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Abstract

The circadian clock integrates temporal information with environmental cues in regulating plant development and
physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this
role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to
regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated
defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by
overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of
CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to
influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least
partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid.
Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-
regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal
for the first time crosstalk between the circadian clock and plant innate immunity.
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Introduction

Plants are challenged by various pathogens on a daily basis.

Accumulating evidence implicates a role of the circadian clock in

regulating plant innate immunity. The circadian clock is the

internal time measuring machinery important for plant growth

and development. However, our understanding of the molecular

basis of how the circadian clock controls plant innate immunity is

still in its infancy.

Plants have evolved various mechanisms, some pre-formed and

others induced, to ward off pathogen invasion. An example of pre-

formed surface structures is the stomate, the natural opening

important for photosynthetic gas exchange. This opening can

provide a portal for pathogens to enter leaves; however, plants can

also control the aperture of stomata to physically limit pathogens

[1,2]. One type of induced defense is activated when plants

recognize pathogen-associated molecular patterns (PAMPs), which

are conserved molecules or structures present in groups of related

microbes. This defense, also termed PAMP-triggered immunity

(PTI), can be highly effective against non-adapted pathogens and

provides a basal level of defense even against adapted pathogens

[3,4]. Another type of induced defense is activated by plant

resistance (R) proteins, which specifically recognize secreted

pathogen effectors and subsequently activate effector-triggered

immunity (ETI). ETI, also termed R gene-mediated resistance, is a

stronger and faster elaboration of PTI, and frequently results in

hypersensitive cell death at the infection site [5,6,7]. The small

molecule salicylic acid (SA) has been linked to signal transduction

in PTI and ETI [8,9,10].

The circadian clock has profound influence on the fitness of
organisms [11,12,13,14,15,16]. The core of the circadian clock is

the central oscillator, which in Arabidopsis, is composed of
multiple interconnected negative feedback loops that orchestrate
biological adjustments independently of external stimuli [17,18].
Of these clock components, CIRCADIAN CLOCK ASSOCI-
ATED1 (CCA1) and its close homolog LATE ELONGATED

HYPOCOTYL (LHY) are transcription factors that are involved
in multiple feedback loops and function synergistically to regulate
clock activity [19,20,21].

The role of the circadian clock in controlling plant innate

immunity has long been proposed based on circadian-regulation of

defense gene expression [22,23,24,25,26]. Direct evidence from

several research groups has recently emerged to support such a role

of the circadian clock. Under free running conditions, wild type

Arabidopsis exhibits temporal oscillations in susceptibility to

Pseudomonas syringae infection, which are disrupted by overexpression

PLOS Pathogens | www.plospathogens.org 1 June 2013 | Volume 9 | Issue 6 | e1003370



of CCA1 [27]. Misexpression of several clock genes, including CCA1,

compromises resistance to the bacterial pathogen Pseudomonas

syringae and/or to the oomycete pathogen Hyaloperonospora arabidop-

sidis (Hpa) [27,28,29]. Interestingly, although lhy mutants exhibit

similarly shortened circadian period as cca1 mutants, LHY was not

shown to play a defense role against Hpa [28]. This raises the

question of whether CCA1 is a dual function protein, affecting both

the circadian clock and other non-clock related processes, as shown

in the case of another central oscillator component GIGANTEA

[30]. cca1-conferred disease susceptibility might be attributed to a

role of CCA1 in regulating non-clock related processes rather than

to its direct involvement in the circadian clock [31].

To better understand the role of CCA1 and LHY-mediated

circadian clock in defense control, we tested plants misexpressing

CCA1 and/or LHY for disease resistance to P. syringae and Hpa. We

show that CCA1 and LHY loss-of-function mutants synergistically

affect basal resistance and R gene-mediated defense against both

pathogens. Disrupting the circadian clock caused by overexpres-

sion of CCA1 or LHY also results in severe disease susceptibility to

P. syringae. The defense role of CCA1 and LHY against P. syringae is

at least partially through circadian control of stomatal aperture but

is SA-independent. Furthermore, we found that clock activity is

modulated by P. syringae infection or treatment with the elicitor

flg22. These data further establish the role of the circadian clock in

defense control and for the first time reveal crosstalk between the

circadian clock and plant innate immunity.

Results

The effect of CCA1 and LHY on clock activity can
manifest in LL and LD

To evaluate defense roles of CCA1 and LHY, we constructed

the cca1-1lhy-20 mutant via a genetic cross in a Col-0 background

that also contains the LUCIFERASE reporter gene driven by the

CCA1 promoter (ProCCA1:LUC). The single loss of function

mutants, cca1-1 and lhy-20, have shortened circadian periods of

ProCCA1:LUC expression in constant light (LL) [11]. In LL, we

confirmed that cca1-1lhy-20 had a much-shortened period

(19.960.11 hr), compared with wild type (wt) Col-0

(24.460.09 hr) (Figure S1A and [19]). Although experiments in

LL are important for establishing the involvement of the circadian

clock in specific phenotypes, such experimental conditions can also

be limiting. In entraining conditions (e.g., a 12 hr L/12 hr D

cycle; LD), the altered period of clock mutants like cca1-1 and lhy-

20 is not seen due to the entraining cycle, which imposes a 24 hr

period (Figure 1). The clock remains important in such LD

conditions, though, because the clock determines the phase of

specific events with respect to as dawn and dusk. Mutants with

altered period in LL typically exhibit altered phase in LD, with

short period mutants exhibiting a leading (early) phase and long

period mutants exhibiting a lagging (late) phase [32]. Moreover,

interactions between the endogenous circadian clock and external

LD cycles can results in phase differences, sometimes dramatic,

when measured in LD versus LL. For example, the phase of

maximal hypocotyl elongation during early seedling growth was

shifted 8–12 hours between LD and LL conditions [33,34]. In

their natural environment, plants do not usually encounter LL.

Therefore in evaluating the role of the circadian clock on plant

defense against pathogens, it is critically important to study plant-

pathogen interactions in LD and to consider the potential

influence of the circadian clock on the phases of rhythmic events

that might influence the plant response to pathogen challenge.

Figure 1. Clock activity of plants misexpressing CCA1 and/or
LHY is disrupted in LD. Eight-day-old seedlings of Col-0, cca1-1, lhy-
20, cca1-1lhy-20, and CCA1ox expressing ProCCA1:LUC reporter were
grown from germination in 12 hr light/12 hr dark cycles at 22uC.
Luciferase activity was recorded with a Packard TopCount luminometer
in LD at 22uC. (A) Mean circadian traces for ProCCA1:LUC activity. (B)
Summary of phase value for ProCCA1:LUC in each genotype. Standard
error of the mean (SEM) (n = 12–24) was used for (A) and (B). Letters
indicate significant difference among the samples (P,0.05; Student’s t-
test).
doi:10.1371/journal.ppat.1003370.g001

Author Summary

Plants are frequently challenged by various pathogens.
The circadian clock, which is the internal time measuring
machinery, has been implicated in regulating plant
responses to biotic cues. To better understand the role
of the circadian clock in defense control, we tested disease
resistance with Arabidopsis mutants disrupted in CCA1 and
LHY, two key components of the circadian clock. We found
that consistent with their contributions to the circadian
clock, cca1 and lhy mutants synergistically affect resistance
to both bacterial and oomycete pathogens. Disrupting the
circadian clock caused by overexpression of CCA1 or LHY
also results in severe disease susceptibility. Thus, our data
further demonstrate a direct role of the circadian clock
mediated by CCA1 and LHY in defense regulation. We also
found that CCA1 and LHY act independently of salicylic
acid mediated defense but at least through the down-
stream target gene GRP7 to regulate both stomata-
dependent and -independent pathways. We further show
that defense activation by bacterial infection and the
treatment with the elicitor flg22 can also feed back to
regulate clock activity. Together our study reveals for the
first time reciprocal regulation of the circadian clock and
plant innate immunity, significantly expanding our view of
complex gene networks regulating plant defense respons-
es and development.

