of examining whether
normal stress parallel to the sliding plane affects frictional resistance. This component of the stress
tensor was varied (0.20-1.83 MPa) using a loading system operated under biaxial compression, by
orienting the sliding plane at two different angles, 26° and 64°, with respect to the principal loading
direction. Under these conditions, no evidence was found to indicate that the normal stress in the

direction of sliding affects the friction coefficient.

1. INTRODUCTION

In modeling failure of the arctic sea-ice cover, Schreyer and
others (2006) invoked frictional sliding by incorporating a
Coulombic failure envelope. In so doing, they questioned
whether, in addition to traction on the plane of material
failure (i.e. in addition to the normal (o, and shear (o,)
components of traction; Fig. 1), the normal component of
stress, oy, (Fig. 1), that is oriented parallel to the sliding plane
might affect the sliding resistance. The question is not
limited to the arctic sea-ice cover, but applies as well to
tectonic evolution of icy bodies of the outer solar system,
such as Jupiter's moon Europa (Tufts and others, 1999;
Kattenhorn, 2004) and Saturn’s satellite Enceladus (Nimmo
and others, 2007; Smith-Konter and Pappalardo, 2008).
Schreyer and others (2006) did not expand upon the
underlying physics, although one could imagine that under
all-compressive loading, the stress component o, might act
to prevent either formation or propagation of surface cracks
inclined to both the sliding plane and sliding direction, of
the kind reported by Montagnat and Schulson (2003).

To determine whether this third component of stress
(where the tensor is expressed in terms of a coordinate
system defined by the failure plane and by the direction of
sliding) actually affects the measured resistance to sliding, a
series of experiments was performed in which the two
normal components of the stress tensor were varied inde-
pendently. The results are reported here. To our knowledge,
this is the first report to examine this point experimentally.

2. EXPERIMENTAL PROCEDURE

We chose to examine columnar-grained, polycrystalline ice
that possesses the S2 (Michel and Ramseier, 1971) growth
texture, and to slide the ice across itself, column against
column, in a direction normal to the long axis of the grains,
in the manner that a sheet of first-year sea ice might slide
across a closed lead or Coulombic fault (Schulson, 2004).
For simplicity, we examined freshwater ice, since there is
little to distinguish the Coulombic failure envelope of the
two kinds of material (Schulson and others, 2006a). We
made the ice in the laboratory by unidirectionally freezing
local tap-water, and then verified its microstructure, as
described elsewhere (Fortt and Schulson, 2007). Subse-
quently, we prepared plate-shaped specimens of dimensions

160 mm x 80 mm x 50 mm, with the long axis of the colum-
nar grains oriented perpendicular to the largest faces. To
prepare a sliding interface, we cut the specimens diagonally
from corner to corner, as sketched in Figure 2, and then
polished the exposed faces by gently rubbing using a warm,
optically flat glass plate on a lapping stone. The surface
roughness in the direction of sliding was obtained using a
stylus profilometer and found to be (4 +2) x 10"°m. To hold
together the two wedge-shaped blocks (Fig. 2) during pre-
loading, holes of 5mm diameter were drilled along the X3
direction and joined by a piece of string. To allow sliding
without crushing the apex of each wedge, shims of
chemically polished brass were placed on the top and the
bottom of the wedges (Fig. 2). To reduce friction along the
ice—shim interface, thin (0.15 mm) polyethylene sheets were
inserted.

We oriented specimens for sliding in one of two ways. In
the first, the long axis of the specimen was oriented parallel
to the X; axis (Fig. 2a) and the sliding plane was inclined by
6 ~26°to X; but parallel to the direction of the columns, X;.
In the second, the long axis of the specimen was oriented
parallel to X, (Fig. 2b) and the sliding plane was inclined by
0~64° to Xy. In both cases, the specimens were loaded
under biaxial compression where the major stress, o, was
applied along direction X; and the minor stress, o,, was
applied along direction X,, using a true multiaxial loading
system housed within a cold room of Dartmouth’s Ice
Research Laboratory. Assuming frictionless contact between
the ice and loading shims, the ratio, x, of the normal stresses
parallel to the plane of sliding o, and perpendicular to the
plane of sliding o,, is given by

oy 01C08%0 + 7ysin?
X=E—= (1)

Opn 078iN%0 + 0y cos 20

For the geometry of the two set-ups and for the values
measured for the two applied stresses (given below), this
parameter varied by about a factor of two, from x ~ 1.4 for
6 ~26° to x ~0.65 for 6 ~64°.

