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RESEARCH ARTICLE

CDDO-Me Redirects Activation of Breast
Tumor Associated Macrophages
Michael S. Ball1, Emilie P. Shipman1, Hyunjung Kim1, Karen T. Liby2, Patricia A. Pioli1*

1 Department of Obstetrics and Gynecology, Geisel School of Medicine, Lebanon, New Hampshire, United
States of America, 2 Department of Pharmacology and Toxicology, Geisel School of Medicine, Hanover,
New Hampshire, United States of America

* Pioli@Dartmouth.edu

Abstract
Tumor-associated macrophages can account for up to 50% of the tumor mass in breast

cancer patients and high TAM density is associated with poor clinical prognosis. Because

TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM

activation may have significant therapeutic benefit. Our studies in primary human macro-

phages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-

methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting

to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and

VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α

and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activa-

tion, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface

expression of HLA-DR and CD80, which are markers of M1 activation, and importantly

potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascu-

larization. These results show for the first time that CDDO-Me redirects activation of M2

macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a

role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other

types of cancer.

Introduction
Breast cancer is the most commonly diagnosed non-skin cancer among women worldwide and
is the second leading cause of cancer death among women [1, 2]. Although early detection and
chemotherapeutic treatments have contributed to recent modest declines in breast cancer mor-
tality, the incidence of estrogen receptor negative (ER-) breast cancer has not changed signifi-
cantly in over 30 years and ~40,000 women succumb to breast cancer each year [1]. Thus,
there is clearly a pressing need for the development of new, innovative and aggressive
approaches to combat this insidious disease.

Numerous studies demonstrate that tumor tissue microenvironments are distinct and con-
sist of malignant as well as non-malignant cell types [3]. Tumor associated macrophages
(TAMs) can constitute up to 50% of the tumor mass [3, 4], and high TAM density is correlated
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with poor clinical prognosis for patients with solid tumors, including breast, prostate, cervical,
and ovarian cancers [3, 5]. Genetic depletion of TAMs by conditional M-CSF knockout in
mammary epithelium results in a significant delay of tumor progression and inhibition of lung
metastasis in the Polyoma virus middle T oncoprotein (PyMT) mouse model of ER- breast can-
cer, where TAM infiltration is a hallmark feature [6, 7]. These findings suggest that TAM phe-
notype and function are key factors in enhancing tumor growth.

The tumor microenvironment plays a critical role in shaping TAM activation, as functional
skewing of mononuclear phagocytes occurs in vivo. Differentiation of monocytes in the unique
cytokine milieu of the tumor site polarizes resulting macrophages into M1 (immuno-stimula-
tory) or M2 (immuno-suppressive) TAMs. In non-progressing or regressing tumors, TAMs
resemble classically activated M1 macrophages, as they produce pro-inflammatory cytokines,
demonstrate enhanced antigen presentation, and mediate tumor lysis [8]. In contrast, TAMs
assume an alternatively activated M2 activation state in malignant tumors, as they suppress
adaptive immune responses and secrete anti-inflammatory mediators and angiogenic factors
that support tumor growth and metastasis [9]. Because macrophage phenotype and function
are plastic and may be redirected by immuno-modulatory cues [10], re-programming TAM
polarization fromM2 to M1 may have significant therapeutic benefit. While many attempts
have been made to redirect TAM activation using cytokines and immune-activators such as
LPS [11], these approaches have not been successful for many reasons, including issues with
delivery and systemic toxicity. To the best of our knowledge, no drugs have been identified for
the treatment of breast cancer that repolarize TAMs.

Triterpenoids are widely used in Asian medicine and include oleanolic acid (OA) and urso-
lic acid (UA), which have weak anti-inflammatory and anti-carcinogenic properties [12].
CDDO-methyl ester (CDDO-Me), a synthetic oleanane triterpenoid, is>10,000 times more
potent in its anti-inflammatory capabilities than its parent OA. This compound has been
shown to delay the development of mammary tumors and to arrest the growth of established
tumors in the MMTV-neu (mouse mammary tumor virus) transgenic model of ER- breast can-
cer. In the aggressive PyMT model of ER- breast cancer, recent studies have shown that
CDDO-Me not only delays tumorigenesis but also inhibits TAM infiltration of mammary
tumors [13]. CDDO-Me is the first drug that is active in this model and with this novel mecha-
nism of action.

