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ABSTRACT

Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner
heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon-Fedder—
Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell
above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are
presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run
with both LFM and the MAS extension into the heliosphere, and use the same polytropic coronal MAS solutions as
the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with
an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar
rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly
identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the
coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric
solutions diverge. Additional simulations with different resolution are then performed and show that the MAS
heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these
detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes
solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit.
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1. INTRODUCTION

Coronal mass ejections (CMEs) are the largest disturbances in
the heliosphere in terms of their mass, momentum, and kinetic
energy. They can contain more than a billion tons of mass (e.g.,
Vourlidas et al. 2002), and a fast CME can have a speed in excess
of 2000 km s~ (Gopalswamy 2006; Gopalswamy et al. 2009).
CMEs are eruptions of material from the solar atmosphere that
can cause strong perturbations of the planetary magnetospheres
on their way, as they propagate through the interplanetary space.
Due to their immense scale and energy budget, CMEs have been
the focus of solar—terrestrial physics for at least four
decades (e.g., Gosling et al. 1974).

CMEs are known to be the primary drivers of the most
intense geomagnetic storms on Earth (Tsurutani et al. 1988;
Gosling et al. 1990; Richardson et al. 2001) and of solar
energetic particle (SEP) events (Reames 1999, 2013). Under-
standing and eventually predicting space weather thus entails
studying diverse plasma processes at various stages of CME
formation and evolution, starting with their initiation in the
corona and further propagation through interplanetary
space (e.g., Forbes et al. 2006; Jacobs & Poedts 2011).

For the past two decades, the primary workhorses for such
studies have been magnetohydrodynamic (MHD) models,
which have seen significant progress since the early attempts
dating back to the 1980s (e.g., Dryer et al. 1989). Initial
approaches inserted a hydrodynamic disturbance at the inner
boundary of the heliospheric model, which would then interact
with the ambient solar wind and interplanetary magnetic field,
as it propagated through the heliosphere (Detman et al. 1991;
Wu et al. 1996; Odstrcil & Pizzo 1999). The same approach
later became known as the “cone model” method (Xie et al.

2004) widely used today (e.g., Odstrcil et al. 2004a; Odstrcil &
Pizzo 2009; Taktakishvili et al. 2009; Lee et al. 2013).
Recently, similar ad hoc methods have been used including a
spheromak magnetic field structure (Kataoka et al. 2009;
Shiota & Kataoka 2016).

A different approach to simulating CME:s in the heliosphere
is to simulate both the corona and the inner heliosphere from
first principles. Such models can include the corona and the
heliosphere either in one physical domain (Usmanov & Dryer
1995; Wu et al. 1999; Groth et al. 2000; Manchester
et al. 2004b; Lugaz et al. 2005; Shen et al. 2007, 2013) or
with two domains coupled at the interface (e.g., Odstrcil et al.
2002a; Riley et al. 2002; Téth et al. 2005; Wu et al. 2007;
Lionello et al. 2013).

MHD models have been used to address many aspects of
CME propagation physics, i.e., the effects of CME-initiated
shock waves on the background plasma and fields (e.g.,
Odstrcil et al. 2002a; Luhmann et al. 2004), CME kinematics
and energy budget (e.g., Manchester et al. 2004a, 2004b), mass
evolution (e.g., Lugaz et al. 2005), deformation as a result of
interaction with the ambient solar wind (e.g., Odstrcil et al.
2004b; Wu et al. 2007), and interaction of multiple CMEs (e.g.,
Lugaz et al. 2005, 2007, 2008; Shen et al. 2011, 2012, 2013;
Lugaz & Farrugia 2014). In addition to understanding basic
MHD properties of CME initiation and propagation, such
models are also instrumental in interpreting observations of the
three-dimensional (3D) CME structure and SEP events by
multi-spacecraft missions such as STEREO (Aschwanden
et al. 2006; Lugaz et al. 2009; Rouillard et al. 2011).

In the present work, we report on a new effort aimed at time-
dependent coupling of dedicated first-principles models of the
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corona and the heliosphere for CME propagation. This
approach affords the advantage of allowing different numerical
techniques for treatment of the different physical regimes of the
coronal and solar wind plasmas (e.g., implicit versus explicit
numerical schemes, decoupling of the different time step
constraints pertaining to the two physical domains) and the
capability to maintain separate development tracks for the
different numerical codes while retaining the coupling infra-
structure (Odstrcil et al. 2004a).

The models used herein are the MHD algorithm outside a
sphere (MAS) code (e.g., Linker et al. 1999; Miki¢ et al. 1999)
of the corona and the heliospheric version of the Lyon—-Fedder—
Mobarry (LFM) MHD code (Lyon et al. 2004), LFM-
helio (Merkin et al. 2011; Pahud et al. 2012; Merkin
et al. 2016). The key advantage of the LFM numerics for
simulations of the inner heliosphere plasmas is their high
resolving power, allowing efficient capturing of sharp solution
features such as MHD shocks and discontinuities. For the sake
of simplicity, in this work, we consider mostly LFM
simulations of CMEs driven by polytropic coronal MAS
solutions. However, the MAS 3D MHD thermodynamic code,
which includes coronal heating, anisotropic thermal conduc-
tion, and radiative losses, can provide more realistic simula-
tions of the global plasma density and temperature structure of
the corona and of the solar wind (Lionello et al. 2009). We
demonstrate an LFM simulation of a CME driven by the
thermodynamic coronal MAS at the end of the paper.