Clock-Defense Crosstalk
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We show here that in LD the phases of cca1-1 and lhy-20 single

mutants were leading with respect to that of wild type Col-0, and

that the cca1-1 lhy-20 double mutant exhibited a much earlier

phase than either single mutant, consistent with the synergistic

contribution of CCA1 and LHY in regulating clock activity

(Figure 1 and Figure S1B). Early phase was also reported with

other cca1lhy mutants [20,21]. In addition, we found that plants

overexpressing CCA1 (CCA1ox), which display arrhythmic clock

activity in LL [35], also showed arrhythmic expression of

ProCCA1:LUC in LD with an acute peak in response to lights on

(Figure 1 and S1B). Low ProCCA1:LUC activity in CCA1ox is

consistent with CCA1 being a negative regulator of its own

expression [35]. These results emphasize that altered function of

the circadian clock can manifest in both LL and LD conditions.

CCA1 and LHY contribute synergistically to resistance to
P. syringae

To test disease resistance of cca1-1 and lhy-20 plants, we

performed infection experiments at Zeitgeber Time 1 (Zeitgeber

Time is the time relative to dawn; ZT1 is 1 hr after lights on) or

ZT13 (1 hr after lights off), two times of day associated with drastic

changes of light regime. Plant leaves were pressure-infiltrated with

virulent P. syringae pv. maculicola ES4326 strain DG3 (PmaDG3)

[36]. The infected plants were placed in either LD or LL. Bacterial

growth assays at 3 days post infection (3 dpi) revealed no

significant difference among Col-0, cca1-1, lhy-20, and cca1-1lhy-

20 in either LD or LL (Figure 2 and Figure S2).

Under natural conditions, P. syringae enters the apoplast of leaves

through openings such as stomata and wounds. It is known that

stomatal aperture is regulated by the circadian clock [37,38].

Therefore, infiltration of bacteria directly into plant tissue might

bypass the influence of the circadian clock on stomatal defense. To

test this possibility, we spray-infected with PmaDG3 Col-0, cca1-1,

lhy-20, and cca1-1lhy-20 at ZT1 and ZT13 in LD. We found that

Col-0 supported over 10-fold more bacterial growth with ZT1

infection than with ZT13 infection (Figure 3A and 3B), suggesting

that Col-0 is more resistant at night than at dawn when spray-

infected. Although we did not observe significant difference in

bacterial growth between Col-0 and cca1-1 and lhy-20 single

mutants, the double mutant cca1-1lhy-20 showed enhanced

susceptibility to PmaDG3 when sprayed at ZT13 (Figure 3A to

3C). Consistent with this result, we found that PmaDG6 (an

avirulent strain recognized by the resistance protein RPS2 in Col-

0) [36]) grew significantly more in cca1-1lhy-20 than in Col-0 and

the single mutants with ZT13 infection (Figure 3D and 3E).

Together these data suggest that CCA1 and LHY share redundant

functions to regulate both basal and RPS2-mediated defense

against P. syringae.

Overexpression of CCA1 or LHY confers enhanced
susceptibility to P. syringae

To further substantiate the role of CCA1 and LHY in defense

regulation, we tested disease resistance of plants overexpressing

CCA1 (CCA1ox) or LHY (LHYox), which were shown to have

arrhythmic clock activity in LL [35,39]. CCA1ox plants also

Figure 2. Bacterial growth in plants infiltrated with Pseudomo-
nas syringae pv. maculicola strain DG3 (PmaDG3). (A) Time scheme
used in this report. The white box indicates the light period and black
boxes indicate dark periods. (B) ZT1 infection. (C) ZT13 infection. In
12 hr L/12 hr D (LD), 25-day-old plants were grown and infected by
infiltration with PmaDG3 at 16105 colony forming unit (CFU)/ml.
Bacterial growth was assessed at 3 dpi. Data represent the average of
bacterial numbers in six samples 6 standard error. Log transformed
bacterial growth was used in statistical analysis (Student’s t-test). Letters
indicate significant difference among the samples (P,0.05). These
experiments were repeated three times with similar results.
doi:10.1371/journal.ppat.1003370.g002

Figure 3. Bacterial growth in plants spray-infected with P.
syringae. (A) ZT1 infection with PmaDG3. (B) ZT13 infection with
PmaDG3. (C) Pictures of infected leaves from (A) and (B) at 4 dpi. (D)
ZT1 infection with PmaDG6. (E) ZT13 infection with PmaDG6. Twenty
five-day-old plants were infected by spraying with the virulent strain
PmaDG3 or the avirulent strain PmaDG6 (16108 CFU/ml) at ZT1 or ZT13.
Bacterial growth was assessed at 3 dpi. Data represent the mean
bacterial numbers 6 SEM (n = 6). Letters indicate significant difference
among the samples (P,0.05; Student’s t-test). These experiments were
repeated three times with similar results.
doi:10.1371/journal.ppat.1003370.g003

Clock-Defense Crosstalk
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exhibited clock arrhythmicity in LD (Figure 1 and S1B). Disease

resistance assays indicate that CCA1ox plants were more susceptible

to PmaDG3 than Col-0 with infiltration infection in LD or LL

(Figure 2 and S2). CCA1ox plants were also more susceptible than

Col-0 to PmaDG3 and to PmaDG6 when spray-infected at ZT1 or

ZT13 in LD (Figure 3).

LHYox plants are in the Landsberg erecta (Ler) background, with

which we used P. syringae pv. tomato DC3000 (DC3000) to test

disease resistance because this strain induces stronger disease

symptoms in our hands than does PmaDG3. Similar to CCA1ox

plants, LHYox plants had more bacterial growth than Ler when

infiltrated with DC3000 at ZT1 or ZT13 in LD (Figure 4A). In

addition, spray-infection at ZT1 or ZT13 in LD also gave similar

results (Figure 4B). Together, disruption of the circadian clock by

misexpressing CCA1 and/or LHY compromises disease resistance

to P. syringae, supporting a direct role of the circadian clock in

defense regulation.

CCA1 and LHY gate stomatal response to dark and to P.
syringae infection

Our data show that cca1-1lhy-20 was more susceptible with

spray-infection and CCA1ox and LHYox plants displayed enhanced

susceptibility with both spray and infiltration infections. These

suggest that both stomata-dependent and -independent defense

can be affected by misexpression of either of these two core

oscillator genes. Consistent with this notion, a previous study

showed that CCA1ox plants had increased CO2 assimilation and

stomatal conductance [13]. To further test whether the defense

role of CCA1 and LHY is linked to the control of stomatal pore

size, we measured plant stomatal aperture at ZT1 and ZT13 in

LD. Consistent with Col-0 being more resistant with spray-

infection at ZT13 than at ZT1, we found that stomatal aperture of

Col-0 was much smaller at ZT13 than at ZT1 (Figure 5A).