We now demonstrate for the first time that in addition to limiting TAM recruitment,
CDDO-Me redirects TAMs fromM2 polarization to M1. Our studies indicate that CDDO-Me
treatment of primary PyMT mammary TAMs inhibits surface expression of M2-characteristic
markers and production of anti-inflammatory IL-10 and pro-angiogenic VEGF, and enhances
production of M1 surface markers and mediators, including TNF-α. Furthermore, we also
show these effects in monocyte-derived M2-skewed human macrophages, suggesting
CDDO-Me modulation of TAM activation may not be limited to breast cancer. These results
implicate a role for CDDO-Me in the treatment of ER- breast cancer and potentially other
types of cancer as well.

Methods

Mice
Female heterozygous mice carrying the Polyomavirus Middle T-Antigen (PyMT) gene under
the control of the MMTV promoter on C57BL/6J background were obtained from Dr. Jeffrey
Pollard (Albert Einstein College of Medicine, Bronx, NY). This study was carried out in strict
accordance with the protocol (protocol #: liby.kt.1) approved by the Institutional Animal Care
and Use Committee (IACUC) of the Geisel School of Medicine at Dartmouth. Mice were
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euthanized by inhalation of carbon dioxide followed by cervical dislocation. All efforts were
made to minimize animal suffering.

Isolation of Primary PyMT Tumor Associated Macrophages (TAMs)
Mammary tissue was removed from 12-week-old female PyMT mice and incubated in diges-
tion media, which consisted of an enzyme mixture of collagenase (300 U/ml, Sigma), dispase (1
U/ml, Worthington), and DNAse (2 U/ml, Calbiochem), for 45 minutes at 37°C with stirring.
Cells were then passed through 70 μm and 40 μm Cell Strainers (BD Falcon), followed by incu-
bation with biotinylated F4/80 antibody (clone: BM8, eBioscience) and a subsequent 15 minute
incubation with magnetic streptavidin -coated beads (Miltenyi Biotec). Cells were washed
between incubations with PBS (+ 2 mM EDTA). Total F4/80+ positive mouse macrophages
were isolated according to the manufacturer’s specifications (Miltenyi Biotec) in PBS (+ 2 mM
EDTA and 0.5% FBS). Positively selected TAMs and negative flow-through fractions were
immuno-phenotyped using flow cytometry of surface markers described in Table 1 to ensure
purity of TAM isolation.

Human Peripheral Blood Mononuclear Cells (PBMCs) and Generation of
Monoctye-derived Macrophages
PBMCs were obtained by leukapheresis of healthy donors following informed consent. Written
consent was obtained from all subjects in accordance with the human experimentation guide-
lines established by Geisel School of Medicine’s Committee for the Protection of Human Sub-
jects, which approved this study (protocol # 17011). Mononuclear cells were separated on
Ficoll-Paque Premium (density: 1.077, GE Healthcare) and enriched for monocytes using cold
aggregation [14]. Monocyte purity was assessed using cytospin, Wright-Giesma staining and
flow cytometric analysis of CD14 expression and was�95%.

To generate human macrophages, CD14+monocytes were cultured in complete HEPES-
buffered RPMI 1640 supplemented with 10% FBS and either 10 ng/ml GM-CSF or 50 ng/ml
M-CSF for 7 days, as differentiation with these stimuli results in M1 or M2 macrophage polari-
zation, respectively [15]. Macrophage polarization was verified using flow cytometry to mea-
sure expression of cell surface markers CD206 (clone: 15–2), CD163 (clone: GHI/61), and
HLA-DR (clone: L243) and by ELISA analysis of secreted cytokines post-LPS stimulation.

Cell Culture & Reagents
Primary mouse TAMs were cultured in DMEM (4 mM L-glutamine, 4500 mg/L glucose) sup-
plemented with 10% FBS, 0.25 M HEPES, and 100 μg/ml penicillin streptomycin. Human
monocytes and macrophages were cultured in RPMI (2.05 mM L-glutamine) supplemented
with 10% FBS, 0.25 M HEPES, and 12 μg/ml gentamicin. Human and mouse cells were rested

Table 1. Antibody/fluorophore conjugates used for multi-color flow cytometry. All antibodies were monoclonal and purchased from BioLegend.