The coronal MAS and LFM codes are coupled at an interface
located above the height where the solar wind becomes
supersonic and super-Alfvénic (the critical point), near 20 solar
radii (R.). In order to test the coupled model performance, we
build upon the work of Lionello et al. (2013; RL13 hereafter),
who used a heliospheric version of the MAS code to propagate
CME transients first simulated in the corona by the coronal
MAS code. Here, we initiate the LFM heliospheric simulation
at its inner boundary from the coronal MAS code and then
compare the resulting heliospheric solutions during different
stages of CME propagation against the heliospheric MAS
simulations of RL13.

The rest of the paper is structured as follows. Section 2
describes the numerical models used. Section 3 outlines our
methodology for coupling the coronal and heliospheric models.
In Section 4, we present the results of our simulations,
including tests with non-rotating and rotating axisymmetric
background, as well as a more realistic CME simulation.
Finally, Section 5 summarizes and concludes the paper.

2. MODEL DESCRIPTIONS

This section briefly describes the numerical models used
herein, starting with LFM-helio, followed by the MAS code
description.

2.1. LFM-helio

The details of the LFM code numerics were given by Lyon
et al. (2004). In brief, the code solves the ideal MHD equations
on an arbitrary hexahedral grid using a total variance
diminishing scheme of the eighth order. A more recent version
of the code also includes an explicit resistivity term (Merkin
et al. 2015). The heliospheric version of the LFM code (LFM-
helio) was originally used for steady-state solar wind
calculations (Merkin et al. 2011; Pahud et al. 2012), but has
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recently been improved to include time-dependent coronal
boundary conditions (Merkin et al. 2016). The work presented
herein utilizes a similar time-dependent coronal boundary
condition. In addition, in contrast to the previous works by
Merkin et al. (2011) and Pahud et al. (2012), LFM-helio now
solves the entire 3D domain extending all the way to the poles,
which may be important for particularly large geoeffective
CMEs. Among other advances is the possibility of performing
the calculations in both inertial and rotating frames. The basic
set of equations that the LFM code solves are as follows.
9p
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where ¢ and r are time and radial position vector; p, v, p, and B
are plasma density, velocity, pressure, and magnetic field,
respectively, in the corotating frame; 7 is the unity matrix; €2 is
the solar angular velocity; 7 is the unit vector in the radial
direction; G is the gravitational constant; vy is the polytropic
index, and M, is the solar mass. When the simulations are
performed in the inertial frame, we set {2 = 0. As discussed by
Lyon et al. (2004), the energy equation is written for the plasma
—not total—energy, which is beneficial in small plasma [
regions, such as the inner magnetosphere, but may not be as
important in the solar wind.

2.2. MAS

For brevity, we denote the coronal MAS code “MAS-c” and
the heliospheric MAS code “MAS-h” hereafter. As explained
in more detail in RL13, both versions solve the 3D, time-
dependent, MHD equations (Lionello et al. 1998, 1999; Mikié
et al. 1999) in a computational domain extending between
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where B is the magnetic field, J is the electric current density, A
is the vector potential, p, v, p, and T = T; + T, = 2T; are the
plasma mass density, velocity, pressure, and temperature, where
T; and T, are ion and electron temperatures, g = —g,R2F/r? is
the gravitational acceleration (g) = GMo/R?), n the resistivity,
and v is the kinematic viscosity. The continuity equation is not
reproduced here because it is identical to (1). In the inertial frame
of reference, the fictitious force term, Fgy, is absent. In the
rotating frame of reference, we have

Fioy = —p[2Q2 xv + Q x (2 X 1)]. (10)

Here, the first term on the right-hand side is the Coriolis force,
while the second term is the centrifugal force. Both depend on
the angular velocity €2. Thus, Equation (9) is mathematically
equivalent to (2) with the addition of the viscous term. § in
Equation (8) represents the energy sources term.

The MAS model is capable of using the full thermodynamic
treatment of Lionello et al. (2009; which includes collisionless
thermal conduction). However, for most simulations in this
work (Sections 4.1, 4.2.1, 4.2.2, and 4.2.3), we use the so-
called polytropic approximation as in Linker et al. (2003),
which prescribes a simple adiabatic energy equation (i.e.,
S =0, which is appropriate in the heliosphere), and choose a
suitable value for . In Section 4.2.4, we present a heliospheric
LFM simulation driven by the thermodynamic MAS-c model.