Compared with Col-0, the cca1-1 and lhy-20 mutants and CCA1ox

plants showed similar stomatal aperture at ZT1 but had greater

stomatal aperture at ZT13 (Figure 5A). These data suggest that

disrupting clock activity mediated by CCA1 and LHY could make

plants less responsive to dark-induced stomatal closure at night,

thereby enhancing access of P. syringae to the leaf interior.

To further determine how these mutants respond to P. syringae

infection, we measured stomatal aperture in the presence of

PmaDG3. PmaDG3 treatment was performed at ZT4 after plants

had been exposed to light for four hours to ensure the opening of

the stomata (Figure S3). At 1 hr post infection (1 hpi), we observed

a 48.1% suppression of stomatal aperture in Col-0, compared with

mock treatment (Figure 5C top and Table S1). However, this

suppression was much reduced in cca1-1 and lhy-20 and largely

blocked in cca1-1lhy-20 and CCA1ox. P. syringae-induced stomatal

closure was transient since both mock and PmaDG3-treated leaves

showed similar stomatal aperture at 3 hpi (Figure 5C bottom).

Although exhibiting similar stomatal aperture at ZT1 and ZT13

(Figure 5B), the LHYox plants also showed reduced suppression of

DC3000-induced stomatal closure at 1 hpi (16.9%), compared

with Ler control (51.6%) (Figure 5D and Table S1). Hence, these

results indicate that disrupting the circadian clock by CCA1 and

LHY misexpression impairs plants’ capacity of inducing stomatal

closure in response to P. syringae.

CCA1 and LHY contribute synergistically to Hpa
resistance

CCA1 but not LHY was previously shown to regulate resistance

to the oomycete pathogen Hpa [28]. To test whether a

contribution of LHY to Hpa resistance could be discerned in the

double mutant cca1-1lhy-20, we sprayed seven-day-old seedlings at

ZT7 in LD with the virulent strain Hpa Emco5 or the avirulent

strain Hpa Emoy2 (recognized by the R protein RPP4 in Col-0).

Figure 4. Overexpression of the LHY gene confers enhanced disease susceptibility to P. syringae. (A) Infiltration with DC3000. (B) Spray
with DC3000. 30-day-old plants were infected with P. syringae pv. tomato strain DC3000 (DC3000) by infiltration (16105 CFU/ml) or spray
(16108 CFU/ml) at ZT1 or ZT13 in LD. Bacterial growth was assessed at 3 dpi. (C) Cell death staining. The fourth to fifth leaves of Ler and LHYox were
stained with trypan blue to visualize cell death [54]. (D) SA quantification. Total SA was extracted from 20- and 30-day old plants. Data represent the
average of SA levels (n = 3) 6 standard deviation. Statistical analysis was performed with Student’s t-test (StatView 5.0.1). Asterisks indicate significant
difference between Ler and LHYox at the same time point (P,0.05). These experiments were repeated three times with similar results.
doi:10.1371/journal.ppat.1003370.g004

Clock-Defense Crosstalk
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We observed significantly more susceptibility to both Hpa strains in

the cca1-1lhy-20 double mutant, compared to Col-0 and the single

mutants (Figure 6A and 6B) while the CCA1ox plants were

substantially more resistant to Hpa Emco5 (Figure 6A). Our data

are broadly in agreement with those previously reported [28]. The

reason that we did not observe a significant difference between

Col-0 and cca1-1 could be due to the difference in the infection

time and/or Hpa strains used - Wang et al inoculated plants with

the avirulent strain Hpa Emwa1 at dawn [28] while we used Hpa

Emco5 (virulent) and Emoy2 (avirulent) in the afternoon in our

experiments. Nevertheless, these data, together with the P. syringae

data described earlier, demonstrate that CCA1 and LHY

contribute synergistically to basal resistance and R-gene mediated

defense against both bacterial and oomycete pathogens. What

surprises us is the difference in response to P. syringae (decreased

resistance) and Hpa (enhanced resistance) strains observed in

CCA1ox plants. We speculate that there are distinct mechanisms

that these plants use to defend against the two pathogens.

Defense-related genes might be preferentially regulated
by CCA1 and LHY

Identification of defense-related genes controlled by CCA1 and

LHY is critical to gain better understanding of the mechanism of

action of CCA1 and LHY in defense regulation. To this end, we

analyzed promoters of 571 genes for CCA1-binding site (CBS) and

evening element (EE), two cis elements known for CCA1 and LHY

binding [40,41,42]. These 571 genes had been previously selected

to construct mini-microarrays, consisting of three groups, selected

(337 defense-related genes based on microarray experiments),

empirical (127 empirical marker genes for various pathogen

responses), and normalization (107 non-defense related genes

whose expression levels were relatively stable among experiments

with pathogen infection) [43]. The online tool POBO [44] was

used to analyze up to 3000 bp from the promoter regions of these

Figure 5. Disruption of CCA1 and LHY leads to altered stomatal
activity. (A) Stomatal aperture at ZT1 (left) or ZT13 (right) for Col-0,
cca1-1, lhy-20, cca1-1lhy-20, and CCA1ox. (B) Stomatal aperture at ZT1 or
ZT13 for Ler and LHYox. (C) Stomatal aperture at 1 hr (top) or 3 hr
(bottom) after exposure to PmaDG3 or mock for Col-0, cca1-1, lhy-20,
cca1-1lhy-20, and CCA1ox. (D) Stomatal aperture at 1 hr or 3 hr after
exposure to DC3000 or mock for Ler and LHYox. For (A) and (B), three
leaves from uninfected 25-day-old plants grown in 12 hr light/12 hr
dark at 22uC were taken at the indicated times for the measurement of
stomatal aperture. For (C) and (D), P. syringae treatment was conducted
at ZT4 to ensure that most stomata were open upon treatment. Leaves
were immersed in bacterial suspension (108 cfu/ml) or water as mock
treatment. At least three leaves of a genotype were collected at the
indicated times for stomatal aperture measurement. Data represents
the average of three experiments 6 SEM. Each of these experiments
contains at least 70 randomly chosen stomata. Different letters in (A)
indicate significant difference among the samples. Asterisks in (C) and
(D) indicate significant difference between mock-treated and infected
plants of the same genotype (P,0.001; Student’s t-test). These
experiments were repeated three times with similar results.
doi:10.1371/journal.ppat.1003370.g005

Figure 6. CCA1 and LHY contribute synergistically to resistance
to Hyaloperonospora arabidopsidis (Hpa). (A) Infection with Hpa
Emco5. (B) Infection with Hpa Emoy2. Seven-day-old seedlings were
spray-infected at ZT7 in LD with the virulent strain Hpa Emco5 or the
avirulent strain Hpa Emoy2 (56104 spores/ml in water). Sporangiophore
production in cotyledons of each genotype was counted at 7 dpi. Data
represent the average number of sporangiophores from 20 seedlings
for CCA1ox and 50 seedlings for other genotypes 6 SEM. Letters
indicate significant difference among the samples (P,0.01; Mann-
Whitney test). These experiments were repeated three times with
similar results.
doi:10.1371/journal.ppat.1003370.g006

Clock-Defense Crosstalk
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genes, which do not include the coding sequences of neighboring

genes, for an enrichment of CBS or EE motifs. The background

for this analysis was generated using pseudo-clusters of 100

promoters of up to 3000 bp in length of randomly sampled

Arabidopsis genes (1000 bootstrap replications were used in the

sampling). Compared with the background, the CBS motif was

found as often as expected by chance in the selected and empirical

gene promoters (Figure 7A and 7B) but the motifs were found less

frequently in the normalization gene promoters (Figure 7C and

Table S2). When compared to the normalization genes, there was

a greater than 40% increase of the cluster mean for the CBS motif

in both selected and empirical genes. These observations suggest

that although defense-related genes (selected and empirical genes)

are not particularly enriched with the CBS motif, the non-defense

related genes (the normalization genes) are slightly depleted of the

motif. The enrichment of the EE motif was more pronounced in

both selected and empirical genes, with about 200% increase of

the cluster means when compared to the normalization genes

(Figure 7D–7F and Table S2). Thus, these results suggest that

defense-related genes are preferentially regulated by CCA1 and

LHY. However, since the sample size in each group is small,

caution should be taken when extrapolating this interpretation to

the whole genome level.