Species Marker Fluorophore Clone Concentration (μg/ml)

Human CD206 FITC 15–2 2

Human CD163 PE GHI/61 2

Human CD1a PerCP/Cy5.5 HI149 1.5

Human CD14 PE/Cy7 HCD14 2

Human CD80 APC 2D10 2

Human HLA-DR APC/Cy7 L243 2

doi:10.1371/journal.pone.0149600.t001
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overnight post-isolation and prior to stimulation. For activation studies, cells were pretreated
with indicated concentrations of CDDO-Me or DMSO vehicle control for 16 hours, followed
by stimulation with 10 ng/ml LPS (Invitrogen, Lot: 33-505-LPS) for an additional 24 hours.

RNA extraction, cDNA synthesis, and qRT-PCR
Total RNA from human and mouse cells was obtained using the miRNeasy Mini Kit (Qiagen)
per manufacturer’s instructions. Complementary DNA (cDNA) was synthesized from 100 ng
total RNA and random hexamers using the SuperScript III First-Strand Synthesis System (Life
Technologies). Quantitative real time PCR (qRT-PCR) was performed using TaqMan Probe
single tube assays (Life Technologies) for human (CCL18, IL-6, IL-10, VEGF, TNF-α, CCR5,
CD163, CLEC10A) and mouse (IL-10, Arg1, Ym1, TNF, CXCL9) genes. The StepOnePlus
Real-Time PCR System (Applied Biosystems) was used for amplification and detection.
Threshold cycle number was determined using Opticon software. mRNA levels were normal-
ized to β-actin, which control studies showed is not altered by CDDO-Me treatment, using the
equation 2-(Et-Rt), where Rt is the mean cycle threshold for the control gene and Et is the mean
threshold for the experimental gene. Thermal cycling conditions for qRT-PCR consisted of an
initial incubation at 50°C for 2 min and 95°C for 10 min, followed by 40 cycles of 95°C for 15
sec and 60°C for 1 min. Product accumulation was measured during the extension phase and
all samples were run in triplicate.

Multi-Plex Cytokine Assay and Enzyme-linked Immunosorbent Assay
(ELISA)
TAMs were plated at 2 x 105 cells per well in 24 well tissue culture dishes in complete DMEM.
Cells were cultured with vehicle or CDDO-Me for 16 hours followed by stimulation with 10
ng/ml LPS for 24 hours. Cell-free culture supernatants were aliquoted and stored at -80°C until
further use. The Milli-Plex suspension array system using fluorescently dyed Luminex micro-
spheres (beads) (EMDMillipore) was used to measure cytokine secretion. This assay system is
ideally suited to measure multiple cytokines from one sample. Standards were prepared in the
same fresh medium that was used to culture experimental samples and were assayed in tripli-
cate. Spiked controls accurately reflected the added cytokine, chemokine, or growth factor con-
centration. Assays were performed in a 96 well filtration plate at room temperature according
to the manufacturer’s protocol. The fluorescence intensity for each bead was measured using
the Bio-Plex array reader. Bio-Plex manager software with five parametric-curve fitting was
used for data analysis. The level of detection of each analyte was 7.8 pg/ml. As indicated, super-
natants from TAM and human macrophage cultures were analyzed by ELISA (R&D Systems),
according to the manufacturer’s protocol.

Flow Cytometry
All mouse and human fluorophore-conjugated antibodies were obtained from Biolegend and
are listed in Table 1. Cell staining was performed for 1 hour at 4°C, with 2 mg/ml Globulins
Cohn fraction II, III (Sigma) for human cells or 5 μg/ml anti-mouse CD16/CD32 antibody
(clone: 93, eBioscience) for mouse cells to reduce antibody binding to Fc receptors. In all condi-
tions, only adherent cells were stained following cell culture, and doublets were excluded by
FSC-A vs. FSC-H gating. Gating of positively stained cells was determined by fluorescence-
minus-one (FMO) controls, represented as black histograms. Cells were analyzed using an
8-color MACSQuant 10 (Miltenyi Biotec) with three laser sources (405 nm, 488 nm, 635 nm)
and FlowLogic 501.2A software (Inivai Technologies.