3. MAS-LFM COUPLING METHODOLOGY

Similarly to previous efforts (Odstrcil et al. 2002b), the
coupling between the two codes is achieved by overlapping the
ghost region of the lower boundary of the heliospheric code
and the active physical domain of the coronal code. Figure 1
demonstrates this schematically. The red arc represents the
lower boundary of the active physical domain of the helio-
spheric code, referred to as the boundary interface hereafter.
The shaded region below the boundary interface is the ghost
region of the heliospheric code, where the boundary conditions
are set. Note that the blue grid representing the coronal code
need not end at the boundary interface and may extend further
out. What is important is that plasma flow be super-fast in the
entire shaded region, since this is what the boundary condition
assumes. In this case, boundary values of all plasma and field
variables need to be set (Wu & Wang 1987). Since LFM uses
an eighth order numerical scheme, its ghost region must be
four cells deep. Furthermore, because both codes use staggered
meshes, and the staggering is different, in general, all MHD
variables have to be interpolated in the shaded region in
Figure 1. We implemented the following interpolation scheme.
First, all MAS variables are linearly interpolated in the radial
direction, i.e.,

L M M
wu () = q;,wu (i) + (1 — q; Iwu (r ), an
where
M L
_ ri+1,u ru
i M M’
ri+1,u ri,u

MERKIN ET AL.

w,, marks the uth component of the vector of all the MHD
variables w = {p, V, B, T}; the superscripts “L” and “M”
stand for LFM and MAS, respectively; r/‘Z is the radial location
where the MAS variable w, is defined such that
r,Mu < rNL < r,-}fw. The notation in Equation (11) highlights
the fact that the locations where different variables are defined
depend on both the code and on the variable.

Once the different MAS variables are interpolated to the
appropriate radial locations on the LFM grid, they are then
bilinearly interpolated, similarly to (11), within the spherical
surface to the corresponding (6, ¢) locations, where 6 and ¢ are
the polar and azimuthal angles, respectively. An additional
caveat worth mentioning is that the MAS code records the ion,
not the total plasma temperature, which is taken into account by
setting T- = 2TM.

One exception to the above procedure is the radial
component of the magnetic field, B,. Since it is the magnetic
field component threading the surface of the boundary, the
condition V - B = 0 requires that B, be evolved by applying
the appropriate electric field within the surface of the boundary.
Figure 2 illustrates the situation. The index notation is such that
{i, j, k} indices correspond to the {r, 0, ¢} dimensions. The
rightmost cell in the figure corresponds to the first ghost cell
below the boundary interface. The face of this cell lying within
the surface of the interface is colored green. The remaining
three ghost cells corresponding to the same (j, k) indices are
also shown. We assume that the i-indices of the ghost cells are
{0, —1, —2, —3} going inward. The LFM staggering is such
that the magnetic fields are defined at the centers of the
corresponding faces as indicated in the figure. The magnetic
field component threading the surface of the boundary is then
B;(1/2,j, k) and is determined by the curl of the corresp-
onding electric fields (Ej, Ey), defined at cell edges lying within
the boundary. The electric fields themselves are computed from
the high-order interpolated values of the corresponding
components of the velocity and magnetic field, whereby B;
and B, components are interpolated along the i-direction, while
B; is interpolated along the j and k directions (see Lyon
et al. 2004, for details). Therefore, only B; and By fields need to
be defined in the ghost cells.

Given this procedure, our coupling algorithm for
B, (1, 0, ¢, t) evolution consists of the interpolation of the
magnetic field components By and B, and all the plasma
velocity components inside the ghost cells to the appropriate
locations. Here, r; is the heliocentric distance to the boundary
interface. Provided that we start with the correct initial
conditions for B,(r, 6, ¢, t = 0) everywhere at r > r;, this
should ensure that B, (r;, 6, ¢, t) will evolve correctly at all
later times. As shown below, this procedure does indeed work
very well.

The coupling algorithm we developed is sufficiently flexible
that both the coronal and heliospheric computations can be
performed in either the heliographic or the rotating frame. If
both computations are carried out in the same frame, then the
procedure outlined above is used. If the calculations are done in
different frames, then, in addition to the above procedure, the
appropriate transformation is performed such that

Vi(r, 0, ¢) = VE(r, 0, ¢) + Qrsind, (12)

where the superscripts denote the inertial and rotating frames,
correspondingly. Furthermore, an additional rotation in ¢ is
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Figure 1. Schematic representation of the coupling algorithm between MAS
and LFM. A 90° portion of a planar cut through the overlapping grids of the
two codes is shown. The blue grid represents the coronal code active domain.
The green grid represents the heliospheric code domain. The red line indicates
the boundary interface, i.e., the lower boundary of the heliospheric code active
domain. The shaded region represents the ghost cells of the heliospheric code.

necessary in this case, as mentioned by RL13:
wi(r, 0, ¢,t) =wl(r, 0, ¢ — Qt,1). (13)

The final note we make in this section is that the LFM time
step is usually in the tens of seconds or smaller (dependent on
resolution), while saving the MAS-c output at this time cadence
is not feasible. Thus, dependent on the speed of the CME, the
MAS output is saved roughly every few minutes, and the LFM
boundary values are linearly interpolated in time between these
states.