To effect sliding, a constant displacement rate, Vj, was
applied in the X; direction and then converted to sliding
speed, Vs, along the inclined plane through the expression

Vs = Vi (2)

cosf’

For the two different orientations of the sliding plane, the
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Fig. 1. Schematic diagram showing orientation of stresses with
respect to sliding plane. o1 and o, are the principal stresses
with respect to the loading system, o,, is the normal stress
perpendicular to the sliding plane, oy is the normal stress parallel to
the sliding plane in the direction of sliding and o, is the shear stress
on the sliding plane.

applied velocity was such that the sliding speed in both
cases was Vs=8 x 10 *ms™". The velocity was chosen as it
is within the range of velocities observed in the arctic ice
pack (Moritz and Stern, 2001). The ice was slid a total
distance of 8 mm, recorded by extensometers that were
attached to the loading platens. In all tests the temperature of
the ice was —10°C. During each test, the loads applied in the
two directions X; and X, were recorded electronically at a
rate of 1000 scanss™' and then converted to the principal
stresses oy and o,. Loads were measured with a sensitivity of
+100N, which translated to a sensitivity in principal stress
of £0.03 MPa on the smaller faces and +0.015 MPa on the
larger faces. The experiments were performed such that the
minor stress, 0,, was held constant for the duration of each

Vi(oy)

R VR VRS

a VA (01)

Location hole

test and the range of normal stresses tested was chosen to
reflect that observed in the arctic ice pack (albeit on the
lower side of our range).

3. RESULTS

We performed a total of 18 experiments, 11 for the
orientation of the sliding plane §~26° and 7 for 6~ 64°.
Figure 3 shows examples of load-displacement curves from
which the appropriate stresses were computed (using the
midpoint of the load at each displacement). Table 1 lists
the results. Listed in the table are the computed values of the
two normal stresses and the computed value of the shear
stress, o, after sliding different amounts (0, 2.4 mm, 4 mm,
8 mm).

Figure 4 plots the shear stress on the sliding plane versus
the normal stress acting across the sliding plane, after
displacement, és, of 0, 2.4, 4 and 8 mm, for both orientations
of the sliding plane. The displacements were chosen to
enable comparisons to be made with our previous work
(Fortt and Schulson, 2007). The curves may be described
reasonably well by straight lines (coefficient of determin-
ation R’ shown in the figure), in keeping with earlier
measurements of frictional sliding of ice sliding slowly upon
itself under a relatively low normal stress (Fortt and
Schulson, 2007). The coefficient of friction is given by the
slope of the curves (more below) and appears to be higher
(©=0.27) and more variable at the onset of sliding than
during sliding where it increases from p=0.16 at a
displacement of és=2.4mm to x=0.21 at 6s=8mm. The
implication is that the static coefficient of friction is greater
than the kinetic coefficient. This is not surprising given the
added time for sintering before the test starts. There also
appears to be a systematic trend of increasing friction with
increasing displacement. However, we prefer not to place
too fine a point on this trend until further work is done. Of
particular interest from the perspective of these experiments
is the observation that within experimental uncertainty the
data for the two orientations fall upon the same line for each
displacement. This implies that under the present conditions
the normal component of the stress tensor parallel to the

Vi (o) Sliding plane

02

_____________________________

\
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VA (0'1)

X, Ice microstructure

Fig. 2. Schematic diagram showing experimental set-up of (a) 26° oriented sliding plane test, and (b) 64° oriented sliding plane test.
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Fig. 3. Examples of stress-vs-sliding-displacement curves for (a) 26° oriented sliding plane test and (b) 64° oriented sliding plane test.

Table 1. Experimental results. Test No. indicates the Ice Research Laboratory test label, 8 is the measured angle of the sliding plane with
respect to Xj, s is the sliding displacement, o, is the normal stress perpendicular to the sliding plane, o, is the shear stress on the sliding
plane and o is the normal stress parallel to the sliding plane. Italics signify the 64° tests, whereas the 26° tests are in regular font.

6s=0.0mm 6s=2.4mm 6s=4.0mm 6s=8.0mm

Test No. 6 Tnn Ont Ot Onn Ont Ot Onn Ont Ot Onn Ont Ot

° MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa
262 24 0.55 0.22 0.94 0.52 0.11 0.71 0.53 0.13 0.77 0.53 0.13 0.77
721 27 0.51 0.26 0.90 0.45 0.08 0.57 0.45 0.08 0.57 0.45 0.09 0.59
722 27 0.36 0.15 0.59 0.22 0.06 0.30 0.22 0.05 0.29 0.21 0.05 0.29
723 25 0.49 0.18 0.80 0.30 0.07 0.43 0.30 0.07 0.42 0.29 0.07 0.42
724 25 0.54 0.21 0.81 0.37 0.07 0.49 0.36 0.07 0.49 0.37 0.07 0.50
725 26 0.31 0.16 0.55 0.16 0.06 0.26 0.17 0.06 0.27 0.17 0.04 0.22
726 26 0.27 0.12 0.45 0.16 0.04 0.23 0.16 0.04 0.21 0.16 0.03 0.20
727 25 0.92 0.29 1.41 0.65 0.14 0.88 0.65 0.14 0.88 0.67 0.14 0.90
728 25 0.92 0.28 1.40 0.69 0.14 0.93 0.71 0.16 0.99 0.71 0.14 0.94
729 24 0.82 0.23 1.24 0.76 0.14 1.02 0.77 0.15 1.04 0.77 0.17 1.08
730 24 1.12 0.39 1.83 0.82 0.16 1.11 0.81 0.15 1.08 0.83 0.20 1.18
749 65 0.61 0.18 0.30 0.53 0.13 0.32 0.56 0.14 0.33 0.61 0.16 0.35
752 64 - - - 0.63 0.11 0.44 0.66 0.12 0.47 0.78 0.16 0.52
753 64 0.71 0.22 0.35 0.69 0.12 0.51 0.69 0.11 0.50 0.82 0.17 0.55
754 64 0.62 0.21 0.29 0.51 0.09 0.37 0.51 0.09 0.37 0.55 0.10 0.38
755 64 0.52 0.13 0.31 0.50 0.09 0.36 0.52 0.10 0.37 0.57 0.12 0.38
756 64 - - - 0.41 0.08 0.28 0.42 0.09 0.28 0.45 0.10 0.30
757 64 0.49 0.16 0.24 0.56 0.11 0.40 0.57 0.11 0.40 0.61 0.12 0.42
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Fig. 4. Graph of o, vs o, at four sliding displacements. Black (solid) points indicate 26° data points; white (open) points indicate 64° data