CDDO-Me Redirects TAMs
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CFSE Proliferation Assay
Human monocytes were isolated from PBMCs derived from healthy donors as above. Post-
monocyte isolation, flow-through fractions were stained with 2.5 μMCFSE using CellTrace™
CFSE Cell Proliferation Kit according to the manufacturer’s protocol (Life Technologies).
CFSE-stained cells were stimulated in the presence of 2.5 μM soluble αCD3 and 1 μM soluble
αCD28 to stimulate T cell proliferation and cultured for 4 days with autologous LPS-stimulated
M2 macrophages that had been treated +/- 300 nM CDDO-Me for 16 hours or M1 macro-
phages. Percent of T cell proliferation was determined by CFSE dilution using flow cytometry.
Data were analyzed using FlowLogic 501.2A (Inivai Technologies).

Angiogenesis Tube Formation Assay
Human umbilical vein endothelial cells (ECs; Lonza) were cultured in Endothelial Growth
Medium (EGM-2, Lonza) to between 65% and 80% confluence (passage< 3). Cells were dissoci-
ated with 0.05% trypsin (Hyclone) and plated in a 96-well plate containing reduced growth factor
basement membrane extract supplied with the In Vitro Angiogenesis Tube Formation Assay Kit
(Trevigen). Cells were then cultured at 37°C for 10 hours in the presence of EGM-2, endothelial
basal media (EBM-2, Lonza) without serum or supplements, or conditioned media from TAMs
treated with DMSO control or 300 nM CDDO-Me. Tube formation was visualized using an
Olympus IX73 inverted fluorescence microscope. Quantification was performed using Angio-
Tool software to determine total number of cellular junctions, as previously described [16].

Statistical Analysis
Figures are representative of three independent experiments, and in human studies, 3–4 differ-
ent donors were used, as indicated in Figure Legends. All experiments were repeated at least 3
times, unless otherwise noted and at least 3 technical replicates of each analyte were included
in each assay. Results in Figs 1–4 are described as mean ± SEM and were analyzed by unpaired
student’s t-Test. Significance was achieved at p<0.05. Quantification of results in Fig 5 is repre-
sented by mean ± standard deviation.

Results

CDDO-Me alters cytokine mRNA levels and protein secretion in human
M2 macrophages
While the cytotoxic effects of CDDO-Me on tumor cells have been well-documented, the abil-
ity of this drug to modulate activation of immune cells in the tumor microenvironment, includ-
ing TAMs, is unknown. TAMs promote tumor progression through the elaboration of
immuno-suppressive cytokines, chemokines, and angiogenic factors, which are characteristic
of M2-polarized macrophages [17, 18]. Because TAMs phenotypically and functionally resem-
ble M2-skewed macrophages, our initial studies were performed using human peripheral
blood-derived monocytes with M-CSF to recapitulate this phenotype. To determine the effect
of CDDO-Me on TNF-α production in human M2-polarized macrophages, cells were pre-
treated with CDDO-Me at concentrations ranging from 10 nM-1 μM for 16 hours. Following
CDDO-Me treatment, macrophages were activated with LPS for an additional 24 hours, and
soluble TNF levels were measured in culture supernatants. As demonstrated in Fig 1A, 300 nM
CDDO-Me maximally induced TNF-α production. TNF-α protein levels were undetectable in
unstimulated cells in the presence or absence of CDDO-Me. Cell viability was assayed in tan-
dem using the Cell Titer Blue reagent, which demonstrated that CDDO-Me is not toxic to
TAMs at concentrations lower than 1μM.