4. RESULTS

The results presented in this section are based on the MAS-c
and MAS-h simulation runs previously performed and
discussed by RL13. In different subsections below, we either
use exactly the same simulations as RL13 or simulations with
the same setup but with increased resolution. The LFM results
are also presented at different resolutions in different subsec-
tions below. The parameters of the different runs of both MAS
and LFM models presented in Sections 4.1, 4.2.1, 4.2.2, and
4.2.3 are summarized in Table 1. We will clearly identify what
model runs were used when the results are presented in these
sections. The time cadence of the MAS-c output files in all of
the runs presented below was ~5 minutes. Following RL13, all
numerical experiments in Sections 4.1, 4.2.1, 4.2.2, and 4.2.3
were driven by the polytropic MAS-c model and used the
polytropic index ~ = 1.05. The more realistc CME
(Section 4.2.4) was driven by the thermodynamic MAS-c and
used v = 1.5 in the heliosphere. The reader is referred to RL13
for a detailed description of the MAS-c and MAS-h simulations
used herein, but we mention briefly that in all cases idealized
magnetic configurations were simulated and a modified Titov
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& Démoulin (1999) flux-rope model (Titov et al. 2014) was
employed to trigger a CME. The polytropic runs used an out-
of-equilibrium flux rope, while the thermodynamic run started
with a magnetically stable flux rope and triggered the eruption
by flows converging to the polarity inversion line.

4.1. Testing the Coupling Interface

The results in this section are based on the simulation
coronal runs performed by RL13 for the non-rotating case with
an axisymmetric background solar wind. The reader is referred
to Section 3.1 of that paper for details of the simulation setup.
The relevant parameters of this run are summarized under
MAS-c in Table 1. To maximally simplify the environment in
which our numerical tests are done in this paper, the LFM code
was run on a uniform spherical grid, though the use of a
spatially adapted grid is a key functionality of the code. The
results in this section are based on the LFM run with
parameters summarized under “LFM HR” in Table 1. The
angular resolution was thus similar to MAS-c but with cells
distributed uniformly, while the radial resolution was substan-
tially higher in the LFM simulation.

Figure 3 presents a combined analysis of the coupling
algorithm performance during the CME passage. Each row in
the figure represents one variable. A slice through both the
MAS-c and LFM simulations is made near the boundary interface
and at ¢ close to the center of the region of the CME passage.
Then, the values of the corresponding variable are plotted as a
function of the polar angle 6 and time, ¢. It is clear from the figure
that the coupling machinery performed as intended as the color
plots are virtually indistinguishable. The very close agreement of
the minimum/maximum values, indicated at the top of the color
panels, confirms this point. To further verify the agreement
between the two codes, the line plots in the last column compare
the corresponding variables at a fixed € as a function of time.
These plots reveal an interesting detail: while all other variables
line up nearly exactly between the two codes, B, in the LFM
solution, while also nearly identical to the MAS-c result, may be
shifted by a few minutes. This shift is not constant in time but is
always comparable to or less than the MAS-c input cadence. We
further analyze the B,(r;, 6, ¢, t) evolution at the LFM inner
boundary (r = r;) below, but mention here one plausible reason
for the weak deviation of the LFM result from MAS-c. We
mentioned above that in the coupling algorithm currently
implemented, all variables, except B,, are linearly interpolated
in time between the MAS-c updates (~5 minutes). By construc-
tion, this guarantees that the time-interpolated variables will take
the same values as in MAS-c (spatial interpolation aside) and will
not deviate significantly between the updates as long as the
update cadence is sufficiently fine, i.e., t, — t,_1 < w/|0Ow/ 04|,
where w is the interpolated variable. However, B,, is evolved in
time by the LFM code self-consistently from the initial state by
applying the corresponding By, B, and v in the ghost region, and
is not forced to be the same as in the MAS-c code. Keeping this
in mind, the consistency of B, (r;, 0, ¢, t) in LFM and MAS-c
solutions (Figures 3(m)—(0)), including the temporal evolution, is
rather remarkable. We note that, in principle, other methods of
temporal interpolation for B, evolution can be used
(RL13, Merkin et al. 2016) that would ensure that
BrL(ri, 0, o, t,) = BrM(ri, 0, ¢, t,), where t, are the times of
MAS-c updates, and L and M superscripts stand for LFM and
MAS, as before. Given the good performance of the currently
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Figure 2. Schematic representation of LFM-helio ghost region below its lower boundary. The green cell face lies within the boundary interface as defined above
(see Figure 1). The locations of the staggered electric and magnetic field components are indicated. The {i, j, k} indices correspond to {r, 6, ¢} dimensions.