The defense gene GRP7 acts downstream of CCA1 and
LHY

The frequency of CBS or EE motif per promoter region was

quantified from the above three sets of genes (Figure S4). Among

the genes analyzed, we found that GRP7 (At2g21660; also known

as COLD AND CIRCADIAN REGULATED 2 [CCR2]) [45,46] had

the most overrepresentation of the EE motif, with four EE within

a 300 bp promoter region. One CBS motif was also found at

1294 bp of the GRP7 promoter. GRP7 is a key constituent of a

slave oscillator regulated by the circadian clock [45,47] and also

has been demonstrated to have roles in regulating floral transition

and plant defense [48,49]. Expression of GRP7 was previously

shown to be circadian regulated with a shortened circadian

period in a cca1lhy double mutant and a disrupted pattern in

CCA1ox plants [12,20,50]. However, GRP7 had never been

explicitly established as a target gene of CCA1 and LHY. Our

northern analysis confirmed circadian expression of GRP7 and

showed that such expression was slightly affected by the cca1-1

mutation and became arrhythmic in CCA1ox in LL (Figure S5).

We also observed disrupted expression of GRP7 in CCA1ox plants

in LD (Figure 8A). Thus, these data further confirm that GRP7 is

regulated by CCA1.

GRP7 was previously demonstrated to regulate stomatal activity

[51]. We found that similar to cca1-1lhy-20 and CCA1ox plants,

stomatal aperture of grp7-1 was greater than that of Col-0 at ZT13

(Figure 8B). In response to PmaDG3 infection, grp7-1 displayed

14.2% suppression of stomatal aperture whereas Col-0 showed

48.1% suppression at 1 hpi (Figure 8C, S3, and Table S1),

suggesting that grp7-1 has reduced responsiveness to PmaDG3 in

stomatal closure. We further found that grp7-1 was significantly

more susceptible to PmaDG3 than Col-0 when spray-infected at

ZT13 in LD (Figure 8D). Together our bioinformatic analysis and

experimental evidence indicate that GRP7 is a target of CCA1

and/or LHY that regulates stomatal activity and modulates plant

defense.

CCA1 and LHY regulate disease resistance independently
of SA

SA is a key signaling molecule involved in both basal resistance

and R gene-mediated defense. The accelerated cell death 6-1 (acd6-1)

mutant shows constitutive defense, high levels of SA, and

extremely small size that is sensitized to the change of SA defense

[52,53]. Thus, acd6-1 has been used as a convenient readout to

gauge the effect of some known defense genes in regulating SA-

mediated defense [54,55,56]. To determine whether CCA1 and

LHY act through SA, we crossed cca1-1lhy-20 to acd6-1 and

obtained homozygous double (acd6-1cca1-1 and acd6-1lhy-20) and

triple (acd6-1cca1-1lhy-20) mutants. We found that both double and

triple mutants resembled acd6-1, displaying dwarfism and accu-

mulating similar SA levels (Figure 9A and B). However, when

spray-infected with PmaDG3 at ZT13, the double mutants were

slightly more susceptible while the triple mutant was much more

susceptible than acd6-1 (Figure 9C). These results corroborate a

synergistic interaction between CCA1 and LHY in clock and

defense regulation. They also suggest that the defense role of

CCA1 and LHY is largely SA-independent. Consistent with this

notion, we found that in the absence of acd6-1, the SA levels are

comparable among Col-0, cca1-1, lhy-20, cca1-1lhy-20, and CCA1ox

in LD (Figure S6A). In addition, although more susceptible to P.

syringae infection, LHYox plants were dwarf, showed spontaneous

cell death, and accumulated high levels of SA (Figure 4C, 4D, and

S6B). Together, these results indicate that CCA1 and LHY act

independently of SA to regulate resistance to P. syringae.

Figure 7. Motif enrichment analysis of 571 gene promoters. A
total of 571 promoters from genes in three categories, selected (337
defense-related gene based on microarray experiments), empirical (127
empirical marker genes for various pathogen responses), and normal-
ization (107 non-defense related genes) [43], was analyzed for the
enrichment of CBS or EE motifs, using the online tool POBO (http://
ekhidna.biocenter.helsinki.fi/poxo/pobo/) [44]. (A) and (D) are for
selected genes, (B) and (E) are for empirical genes, and (C) and (F)
are for normalization genes. Panels (A), (B), and (C) are for the CBS
motif and panels (D), (E), and (F) are for the EE motif. The red lines
represent the background while the blue lines represent one of three
sets of genes used in each analysis.
doi:10.1371/journal.ppat.1003370.g007
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Defense activation reciprocally regulates clock activity
Our data and those from other groups clearly indicate that plant

innate immunity is an output event regulated by the circadian

clock. However, it is not known whether this regulatory

relationship is reciprocal with defense activation feeding back to

affect clock activity. To test this, we infected Col-0 expressing the

ProCCA1:LUC reporter with both virulent and avirulent P. syringae

strains. Bioluminescence analysis indicated that the period of

ProCCA1:LUC was significantly shortened in the presence of the

virulent strain PmaDG3 or the avirulent strain PmaDG6 at a high

dose (OD = 0.1) (Figure 10 and Table S3). Similarly, infection of

Col-0 seedlings expressing ProGRP7:LUC also resulted in period

shortening of ProGRP7-controlled luciferase activity (Figure S7 and

Table S3). These results suggest that clock activity is modulated by

both basal and RPS2-mediated defenses.

To further investigate which defense signaling pathway(s) are

involved in the feedback-regulation of clock activity, we treated

Col-0/ProCCA1:LUC seedlings with flg22 or benzo (1,2,3)

thiadiazole-7-carbothioic acid (BTH). Flg22 is a 22-aa synthetic

peptide from the conserved region of flagellin proteins of P. syringae

and elicits plant basal defense in a wide variety of plant species

[4,57]. BTH is an agonist of SA that efficiently activates SA

signaling [58]. We found that flg22 at both doses (1 mM and

10 mM) significantly shortened the period of CCA1 expression.

However, BTH treatment (10 mM and 300 mM) did not change

CCA1 promoter activity (Figure 11A and Table S3). To further test

if SA could affect clock activity, we used a cotyledon movement

assay [59] to gauge clock activity in the acd6-1 mutant, which

constitutively accumulates high levels of SA [52,53]. We found

that acd6-1 showed similar period, phase, and amplitude of the

rhythm for cotyledon movement to Col-0 (Figure 11B and S8).