CDDO-Me Redirects TAMs
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Fig 1. CDDO-Me redirects LPS-induced cytokine production of humanM2macrophages.Human peripheral blood-derived monoctyes were
differentiated with M-CSF to generate alternatively activated (M2-polarized) macrophages. (A) CDDO-Me dose-dependently induced TNF-α secretion in
LPS-stimulated macrophages. Culture supernatants frommacrophages treated with CDDO-Me or DMSO control for 16 hrs prior to stimulation with LPS (10
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Because CDDO-Me enhanced LPS-induced TNF-α secretion, which is associated with M1
activation, we investigated the effect of CDDO-Me on the expression of IL-10 and VEGF, which
are tumor-promoting factors produced by TAMs [19, 20]. As seen in Fig 1B and 1C, CDDO-Me
significantly attenuated mRNA and protein expression of both immuno-suppressive IL-10 and
angiogenic VEGF. In accordance with our findings in Fig 1A, CDDO-Me augmented production
of immuno-stimulatory TNF-α and IL-6 (Fig 1B and 1C) [21]. Notably, although CDDO-Me
also enhanced mRNA levels of TNF-α, no significant differences in IL-6 mRNA expression were
observed with drug treatment (data not shown), suggesting CDDO-Me regulates IL-6 protein
expression post-transcriptionally. As these results suggested CDDO-Me redirects macrophage
activation fromM2 toM1, CDDO-Me effects on M1 and M2 markers of macrophage activation
were assessed. Consistent with earlier results, CDDO-Me inhibited mRNA expression of CD163
and CLEC10A, which are markers of M2 activation [22, 23], but enhanced mRNA levels of IRF5,
a transcription factor that represses production of IL-10 [24] and has been shown to be an inde-
pendent marker of inflammatory macrophages [25] and the chemokine receptor CCR5, which is
highly expressed onM1macrophages [26]. CDDO-Me also decreased mRNA expression of
CCL18, which has been implicated in promoting breast cancer metastasis and is highly expressed
by human TAMs andM2-activated macrophages [27, 28].

CDDO-Me attenuates M2 surface marker expression on human
macrophages and enhances macrophage T-cell proliferation capabilities
To more extensively interrogate the effects of CDDO-Me on macrophage activation, surface
expression of M1 and M2-characteristic markers was measured using multicolor flow cytome-
try. As shown in Fig 2A, constitutive expression of the hemoglobin/haptoglobin scavenger
receptor CD163 and the LPS co-receptor CD14 was inhibited by CDDO-Me treatment. Nota-
bly, these surface markers are highly expressed on M2 macrophages and human breast TAMs
[29], and tumor expression of CD163 is directly correlated with early distant recurrence and
reduced patient survival [30]. Because M1 macrophages have enhanced antigen presentation
and T lymphocyte activation capabilities compared with M2 cells [31], we next evaluated
CDDO-Me effects on surface expression of MHC-II and the co-stimulatory molecule CD80. In
accordance with CDDO-Me-mediated redirection of macrophage activation, surface levels of
MHC-II increased three-fold, and although not sufficient to reach significance, CD80 levels
rose by 15 percent (Fig 2A). As reports have shown that expression of CD80 and CD206 is
LPS-inducible [32, 33], we also assessed CDDO-Me-mediated effects on these markers in the
context of LPS stimulation. Cells pretreated with CDDO-Me and subsequently stimulated with
LPS upregulated CD80 expression by 20 percent and significantly reduced CD206 positivity
(33 percent) (Fig 2B). Evaluated in aggregate, results of immuno-phenotyping demonstrate
that CDDO-Me significantly attenuates immuno-suppressive M2 activation.

To establish whether CDDO-Me altered macrophage function as well as cytokine production
and surface marker expression, we evaluated the ability of CDDO-Me-treated TAMs to stimulate
T cell proliferation. HumanM1 or M2 macrophages treated with or without CDDO-Me were

ng/ml) for 24 hrs were analyzed by ELISA for TNF-α. Data are representative of results obtained with 3 individual donors, and depict average values obtained
from 3 independent assays. (B) ELISA analysis of IL-6, IL-10, TNF-α and VEGF secretion from humanmacrophages pretreated with 300 nM CDDO-Me for
16 hrs followed by activation with LPS as in (A). CDDO-Me effects on IL-6 secretion were assayed in 5 donors; 3 donors were assayed for effects on TNF, IL-
10, and VEGF. (C) Total RNA was extracted frommacrophages pretreated with or without CDDO-Me (300 nM) for 16 hrs followed by LPS for 24 hrs. mRNA
transcript levels were measured by Taqman real time PCR *p<0.05, **p<0.01, ***p<0.005, ****p<0.001 vs. untreated control. Data shown are
representative of results obtained from analysis of 3 individual donors. CDDO-Me effects on mRNA levels were analyzed in 3 separate experiments for each
donor. As indicated in Methods, 3 technical replicates were analyzed in each separate, individual experiment.