Table 1

Model Run Parameters Used in Sections 4.1, 4.2.1, 4.2.2, and 4.2.3

MAS-¢* MAS-h LR*

MAS-h HR LFM LR LFM HR

Number of cells, 200 x 150 x 200 46 x 150 x 200

N, X Ny X N,

600 x 300 x 400 106 x 96 x 128 212 x 256 x 512

Resolution variable, ~0°5 x 0°5°, variable, ~0°5 x 0°5°, %2 angular, uniform uniform, uniform, ~0°7 x 0°7,
d, ~ 0.5 0.5<d, <09 radial, d, ~ 0.05 ~1°9 x 2°8, d, ~ 0.3 d, ~0.14

Radial extent 1-50 20-50 20-50 20-50 20-50

Notes.

 Runs presented by RL13.
° In the region of CME propagation.
€ At the boundary interface.
4 Units of distance are R..

implemented algorithm, we have opted for its use in this paper,
but may implement a more accurate method in the future.

In Figure 4, we further explore the time evolution of the
radial magnetic field, B,, at the boundary interface between
MAS-c and LFM. Panels (a)—(c), (d)—(f), and (g)—(i) corre-
spond to three instances of time prior to the CME passage
through the boundary, during it, and near the end of the
simulation. The panels depicting 3D visualizations compare the
spatial distribution of the MAS-c (a), (d), (g) and LFM (b), (e),
(h) solutions at different times. It is clear from these 3D
visualizations that the solutions for B, in both codes are very
similar in terms of their spatial distribution as well as their
temporal evolution. Quantitatively, this is confirmed by the
minimum/maximum values indicated in the bottom right
corner of the corresponding panels. To further verify this
visual impression, we make a meridional slice through the
simulation indicated with the black line in the 3D visualizations
and plot the resulting comparisons in panels (c), (f), and (i).

Clearly, the differences between the two codes are minor.
Initially, the primary difference is due to the spatial interpola-
tion of the sharp 0B,/00 gradient at the current sheet. As time
progresses, the deviations may become larger (e.g., panel (i)),
but according to the minimum/maximum values, they remain
within 2%-3%.

4.2. Heliospheric Solutions

Now that we have established the proper functioning of the
coupling interface, we can go ahead and validate the resulting
heliospheric solutions of the MAS and LFM codes against each
other. We first compare the initial background solutions for
the non-rotating case discussed above (Section 4.2.1). We
then compare the solutions for the same case after the passage
of the CME through the boundary and explore the effects of
the spatial resolution of our simulations (Section 4.2.2).
Section 4.2.3 then shows comparisons of MAS-h and LFM
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Figure 3. Test of the boundary interface between the MAS-c and LFM codes for the non-rotating case. A meridional slice through both simulations is taken at the
center of the first active LFM cell above the boundary interface (r ~ 20.7 R.) and ¢ ~ 87° (i.e., nearly the x = 0 plane), roughly in the middle of the region where the
CME flux rope is passing through the interface. Each row corresponds to one variable: (a)—(c) p [em™3 x 1073, (@)~ V, [kms~'], (2)-(1) By [nT], ()—(1) By [nT],
(m)—(0) B, [nT]. The plots in the left and middle columns represent the corresponding variable as a function of the polar angle 6 and time. The right column shows the
comparison along the slice at § ~ 7176 indicated in the plots in the left and middle columns with the horizontal line. The min/max values are indicated at the top of

the plots in the left and middle columns.



THE ASTROPHYSICAL JOURNAL, 831:23 (14pp), 2016 November 1 MERKIN ET AL.

t=5.38 h t=5.38 h

Br (MAS) Br (LFM)
500 500
400

200
Io

Min/Max = -204/206 | LFM Min/Max = -205/206
MAS corona/LFM comparison @ 21 Rs

(c) t=5.38h [—

t=12.29 h

Br (MAS) Br (LFM)
500 500
400

200
|
-200
-400
-500

Min/Max = -310/639 | LFM

(f) MAS corona/LFM comparison @ 21 Rs

600 t=1 229 h —Br (LFM)

—Br (MAS)
EAOD
200
0
200

0 02 04 06 08 i 12 14 16 18 2 22 24 26 28 3 32
Polar angle

t=18.87 h t=18.87 h

Br (MAS) Br (LFM)
500 500
400

§ 200
|o
-200
-400
-500

Min/Max = -237/388 | LFM Min/Max = -237/399
(i) MAS corona/LFM comparison @ 21 Rs t=18.87 h
Br (LFM)
o
E200
&
o
200
0 02 04 0o s i 12 14 6 18 2 22 24 26 28 5
Polar angle

Figure 4. Time evolution of the radial magnetic field, B,, in the MAS-c and LFM codes just above the boundary interface (r = 21 R.) for the non-rotating case. The
solutions are shown for three time instances: just prior to the CME passage at t = 5.38 hr (a)—(c), during the CME passage at t = 12.29 hr (d)—(f), and toward the end
of the simulations r = 18.87 hr (g)—(i), compare to Figure 3. In the 3D color plots, MAS results are shown in the left column (a), (c), and (g), while LFM results are
on the right (b), (¢), and (h). The line plots compare the two codes along the meridional slice near the x = 0 plane, indicated by the black trace in the color plots. The
orientation axes of the 3D view are shown in the lower left corner of the color plots, while min/max values are indicated on the lower right. Units are nT.
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solutions for a rotating CME case in a similar axisymmetric
background. Finally, Section 4.2.4 describes a more realistic
rotating case with an asymmetric background.