Taken together, these data indicate that activation of flg22-

triggered basal defense but not SA signaling can feedback to

regulate clock activity.

Discussion

Increasing evidence has implicated a role of the circadian clock

in regulating plant innate immunity. Of the components in the

central oscillator of the circadian clock, CCA1 is the first shown to

Figure 9. CCA1 and LHY conferred disease resistance is SA-
independent. (A) Picture of 25-day-old plants. (B) SA quantitation.
Twenty-five-day old plants grown in 12 hr light/12 hr dark cycle (LD) at
22uC were harvested at ZT1, 7, 13, 19 and 25. Total SA were extracted
and measured as described [90]. (C) Infection with PmaDG3. Twenty
five-day-old plants were infected by spraying with the virulent strain
PmaDG3 (16108 CFU/ml) at ZT13. Bacterial growth was assessed at
3 dpi. Data represent the mean bacterial numbers 6 SEM (n = 6). Letters
indicate significant difference among the samples (P,0.05; Student’s t-
test). These experiments were repeated three times with similar results.
doi:10.1371/journal.ppat.1003370.g009

Figure 8. CCA1-regulated GRP7 affects disease resistance to P.
syringae and stomatal activity. (A) Expression of GRP7 is disrupted in
CCA1ox in LD. Twenty five-day-old Col-0 and CCA1ox plants grown in a
chamber with a 12 hr light/12 hr dark cycle and 22uC were harvested at
ZT1 at 6 hr interval for 24 hrs followed by RNA extraction and northern
blotting. 18S rRNA was used as a loading control. These experiments
were repeated twice with similar results. (B) Stomatal aperture at ZT1 or
ZT13. (C) Stomatal aperture at 1 hr (left) or 3 hr (right) after exposure to
PmaDG3 or mock solution. (D) Bacterial growth assay with ZT1 or ZT13
infection in LD. Asterisks indicate significant difference among the
samples at the indicated times in panels (B) and (D) or within the same
genotypes in panel (C) (P,0.05; Student’s t-test). These experiments
were repeated twice with similar results.
doi:10.1371/journal.ppat.1003370.g008
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affect plant defense against P. syringae and Hpa [27,28]. However,

its close homolog, LHY, has not been shown such a role, despite

the fact that loss-of-function mutants in both genes displayed

similarly shortened period. Thus, it was unclear whether plant

innate immunity is regulated by the circadian clock mediated by

CCA1 or by non-clock related function of CCA1. Here we show

that disrupting clock function by misexpression of CCA1 and/or

LHY leads to compromised immunity, thus further establishing a

direct role of the circadian clock in defense regulation. Our data

suggest that one of the mechanisms by which CCA1 and LHY

regulate plant innate immunity is through affecting stomatal

defense with the downstream target gene GRP7. We further

demonstrate that defense activation by P. syringae infection and

flg22 treatment shortens circadian period. Thus this study reveals

for the first time crosstalk between the circadian clock and plant

innate immunity.

The circadian clock mediated by CCA1 and LHY regulates
plant defense under LL and LD conditions

Typical studies of the circadian clock have been performed

under constant light (LL) conditions to emphasize the endogenous

nature of the clock. In LL, perturbations of the circadian clock

typically result in altered period length; for instance, loss of CCA1

or LHY function shortens circadian period. However, plants

typically grow in LD cycles in which the environmental cycle

entrains even a mutant clock to a 24-hour period. Under such LD

conditions, perturbations in the circadian clock can manifest as

alterations in phase for reporter gene expression (Figure 1 and S1B

and [20,21]) as well as changes in a variety of other traits,

including flowering time, metabolism, stomatal activity, gene

expression patterns, and defense responses [12,13,20,29,50,60,61].

Thus, the effects of disrupted circadian clock could become

apparent under LL and LD conditions.

Figure 10. Defense activation by P. syringae infection shortens
the period of the ProCCA1:LUC reporter activity. (A) Mean
circadian traces for ProCCA1:LUC activity. (B) Mean circadian period of
the ProCCA1:LUC reporter. Col-0 seedlings expressing the ProCCA1:LUC
reporter were grown from germination in 12 hr light/12 hr dark cycles
at 22uC. At ZT7, eight-day-old seedlings were incubated with PmaDG3
or PmaDG6 (16108 or 16107 CFU/ml, labeled as 0.1 or 0.01,
respectively) for 3 mins, blot dried, and transferred to 96-well plates
containing 200 ml of MS media and 30 ml of a 2.5 mM D-luciferin
solution. Luciferase activity was recorded with a Packard TopCount
luminometer in LL at 22uC. RAE: relative amplitude error. RAE values
close to zero indicate strong rhythms while those close to 1 indicate the
limit of statistically significant rhythmicity. SEM (n = 12–24) was used for
(A) and (B). These experiments were repeated twice with similar results.
doi:10.1371/journal.ppat.1003370.g010

Figure 11. The clock period is shortened by treatment with
flg22 but not with BTH. (A) Mean circadian period of the
ProCCA1:LUC reporter. Eight-day-old Col-0 seedlings expressing the
ProCCA1:LUC reporter were grown from germination in 12 hr light/12 hr
dark cycles at 22uC. At ZT7, eight-day-old seedlings were treated with
flg22 (1 mM or 10 mM) or BTH (10 mM or 300 mM) and transferred to 96-
well plates containing 200 ml of MS media and 30 ml of a 2.5 mM D-
luciferin solution. Luciferase activity was recorded with a Packard
TopCount luminometer in LL at 22uC. (B) Cotyledon movement assay
with acd6-1. Eight-day-old acd6-1 seedlings grown in a 12 hr light/
121 hr dark cycle at 22uC were transferred to 24-well cloning plates and
recorded in LL at 22uC for cotyledon movement. SEM (n = 12–24) was
used for (A) and (B). These experiments were repeated twice with
similar results.
doi:10.1371/journal.ppat.1003370.g011
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Several studies indicate that the circadian clock mediated by

CCA1 and LHY regulates plant defense in both LL and LD

([27,28] and this study). For instance, Bhardwaj et. al. showed that

CCA1ox plants were more susceptible to P. syringe infection than wt

in LL [27]. Here we extend this observation by showing that

CCA1ox plants had enhanced susceptibility to P. syringae in both LL

and LD (Figure 2, 3, and S2). In LD, enhanced susceptibility was

also observed in cca1-1lhy-20 and LHYox plants to P. syringae strains

(Figure 3 and 4) and in cca1-1lhy-20 to Hpa strains (Figure 6).

Consistent with our data, a single cca1 mutant showed compro-

mised resistance to a different Hpa strain and affected expression of

some defense-related genes in LD [28]. Together these studies

firmly establish that plant innate immunity is an output regulated

by the circadian clock under LL and LD conditions.

While we mainly focus our analyses in this report on defense

phenotypes regulated by CCA1 and LHY in LD, we also agree

that we should use caution when interpreting our results since the

effect of the circadian clock can manifest differently under different

light conditions, including both differing daylengths and light

intensities. For instance, it is possible that the degree of

susceptibility to pathogen infection and the severity of stomatal

change in response to dark and P. syringae infection could be

different in LD from those in LL in cca1-1lhy-20 (compared with

wt). Alternatively, the amplitude, period, and/or phase of defense

gene expression could be different in cca1-1lhy-20 (compared with

wt) in LD from those in LL. Even different LD conditions could

have different effects on clock activity. For example, Michael et al.