doi:10.1371/journal.pone.0149600.g001
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Fig 2. CDDO-Me up-regulates surface expression of M1-characteristic markers and attenuates
expression of M2markers.HumanM2-polarized macrophages were treated with 300 nM CDDO-Me or
DMSO control for 16 hrs (A) without or (B) with stimulation with LPS for 24 hrs. Expression levels of surface
markers were quantified using flow cytometric analysis and are presented in mean fluorescence intensity
(MFI) units. Gating of positively stained cells was determined by FMO controls (black histograms). *p<0.05,

CDDO-Me Redirects TAMs
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cultured with autologous lymphocytes labeled with CFSE (Fig 3). T-cells were stimulated with
soluble αCD3 and αCD28 to induce activation and cultured in the presence or absence of macro-
phages for four days. As predicted, M1 (GM-CSF-differentiated) macrophages significantly
enhanced T cell proliferation compared with M2 (M-CSF-differentiated cells). However, M2
macrophages treated with CDDO-Me stimulated T cell proliferation at levels comparable to M1
cells (Fig 3). Thus, CDDO-Me modulation of M2 activation enhances mobilization of adaptive
immune responses and skews them toward anM1-like activation state.

Immuno-suppressive cytokine production in PyMT TAMs is markedly
attenuated by CDDO-Me
Because CDDO-Me redirected activation of human M2-polarized macrophages, we next asked
whether CDDO-Me might mediate similar effects on TAMs. To determine this, we utilized the
PyMT mouse model of ER- breast cancer, as we have previously shown that in vivo treatment
with CDDO-Me delays mammary tumor onset and progression in this model, concurrent with
decreased recruitment of TAMs [13]. Another advantage of this model is that it closely mimics
the progression of human disease and PyMT tumors are characterized by a high myeloid infil-
trate [34]. F4/80+ TAMs were isolated from the mammary glands and tumors of 12 week old
PyMT mice and cultured with 300 nM CDDO-Me. As demonstrated in Fig 4A and 4C,
CDDO-Me inhibited secretion of VEGF by 65 percent and IL-10 by 45 percent but significantly
increased TNF-α and IL-6 protein expression; these changes were also reflected in altered
mRNA levels (Fig 4B). As in our studies of human macrophages, expression of M2-characteris-
tic markers was consistently attenuated by CDDO-Me (Arg1, Ym1, CCL2, and SOCS3), while
expression of M1 markers was enhanced (CXCL9, TNF-α, and IL-6) (Fig 4B) [10, 35]. Intrigu-
ingly, CDDO-Me elicited a small increase in TAM production of IFN-γ(Fig 4C), which is nota-
ble as M-CSF-differentiated macrophages have been reported to secrete IFN-γin the presence
of pro-inflammatory IL-12 [36]. TAM production of LIF, which has been shown to mediate
M2 polarization of TAMs [37], was attenuated by CDDO-Me treatment, as was production of
IL-17, which has been linked to poor prognosis in breast cancer [38].

CDDO-Me also inhibited expression of chemokines that mediate selective recruitment of
TAMs and M2 macrophages, (CCL3, CCL4, and eotaxin) [39–41] and monocytic infiltration
of tumor sites (CCL2 and CCL5) [42] (Fig 4D). Notably, we have previously reported
CDDO-Me-mediated down-regulation of CCL2 expression in PyMT tumor cells [13]. CXCL2,
which regulates breast cancer metastasis and chemo-resistance [43], is also reduced by
CDDO-Me treatment (Fig 4D), implicating a potential role for CDDO-Me in the treatment of
metastatic disease. Collectively, these results suggest CDDO-Me attenuates immune-suppres-
sive TAM activation in favor of an enhanced immuno-stimulatory TAM activation profile.

CDDO-Me-redirection of TAMs inhibits endothelial cell (EC) tube
formation
High VEGF production and subsequent increased microvasculature in tumors are associated
with TAM infiltration in breast cancer, and are negative prognostic indicators for relapse and
survival in patients [40, 44]. Because CDDO-Me markedly attenuated VEGF production by
TAMs (Fig 4A and 4B), we hypothesized that CDDO-Me-redirected TAMs would inhibit EC

**p<0.01, ***p<0.005 vs. untreated control. Data are representative of results obtained with 3 individual
donors. Graphs indicate average values obtained from 3 independent assays. In addition, 3 technical
replicates were performed for each assay. Error bars represent experimental standard error of the mean
(SEM).