4.2.1. Background Solutions

In the previous section, we established that the values near
the LFM coronal boundary evolve in agreement with the
MAS-c values inserted into LFM as the boundary condition. In
other words, we have established that the boundary interface
works as intended. It is now equally important to establish that
the initial condition for the subsequent CME propagation—
throughout the simulation domain—is correct. We do this using
the same non-rotating axisymmetric background case as
discussed in the previous section. The model run parameters
are “MAS-h LR” and “LFM HR” (Table 1).

Figure 5 shows the solutions for the scaled radial magnetic
field (x (r/1,)?) (a)-(c), plasma speed (d)—(f), and scaled density
(g2)-(@). Panels (a)—(b), (d)—(e), and (g)—(h) compare the MAS-h
and LFM solutions in the volume of the simulation, while
panels (c), (f), and (i) show the comparisons near the outer
boundary (r =48 R.,) in the meridional plane. While the 3D
visualizations indicate nearly identical solutions (corroborated,
again, by the min/max values in the lower right corner), the
line plots reveal small differences between the solutions. The
primary differences in the magnetic field (panel (c)) are near the
current sheet, but those existed near the inner boundary already
(see Figure 4). Thus, this indicates that the current sheet did not
diffuse significantly in either of the codes as the simulations
progressed. The differences in the plasma speed and density
(panels (f) and (i)) are only apparent because the line plots were
intentionally zoomed in. These differences are on the order of
1% or smaller and only emphasize the strong agreement
between the two simulations.

4.2.2. Non-rotating, Axisymmetric Background Case

Having established both the proper functioning of our
boundary interface and the correct steady-state background
heliospheric configurations, we now turn our attention to the
comparison of LFM and MAS-h solutions during the transient
stage of the CME propagation. We select one time instance
close to the end of the simulation (f = 20hr) when the front
edge of the CME is approaching the outer boundary
(r=50R.). For the results presented in this section, we
performed two additional simulations: one significantly
increased the resolution of the MAS-h model (x2 for the
angular dimensions and ~10-20-fold for the radial dimension;
see “MAS-h HR” in Table 1). For the LFM code, in contrast,
the additional run had a lower resolution than “LFM HR”
discussed heretofore (see “LFM LR” in Table 1). In this and the
subsequent Section (4.2.3), we only show the comparisons of
the V,, By, and B, variables to avoid cluttering the presentation.
The comparisons in the remaining variables are similar and do
not provide any additional information.

Figures 6-8 depict 3D visualizations of V,, By, and By,
respectively. Panels (a)—(b) depict the results of the lower
resolution simulation runs (“MAS-h LR” and “LFM LR” in
Table 1), while panels (c)—(d) show the results for higher
resolution (“MAS-h HR” and “LFM HR” in Table 1). No
substantial differences between either of the four runs are
evident in the morphology of the V, solutions, but closer
examination reveals a somewhat stronger flow in the “LFM
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LR” run in the low-speed region seen in the meridional plane
(Figure 6(b)) and also a somewhat stronger flow in the
equatorial region in the “MAS-h LR” simulation (Figure 6(a)).
This is confirmed by the line plot (Figures 6(e)) comparing the
four simulation runs along the r =34 R, circle in the
meridional plane marked with the black trace in
Figures 6(a)—(d). The line plot indicates almost identical
solutions in the “MAS-h HR” and “LFM HR” simulations with
weak deviations in the “MAS-h LR” and “LFM LR” runs.
While these deviations are small in relative terms (~3%), the
subsequent figures (Figures 7-8) reveal much more marked
differences between the lower and higher resolution MAS-h
runs, while the differences introduced by the change in the
LFM resolution are rather minor. Note that the line plots in
Figures 7(e) and 8(e) are made at different radial distances (34
and 36 R, respectively) to ensure that they trace the large
amplitude regions in the corresponding field components. In
particular, for the most geoeffective B, magnetic field
component (Figure 7), as well as the B component (Figure 8),
the min/max values in the LEM solutions change by a few nT.
In contrast, the higher resolution MAS-h (Figures 7(c) and
8(c)) produced By nearly twice as strong as the lower resolution
MAS-h (see Figure 7(b)) and the minimum B, value stronger
by 25% (see Figure 8(b)). The line plots in Figures 7(e) and
8(e) confirm the significant deviation of the “MAS LR” run
from the other runs, while demonstrating the weak dependence
of the LFM runs on the resolution.