[62] showed that the set of cycling transcripts increased with the

number of different cycling conditions examined. We found that in

12 hr L/12 hr D, expression of GRP7 retained rhythmicity in

CCA1ox, compared with that in wt, although the waveform was

altered with baseline expression increased (Figure 8A). However,

Green et al observed more pronounced alterations in phase of

GRP7 expression in CCA1ox (compared with that in wt) in seedlings

growing in long or short daylengths (16 hr L/8 hr D or 8 hr L/

16 hr D), with maximal transcript accumulation in the dark [12].

Such differences in the patterns of GRP7 transcript abundance

could also be due to other reasons besides light conditions.

Nonetheless, these observations together with those of Michael et

al. [62] emphasize that to better understand the role of the

circadian clock in defense control, analyses of defense phenotypes

with plants misexpressing CCA1, LHY, and/or other clock genes

should be carried out in LL, DD, and different LD conditions for a

comprehensive comparison.

Plants employ different mechanisms to defend against
pathogens at different times of day

Although encountering pathogens at different times in a day,

Arabidopsis plants were suggested to be more resistant in the

morning than at night. To support this conclusion, wt plants

demonstrated higher resistance and/or defense responses when

infiltrated during the day than at night [27,63]. We also observed

similar results in plants infiltrated with P. syringae in LL or LD

(Figure 2, 4A, and S2), thus supporting this conclusion. However,

with spray-infection in LD, we observed the opposite phenotype;

wt plants were more resistant at night than in the morning

(Figure 3, 4B and 8D). During spray-infection, P. syringae initially

lands on the leaf surface. Further invasion depends on the success

of the bacteria in gaining entry into the host tissue via natural

openings, such as stomata [1,2]. Consistent with enhanced disease

resistance to sprayed P. syringae, plants in the evening have much

smaller stomatal pore sizes than in the morning (Figure 5A, 5B,

and 8B).

These two seemly contradicting results actually coalesce to

suggest different mechanisms that plants use to defend against

pathogens at different times of day, depending on the mode of

pathogen invasion. As summarized in Figure 12A, at night plants

might rely more on closed stomata to physically restrict pathogen

invasion but stomata-independent defense is relatively low. If a

pathogen can breach stomatal restriction (i.e. being pressured into

host tissue via infiltration in the laboratory) at night, it can be more

virulent to the host. However, with stomata widely open during

the day, plants apparently compensate for enhanced pathogen

access to the leaf interior with enhanced stomata-independent

defense that is stronger during the day than at night. This cycling

in host resistance means that plants can be more resistant to

epiphytic pathogens at night than during the day. But in the

presence of apoplastic pathogens, plants can activate stronger

defense during the day than at night. Taken together, we conclude

that plants rely on distinct mechanisms, involving stomata-

dependent and stomata-independent defenses, to respond to

pathogen attacks at different times of day.

The circadian clock acts through stomata-dependent and
-independent pathways to regulate defense

Our data suggest that both stomata-dependent and -indepen-

dent defense can be affected by CCA1, LHY, and its downstream

target GRP7. Consistent with such a role of CCA1 and GRP7,

these proteins are expressed in guard cells [51]. It is conceivable

that CCA1 and/or LHY proteins directly affect the abundance of

GRP7 via binding to its promoter at different times of day, which

in turn regulates stomatal aperture and thereby stomatal defense

(Figure 11B). Since both CCA1 and GRP7 proteins are also found

in other cell types besides the guard cells [51,64], it is possible that

CCA1/LHY/GRP7 also contribute to stomata-independent

defense.

GRP7 is unlikely to be the only target of CCA1 and LHY to

regulate pathogen defense. First, our bioinformatic analysis

suggests that a number of defense genes besides GRP7 might be

preferentially regulated by CCA1 and LHY (Figure 7). And

second, plants overexpressing GRP7 are not more susceptible to P.

syringae (J. Alfano and H. Kang, personal communications) while

CCA1ox and LHYox plants are more susceptible to P. syringae (this

study). Thus, CCA1 and LHY presumably act through multiple

downstream target genes to regulate plant defense. Identification

of these additional defense genes controlled by CCA1 and LHY

should advance our understanding of the mechanisms by which

the circadian clock regulates plant defense.

Rhythmic variation in stomatal aperture is known to be

regulated by the circadian clock [13,37,65]. Besides CCA1 and

LHY, other genes encoding components of the central oscillator

may also affect stomatal defense. For instance, a mutation in

EARLY FLOWERING 3 (ELF3) was recently shown to suppress

stomatal closure and disease resistance [27,66]. ELF3 might act

through the FLOWERING LOCUS T gene, which is highly

expressed in stomata of the elf3 mutant and has been shown to

affect stomatal activity [66]. In addition, the timing of cab expression1-

1 (toc1-1) mutant also shows defects in stomatal aperture [59,67]. It

is tempting to speculate that ELF3-mediated defense is related to

its role in stomatal control and TOC1 could also contribute to

plant defense. However, further experiments are necessary to

validate these speculations. Nevertheless, these observations

suggest that the circadian clock can influence stomatal activity

and possibly also stomatal defense via different pathways

(Figure 12B).

Stomata have been proposed as a critical battleground during

plant-bacterium interactions [1,2]. However, it is not known
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whether stomatal defense can also restrict the invasion of

pathogens with different life styles from those of bacteria. The

oomycete pathogen Hpa does not enter host organs through

stomata; rather, germinating spores produce hyphae that pene-

trate between host epidermal cells and extend through the

intracellular space in the mesophyll layer. However, near the

end of the infection cycle, hyphal tips emerge through the stomata

to the exterior of the leaf and then differentiate into spore-bearing

structures [68,69]. Thus, it is possible that host control of stomatal

aperture could influence this stage of the life cycle. Although the

role of stomata in defense against Hpa has not been well

established, the fact that cca1-1lhy-20 showed enhanced suscepti-

bility to Hpa infection relative to the single mutants and wt suggests

such a role of the circadian clock. Interestingly, while conferring

enhanced disease susceptibility to P. syringae, CCA1ox heightened

resistance to Hpa (Figure 6A and [28]), suggesting that CCA1ox

plants employ different mechanisms to defend against these two

pathogens. However, it is not clear whether the enhanced Hpa

resistance conferred by CCA1ox is related to the circadian clock or

to another function resulting from CCA1 overexpression.

Defense activation reciprocally regulates the circadian
clock

While regulating multifaceted physiological activities of plants,

the circadian clock can also be influenced by external signals, such

as changes of light, temperature, hormones, and nutrients

[32,70,71,72,73,74]. Here we show that infection with both

virulent and avirulent P. syringae strains shortens circadian period

in Arabidopsis (Figure 10 and S7). We further found that such

feedback regulation can be recapitulated with flg22 treatment

(Figure 11A). Thus, defense activation can also serve as an input

signal to regulate clock activity besides being an output of the

circadian clock.

Since flg22-triggered callose deposition and expression of genes

involved in flg22 sensing and signal transduction were previously

shown to be under circadian clock control [27], we conclude that

the clock-defense crosstalk involves flg22 signaling (Figure 12B).

Production of SA is circadian regulated [75], however, activation

of SA defense does not affect clock activity (Figure 11 and S8 and

[74]). Therefore, SA is an output of the circadian clock but does

not serve as an input factor. Since our data showed that CCA1

and LHY act largely independently of SA, we speculate that other

circadian clock components may act through SA as an output in

defense control.