points.

direction of sliding has no systematic effect on the resistance
to sliding, at least within the sensitivity of the measurements.

4. DISCUSSION

The observation that the shear stress at ‘failure’ scales
linearly with the normal stress across the sliding plane is not
surprising. Such behavior has been observed earlier for ice
sliding slowly across natural Coulombic shear faults
(Schulson and others, 2006b; Fortt and Schulson, 2007) at
the speed and temperature applied in the present tests. The
sliding resistance thus obeys Coulomb’s failure criterion

Ont = 00 + UOnn, (3)

where, again, o, is the shear stress on the sliding plane, u
the kinetic coefficient of friction and o,, the normal stress
across the sliding plane; oy is the cohesive strength. Barring
the variations with displacement noted above and averaging
over the results over all displacement, oo=0.02 £+ 0.02 MPa
and £=0.20+£0.03, in agreement with values derived by
Kennedy and others (2000) and by Montagnat and Schulson
(2003) from double-shear experiments on the same kind of
ice under similar experimental conditions.

A modification of Coulomb’s criterion, which includes
the other normal stress, may be written as

Ont = 00 + WUOpp + KOy, (4)

where « denotes the sensitivity of the sliding resistance to

the normal stress parallel to the sliding direction. The
observation that there is essentially no effect of this stress
component, namely that do,/dos~0, suggests that this
component is not a significant factor in sliding resistance
under the conditions tested here. Therefore, under the
present conditions x = 0.

We do not know whether k20 under other conditions.
Friction of ice is a complicated property and depends upon
both sliding speed and temperature. For instance, at higher
sliding velocities (Vs>107ms™' at —10°C), ice exhibits
velocity weakening, evident from the fact that the kinetic
coefficient of friction decreases with increasing sliding speed
(Kennedy and others, 2000; Maeno and others, 2003; Fortt
and Schulson, 2007). Under such conditions, localized
melting appears to play an important role (Kennedy and
others, 2000; Hatton and others, 2009). Our experiments
were performed within this velocity-weakening regime, and
so melting could perhaps account for the apparent absence
of an effect of o,.. At lower sliding velocities (Vs <10 ms™),
the character of sliding changes: sliding resistance exhibits
velocity strengthening (Fortt and Schulson, 2007), and the
governing mechanism appears to be localized creep
(Kennedy and others, 2000; Fortt and Schulson, 2007).
Whether an effect of o, might be detectable within the
velocity-strengthening regime remains to be seen. There is
also a question of whether the sliding behavior of sea ice or of
extraterrestrial ice differs from that of freshwater ice, owing to
the presence within sea ice (Weeks, 2010) of additional
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phases (brine, air and, at lower temperatures, precipitated
salts) and (possibly) within extraterrestrial ice of hydrated
salts (McCord and others, 1998). Although we cannot offer a
firm answer, our sense is that the similarity here may be
greater than the difference, at least in the case of sea ice
where the friction coefficient of the two materials within the
velocity-weakening regime is almost identical (Kennedy and
others, 2000). Finally, one might wonder whether spatial
scale is a factor. Again, we cannot offer a firm statement.
However, given that the brittle compressive failure envelope
of the arctic sea-ice cover has the same slope as one
generated in the laboratory from specimens harvested from
the winter sea-ice cover (Weiss and others, 2007), and given
that the slope of the brittle compressive failure envelope is
governed by the friction coefficient (Schulson and others,
2006b), our sense is that the character of sliding within the
sea-ice cover is probably similar to that within test speci-
mens. Clearly, more work is needed before the generality of
the present finding can be assessed.

5. CONCLUSION

At this juncture, therefore, we conclude that there is no
evidence that the resistance to sliding of warm (-10°C),
freshwater ice upon itself at a relatively low speed (8 x
10 ms™') under low normal stresses (<1.2 MPa) is affected
by the component of normal stress parallel to the direction
of sliding.
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