We also performed an additional MAS-h run at an
intermediate resolution: it had the same angular resolution as
“MAS-h HR” but with the radial resolution doubled with
respect to “MAS-h LR” (i.e., ranging between ~0.25 and
0.45R., for 20 <r<50 R.). The radial resolution of that
simulation was thus roughly the same as the “LFM LR”
resolution on average: finer at smaller » and coarser at larger .
The results from that run (not shown) were somewhere in
between the “MAS-h LR” and “MAS-h HR” runs thus
indicating the progressive convergence of the MAS-h solutions
with increasing resolution. The LFM solutions are evidently
already sufficiently resolved at the lower resolution, though the
differences between “LFM LR” and “LFM HR” are not
negligible (e.g., Figure 6). Figures 6-8 generally confirm the
same picture: “MAS-h HR” is hardly distinguishable from
either “LFM LR” or “LFM HR,” while “MAS-h LR” is clearly
under resolved.

4.2.3. Rotating, Axisymmetric Background Case

The results discussed heretofore have been obtained from
simulations with no solar rotation included. In this section, we
relax this limitation. Both the LFM simulations and the MAS-c
simulation driving them were performed in the rotating frame,
while the MAS-h simulations, with which LFM is compared
were carried out in the inertial frame (see Section 3.2 in RL13).
Figures 9-11 present the comparisons in the same format as
Figures 6-8 in the previous section. Compared to the previous
section, however, the meridional plane was rotated by
A¢ ~ —11° to capture the CME from roughly the same
perspective, accounting for the solar rotation over the 20 hr of
the simulation. Solar rotation is evidenced, in particular, by the
presence of the weak B at the inner boundary (r =21 Rz) of
the simulations in all panels of Figure 11.

As in the preceding section, the differences in the V,
distribution (Figure 9) are relatively minor with “MAS-h LR”
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Figure 5. Comparison of the background MAS-h and LFM solutions for the non-rotating case. A meridional plane at x &~ 0 and the spherical surface near the LFM
inner boundary (r = r;, r; = 21 R) are color coded as follows: radial magnetic field component scaled as 7, B,’ = B,(r/r;)* in MAS-h (a) and in LFM (b); plasma
speed in MAS-h (c) and LFM (d); plasma density in MAS-h (g) and LFM (h). The line plots (c), (f), and (i) show the corresponding variables in the meridional plane at
r = 48 R, as a function of the polar angle . The 48 R, surface is indicated by the white (a), (b), (g), (h) or black (d), (e) circular trace in the meridional plane in all
color plots. The orientation axes of the 3D view are shown in the lower left corner of the color plots, while min/max values are indicated on the lower right.
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in the legend. Note the range of the horizontal axis in panel () has been intentionally zoomed in to emphasize the region where the differences between the codes are

most pronounced.

and “LFM LR” runs deviating by a comparable amount from
the corresponding high-resolution runs. However, the By and
B, distributions (Figures 10 and 11) show essentially the same
picture as for the non-rotating case: the LFM results are only
weakly dependent on the simulation resolution while the
MAS-h results exhibit significant changes; at the high
resolution, the MAS results become much closer to the LFM
simulation. In particular, the By maximum value nearly doubles
in strength at the higher MAS-h resolution (Figure 10(a) versus
Figure 10(c); see also Figure 10(e)). Marked differences are
also apparent in Figure 11(a) versus Figure 11(c) (see also
Figure 11(e)), while the latter is quite consistent with the LFM
result in Figures 11(b) and (d). Note that the similarity between
Figures 6-8 and 9-11, correspondingly, additionally confirms
the correct performance of the coupled simulation when solar
rotation is included.

4.2.4. A More Realistic Case

Encouraged by the success of the more simple experiments
presented in the previous sections of the paper, we have run a
more realistic interplanetary CME simulation, which is discussed
in Section 4 of RL13 and, in somewhat more detail, in Schwadron
et al. (2014, 2015). Unlike the previous simulations, which were
driven by the polytropic MAS-c code and used v = 1.05, here the
LEM heliospheric simulations were driven by the thermodynamic
MAS-c code, and v = 1.5 was set, which is a more realistic value
for the solar wind in the inner heliosphere (Totten et al. 1995). For
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this CME simulation, the MAS-c calculation was carried out in
the rotating frame, but without including the fictitious forces. The
LFM heliospheric simulation was performed in the inertial frame,
the MAS-c grid was assumed to be rotating underneath with the
angular rate ) = 27/25.38 day, and, additionally, a corotation
component of the azimuthal magnetic field was included,
B* = —Qrsin6/V,. Because of the computational constraints
of the thermodynamic MAS-c model the MAS-c coronal
simulation was used to drive the inner boundary of the LFM
heliospheric simulation for 20 hr, as in RL.13, which was sufficient
for the CME flux-rope structure to propagate through the
boundary interface between the codes. After this 20 hr period,
the last frame of the MAS-c simulation was used for the
remainder of the run as a corotating boundary condition. Unlike
the more simple tests above, here the simulation domain extended
from 18 R, to the Earth’s orbit at 1 au. The MAS-c simulation
had the angular resolution of Ny X N, = 300 x 260 at the
boundary interface with LFM (r = 18R.), which was
highly non-uniform and provided cell sizes as small as
d x dg x dy =02 R, x0%1 x 0?1 in the region of the
CME propagation. The LFM grid was uniform spherical with
the size of N. X Ny x N, = 384 x 192 x 384.