What would be the advantages for plants to have clock-defense

crosstalk? A properly tuned circadian clock enhances growth vigor

and confers better survival rate and competitive advantage

[11,12,13,14,15,16]. Regulation of defense by the circadian clock

suggests that timing of effective defense against pathogens is crucial

for host fitness in the presence of pathogens. However, defense is

an energy-costly process intricately connected with plant growth

and development. A feedback regulation of the circadian clock by

defense activation could be important for the host to balance

growth, development, and defense responses, for instance, to

redirect the energy from costly disease resistance to primary

metabolism. Consistent with this idea, several phytohormones are

potential components of the clock-defense circuitry. For instance,

auxin regulates clock activity as an input [74] while auxin

production and signaling are affected by the circadian clock and

thus are clock output events [73,76,77]. Other hormones, such as

abscisic acid, brassinosteroids, cytokinins, and gibberellic acid,

have been shown to serve as clock inputs [74,78]. Interestingly,

cytokinin affects the phase but not the period of the clock

[74,79,80]. However whether these hormones are also on the

output pathways of the circadian clock remains to be investigated.

On the other hand, ethylene and jasmonic acid production and/or

Figure 12. A simplified model for crosstalk between the
circadian clock and plant innate immunity. (A) Timing of
stomata-dependent and -independent defense in a day. At night,
plants might rely more on closed stomata to provide physical constrains
to limit pathogen invasion but have relatively lower levels of stomata-
independent defense. Once pathogens bypass such constrains (i.e. via
infiltration infection in the laboratory), they encounter a plant host that
is more susceptible than during the day. During the day, most stomata
are wide open. In the presence of pathogens, plants can only transiently
reduce stomatal aperture for a few hours (this study and [1]). Thus,
during the day plants might depend more on stomata-independent
defense to restrict pathogen invasion. Stomata-dependent defense
could be stronger at night while stomata-independent defense could
be stronger during the day. (B) The circadian clock regulates both
stomata-dependent and -independent defense pathways to restrict
pathogen growth in Arabidopsis. In a stomata-dependent pathway,
CCA1 and LHY act, at least in part, through GRP7 as a direct
downstream target to regulate stomatal aperture and thereby defense.
Other downstream targets of CCA1 and LHY and other components of
the central oscillator of the circadian clock might also be involved in
regulating stomata-dependent and –independent defense. On the
other hand, pathogen infection can activate PTI, ETI and other defense
signaling in the host. PTI induced by flg22 feeds back to regulate clock
activity. In addition, flg22-triggered signaling is under circadian clock
control [27]. Thus, we conclude that the clock-defense crosstalk involves
flg22-mediated signaling. Flg22 can affect stomatal aperture [91].
However, whether this function of flg22 is through its regulation of the
circadian clock or through a direct regulation of stomata is unclear.
Other questions, such as whether additional PAMPs, effectors, and
other defense signaling molecules are involved in clock-defense
crosstalk, remain to be answered.
doi:10.1371/journal.ppat.1003370.g012

Clock-Defense Crosstalk

PLOS Pathogens | www.plospathogens.org 10 June 2013 | Volume 9 | Issue 6 | e1003370



signaling are on the output pathways of the circadian clock

[29,75,81,82,83] although ethylene does not serve as a clock input

in Arabidopsis [82]. The role of jasmonic acid as a clock input is

currently unknown. All these phytohormones have been implicat-

ed in defense control besides their critical roles in regulating plant

growth and development [84,85,86]. Therefore further investigat-

ing the roles of these phytohormones in clock-defense crosstalk

should shed light on the molecular mechanisms by which plants

employ to regulate growth, development, and responses to

pathogen invasion. Such information could potentially lead to a

better control of plant growth and resistance to devastating

pathogens, ultimately enhancing productivity of plants.

Materials and Methods

Plant materials
Unless otherwise indicated, all plants used on this paper are in

the Columbia-0 (Col-0) background and were grown in growth

chambers with a 12 hr light/12 hr dark cycle, light intensity at

200 mmol m22 s21, 60% humidity and 22uC. Single mutants

(acd6-1, lhy-20, and grp7-1) and plants overexpressing CCA1

(CCA1ox) or LHY (LHYox) were described previously

[11,35,39,48,52]. cca1-1 was originally a Wassilewskija allele but

was introgressed into Col-0 via five sequential backcrosses. The

mutants cca1-1lhy-20, acd6-1cca1-1, acd6-1lhy-20, and acd6-1cca1-

1lhy-20 were made by genetic crosses and confirmed with PCR

markers corresponding to individual mutations (Table S4 and

[54]). CCA1ox (line #34) and grp7-1 seeds were from Elaine Tobin

and James Alfano, respectively.

Disease resistance assays
P. syringae strains were grown at 28uC with King’s B medium

(10 g proteose peptone, 1.5 g K2HPO4, 3.2 ml 1 M MgSO4, and

5 g glycerol per liter) containing the appropriate antibiotics for

selection. Freshly cultured bacteria were collected, washed once,

and resuspended to desired final concentrations in 10 mM MgSO4

for infiltration and spray infections or in sterile water for stomatal

aperture measurement and bioluminescence analysis. For infiltra-

tion infection, the bacterial solution was pressured into the abaxial

side of the fifth to seventh leaves of a plant with a 1 ml needleless

syringe. For spray infection, the bacterial solution was mixed with

Silwet L-77 (Lehle Seeds) at a final concentration of 0.04% and

sprayed onto plants until the leaf surface was evenly wet. Bacterial

growth and disease symptoms were analyzed as described

previously [53]. Log transformed bacterial growth was used in

statistical analysis.

Hyaloperonospora arabidopsidis (Hpa) strains were propagated and

prepared as previously described [56,87]. Seven day-old soil-

grown seedlings were sprayed with a spore suspension (56104

spores/ml in water) containing the virulent strain Hpa Emco5 or

the avirulent strain Hpa Emoy2. Seven days post inoculation,

sporangiophores on both sides of cotyledons were counted to

determine the level of resistance. Hpa infections were conducted as

blind experiments where plant genotypes were unknown to the

experimenters until the completion of the experiments. All

bacterial and Hpa infection experiments were repeated at least

three times unless otherwise indicated.

Northern blotting
RNA extraction and northern blotting were performed as

described [54]. Radioactive probes were made by polymerase

chain reaction (PCR) with a specific antisense primer for a gene

fragment in the presence of [32P] dCTP. Primers used for making

probes were listed in Table S4.

Stomatal aperture measurement
Stomatal aperture was measured with 25-day-old plants as

previously described [1]. Briefly, the fifth to seventh leaves were

taken at the indicated times and mounted onto a glass slide at the

abaxial side using Telesis 5 silicone adhesive (Premiere Products,

Inc., CA). The top layer of the leaf was scratched off with a razor

blade. Images of at least three random regions of the bottom layer

of the leaf were taken immediately with a camera (Canon Digital

Rebel xsi, Japan) connected to an inverted microscope (Olympus

Model IMT-2). P. syringae treatment was performed at ZT4 when

plants had been exposed to light for 4 hr to ensure that most

stomata opened. The fifth to seventh leaves of plants were

collected and immersed in PmaDG3 or DC3000 resuspensed in

sterile water (108 cfu/ml) or in water as mock treatment. At 1 hpi

or 3 hpi, treated leaves were harvested and processed for stomata

imaging. At least three leaves per genotype and per time point

were taken for stomatal images. The stomatal aperture was

determined by the ratio between the width and the length of a

stoma, which was measured with the assistance of ImageJ (version

1.45).