Figure 12 shows three snapshots of the simulation: (a) just prior
to the CME passage through the boundary between the models,
(b) after the passage, and (c) roughly midway en route to the
Earth’s orbit. As can be seen from the structure of the magnetic
field lines as well as the plasma streams, the background is both
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Figure 8. Same as Figure 6, but for B. Note that, unlike in Figures 6 and 7, the meridional trace (black trace in panels (a)—(d)) is placed at r = 36 R, as panel (e)

indicates.
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Figure 9. Same as Figure 6, but for the rotating case. Also, relative to Figure 6, the meridional plane is rotated by approximately —11°. See the text for details.
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Figure 10. Same as Figure 7, but for the rotating case. Also, relative to Figure 7, the meridional plane is rotated by approximately —11°. See the text for details.
persists throughout the simulation. In particular, the part of the

flux rope farthest from the observer indicates negative B, values
(green color) in excess of —15nT, e.g., in Figure 12(c). The high-

azimuthally asymmetric and includes the solar rotation. The
strong plasma speed gradients are well-captured by the LFM code,
and a significant geoeffective magnetic field component B,
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Figure 11. Same as Figure 8, but for the rotating case. Also, relative to Figure 8, the meridional plane is rotated by approximately —11°. See the text for details.

speed streams in the wake of the CME are associated with
relatively narrow, but pronounced density depletions. Those are
most likely a result of magnetic reconnection, and lead to a
localized increase of the Alfvén speed and, thus, to larger flow
speeds. Similar post-eruptive reconnection-driven outflows have
been reported previously in MHD simulations and were found to
be consistent with observations (Riley et al. 2002). The duration
of these streams is also possibly artificially increased due to the
fixed corotating boundary condition following 20 hr of time-
dependent driving.

The purpose of this section was to demonstrate the proper
functioning of our coupling interface and the ability of the
coupled MAS-LFM model to simulate a more realistic CME
propagation throughout the inner heliosphere. The simulation
itself is sufficiently sophisticated, and the results are suffi-
ciently complex, that we defer a more detailed analysis to a
dedicated publication.

5. SUMMARY AND CONCLUSIONS

This paper describes an effort to develop and verify a coupled
model of the solar corona and the inner heliosphere. The MAS
model was used to simulate CME initiation and dynamics in the
corona. The output from the coronal MAS was then used to drive
the LFM model of the inner heliosphere. We presented a number
of numerical tests including non-rotating and rotating CMEs in
the axisymmetric background, as well as a more realistic CME
simulation with both rotation and asymmetric background. We
demonstrated the correct performance of the boundary interface
between the models and verified the heliospheric results by
comparing heliospheric MAS and LFM solutions at different grid
resolution. While the initial background conditions were
reproduced nearly identically by both codes, the time-dependent
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behavior of the CME in the heliosphere exhibited dependence on
the model resolution. When run at progressively finer resolution,
the heliospheric MAS solutions gradually approached the LFM
results, while the latter showed only a weak dependence on the
resolution.

In this paper, we were concerned with the development and
verification of the coupling infrastructure between our coronal and
heliospheric models. Our focus has been on testing the coupling
interface and explaining the differences between the different
heliospheric solutions rather than on in depth analysis of the
simulated heliospheric structures. Such applications to problems
of CME propagation in the inner heliosphere are enabled now that
we have gained confidence in the fidelity of the coupled model.

The results presented above have significant implications for
such studies. The large and rapidly growing body of work on
MHD modeling of interplanetary CMEs lends importance to
the notion that the numerical solutions may be subject to the
dependence on the mesh resolution—as shown herein—or
possibly to other details of model numerics. Thus, caution must
be exercised in the interpretation of model results for
establishing the true system behavior. Even though there
are indications that CME propagation is not a chaotic process
(Pizzo et al. 2015), our results suggest that variability in
solutions between different models may necessitate ensemble
modeling based not only on paramet.er variation within one
model but on ensembles of different models as well.

Ultimately, understanding of the true system behavior cannot
be gained without observations. Most promising are compar-
isons of models with heliospheric imaging (e.g., Odstrcil &
Pizzo 2009; Lugaz & Roussev 2011), but these are not
conclusive because of uncertainties in observations themselves.
Simulations, on the other hand, can be helpful in interpreting
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Figure 12. Realistic CME simulation in the interplanetary space. The
equatorial slice and the spherical slice near the LFM inner boundary
r = 18 R, are color coded with the plasma speed. A number of magnetic
field lines are traced from fluid elements starting near the inner boundary of the
simulation and moving with the plasma. The field lines are color coded by the
B_ magnetic field component. The panels in the figure depict the simulation just
prior to the CME passage through the boundary (a), after the passage (b), and
midway en route to 1 au (c).

the observations (Aschwanden et al. 2006), but this requires
a high level of confidence in the simulation results. Thus, it is
only by thorough model-model and model-data analysis that
progress will be achieved.
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