Bioluminescence analysis
Seedlings expressing the reporter gene LUCIFERASE (LUC)

under the control of promoters from CCA1 or GRP7 (At2g21660;

also called CCR2) [45,46] were grown on MS media with 2%

sucrose in a 12 hr light/12 hr dark cycle at 22uC for 7–10 days.

Seedlings were soaked in P. syringae resuspended in sterile water in

the presence of 0.04% Silwet L-77, flg22 (1 mM or 10 mM), or

benzo(1,2,3)thiadiazole-7-carbothioic acid (BTH; a SA agonist)

(10 mM or 300 mM), and transferred to 96-well plates containing

200 ml of MS media and 30 ml of a 2.5 mM D-luciferin solution.

Mock treatments were conducted with sterile water with or

without 0.04% Silwet L-77. The seedlings were subsequently

transferred to LL at 22uC. LUC activity was detected at 1 hr

intervals for 7 days with a TopCount luminometer (Perkin Elmer

Life Sciences) and analyzed with MetaMorph image software [88].

Flg22 was purchased from GenScript USA Inc. and BTH was a

kind gift from Robert Dietrich (Syngenta).

Cotyledon movement assay
For cotyledon movement, surface sterilized Arabidopsis seeds

were grown on MS media with 2% sucrose for 6 days in a 12 hr

light/12 hr dark cycle at 22uC and were transferred to 24-well

cloning plates, one seedling per well. The seedlings were entrained

for two more days in the 12 hr light/12 hr cycle at 22uC and were

subsequently released into LL at 22uC. Cotyledon movement was

recorded with multiple surveillance cameras every 20 min for 7

days and post-run image analysis was performed as described [88].

Bioinformatic analysis
Up to 3000 bp promoter sequences of 571 genes [43] were

downloaded from Athena (http://www.bioinformatics2.wsu.edu/

cgi-bin/Athena/cgi/analysis_select.pl) [89]. These genes were

grouped into three sets, selected (337 defense-related gene based

on microarray experiments), empirical (127 empirical marker

genes for various pathogen responses), and normalization (107

non-defense related genes whose expression levels were relatively

stable among experiments with pathogen infection) [43]. Promot-

ers of these genes were analyzed for the enrichment of CBS

(AA[AC]AATCT) or EE (AAAATATCT) motifs, using the online

tool POBO (http://ekhidna.biocenter.helsinki.fi/poxo/pobo/)

[44]. Pseudo-clusters of 100 promoters of up to 3000 bp in length

of Arabidopsis genes, which do not contain the coding sequences
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of the neighboring genes and were sampled randomly from the

entire Arabidopsis genome with 1000 bootstrap replications, were

analyzed to generate the background as a control for each motif.

The number of the CBS or EE motifs in gene clusters was

quantified, using a Perl program.

Supporting Information

Figure S1 Misexpression of CCA1 and LHY disrupts
clock activity in LL and LD. (A) Shortening of circadian

period in cca1-1lhy-20 in LL. (B) Phase change of ProCCA1:LUC in

cca1-1 and lhy-20 mutants and CCA1ox plants in LD. Eight-day-old

Col-0, cca1-1, lhy-20, cca1-1lhy-20, and CCA1ox seedlings express-

ing ProCCA1:LUC were grown from germination in 12 hr light/

12 hr dark cycles at 22uC. Bioluminescence was recorded using a

Packard TopCount luminometer in LL (A) or in LD (B) at 22uC.

White boxes indicate the light period, black boxes indicate dark

periods, and gray boxes indicate subjective dark periods in LL.

Panel (B) shows normalized bioluminescence traces shown in

Figure 1A.

(TIF)

Figure S2 Bacterial growth in plants infiltrated with
PmaDG3 in LL. (A) ZT1 infection. (B) ZT13 infection. Plants

were grown under the same condition as those used in Figure 2.

After infiltration with PmaDG3 at 16105 CFU/ml, plants were

moved to LL. Letters indicate significant difference among the

samples (P,0.05; Student’s t-test). These experiments were

repeated twice with similar results.

(TIF)

Figure S3 Stomatal aperture at ZT4. Leaves of uninfected

25-day-old plants grown in a 12 hr light/12 hr dark cycle at 22uC
were taken at ZT4 for the measurement of stomatal aperture.

Letters indicate significant difference among the samples

(P,0.001; Student’s t-test). These experiments were repeated

three times with similar results.

(TIF)

Figure S4 Frequency of motif occurrence on gene
promoters. The number of CBS (A) or EE motif (B) occurrence

per promoter region for selected, empirical, and normalization

genes was quantified, using a Perl program.

(TIF)

Figure S5 Expression of GRP7 is CCA1-dependent.
Circadian expression of GRP7. Twenty five-day-old Col-0, cca1-

1, and CCA1ox plants grown in a chamber with a 12 hr light/12 hr

dark cycle and 22uC were transferred to LL at 22uC. Starting from

ZT1, plants were harvested at every 4 hr interval for 48 hr for

RNA extraction followed by northern blotting. White boxes

indicate subjective light periods and gray boxes indicate subjective

dark periods in LL. GRP7 transcripts were shown on the top three

panels. 18S rRNA from each genotype at different time points,

shown on the bottom three panels, was used as a loading control.

(TIF)

Figure S6 CCA1 and LHY functions are largely SA-
independent. (A) SA quantification. Total SA was extracted

from plants and analyzed by HPLC. Data represent the average of

SA levels (n = 3) 6 standard deviation. (B) Picture of 20- and 30-

day-old Ler and LHYox plants. The same batch of plants were used

in Figure 4C and 4D for SA and cell death analyses.

(TIF)

Figure S7 Defense activation by P. syringae infection
shortens the period of the GRP7:LUC reporter. Eight-day-

old Col-0 seedlings expressing the ProGRP7:LUC reporter were

grown from germination in 12 hr light/12 hr dark cycle at 22uC.

Then the seedlings were infected with PmaDG3 or PmaDG6 at

OD = 0.1 (16108 CFU/ml) or OD = 0.01 (16107 CFU/ml) and

transferred to 96-well plates containing 200 ml of MS media and

30 ml of a 2.5 mM D-luciferin solution. Luciferase activity was

recorded with a Packard TopCount luminometer in LL at 22uC.

(A) Mean circadian traces for ProGRP7:LUC activity. White bars

indicate subjective day and gray bars indicate subjective night. (B)

Mean circadian period of the ProGRP7:LUC reporter. SEM

(n = 12–24) was used for (A) and (B). These experiments were

repeated twice with similar results.

(TIF)

Figure S8 Cotyledon movement assay with acd6-1. (A)

Mean circadian period of cotyledon movement of acd6-1. (B)

Summary of period, phase, RAE, and amplitude.

(TIF)

Table S1 Suppression of stomatal aperture in the
presence of P. syringae.

(DOCX)

Table S2 Fold change of cluster means of motif
enrichment.

(DOCX)

Table S3 Defense activation by P. syringae infection or
flg22 treatment shortens the clock period.

(DOCX)

Table S4 Primers used in this paper.

(DOCX)
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