doi:10.1371/journal.pone.0149600.g002
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Fig 3. CDDO-Me treatment enhances the ability of M2macrophages to induce T cell proliferation. (A) Representative histograms of CFSE proliferation
assay. Top panels show un-stimulated and stimulated (αCD3/αCD28) T cell proliferation in media alone. In bottom panels, macrophages were differentiated
with GM-CSF to generate M1 macrophages or M-CSF to elicit M2 macrophages. M2 macrophages were treated +/- CDDO-Me for 16 hrs followed by LPS
stimulation for 24 hours and co-cultured with autologous T cells. T cell proliferation was measured by CFSE dilution using flow cytometry. (B) Graphical
depiction of representative CFSE experiment. Data are representative of results obtained from 3 independent proliferation assays, and 3 technical replicates
were analyzed in each assay. ***p<0.005; biological replicates, n = 2.

doi:10.1371/journal.pone.0149600.g003
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angiogenesis. To test this, ECs were cultured with conditioned media from TAMs treated with
vehicle or 300 nM CDDO-Me and plated in a tumor-derived basement membrane extract.
Under permissive conditions, ECs in this matrix will organize into structures that resemble
microvessels or tubes. As demonstrated in Fig 5, ECs incubated with conditioned media from
vehicle-treated TAMs (DMSO) formed tubular structures with several junctions between adja-
cent cells, similar to cells cultured with complete endothelial growth media (EGM). In contrast,
ECs cultured with CDDO-Me- treated TAM conditioned media (300 nM CDDO-Me) did not
form discrete tubes, consistent with cells cultured in endothelial basal media (EBM). These in
vitro studies establish that CDDO-Me affects ECs indirectly via TAM polarization, as culture
of ECs with CDDO-Me directly did not affect EC proliferation, viability or tube formation
(EGM+CDDO-Me). These results demonstrate that CDDO-Me inhibits EC vessel formation
via indirect effects on TAM polarization rather than direct effects on ECs.

Fig 4. TAM activation profile is altered by CDDO-Me. F4/80+ tumor associated macrophages (TAMs) were isolated from the tumors of 12-week old female
PyMTmice and treated in vitro with CDDO-Me (300 nM) for 16 hrs followed by stimulation with LPS (10 ng/ml) for an additional 24 hrs. Cell supernatants
were analyzed by (A) ELISA to measure secreted protein levels. (B) Total RNA was isolated from TAMs +/- CDDO-Me. mRNA transcripts levels were
measured by Taqman real time PCR. Multiplex analysis was used to quantify expression of cytokines and growth factors (C) and chemokines (D) in
CDDO-Me-treated TAM supernatants. *p<0.05 vs. untreated control. (A-D) Data are representative of 3 independent experiments, and 3 technical replicates
were analyzed in each experiment.

doi:10.1371/journal.pone.0149600.g004
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Discussion
This study demonstrates for the first time that the synthetic triterpenoid CDDO-Me markedly
attenuates the immunosuppressive activation state of primary breast TAMs, inhibiting both
RNA and protein expression of tumor-promoting IL-10 and VEGF, while enhancing expres-
sion of immune-stimulatory TNF-α, IFN-γ, and IL-6. In addition, we also demonstrated using
human M2-polarized macrophages that CDDO-Me decreases expression of cytokines and sur-
face markers associated with M2 activation and concomitantly increases markers of M1 activa-
tion. Because we have shown that CDDO-Me mediates these effects in M2-skewed
macrophages that recapitulate TAM activation, we believe this drug may modulate TAM polar-
ization in other types of cancer as well. These results provide the first evidence that CDDO-Me
is capable of redirecting TAM activation from an immune-suppressive to an immune-activat-
ing state.

Although we and others have extensively documented the direct cytotoxic effects on
CDDO-Me on tumor cells (reviewed in [12]), immune function is important for CDDO-Me
inhibition of tumor growth, as tumors grown in an injectable model of SCID mice that lack
functional lymphocytes show no response to CDDO-Me treatment [45]. Moreover, work by
Nagaraj et al. demonstrates that CDDO-Me inhibits activation of myeloid-derived suppressor
cells (MDSCs) through blockade of ROS production [45], implicating innate immune media-
tors as additional targets of CDDO-Me. In this regard, we have shown that CDDO-Me impedes
TAM recruitment to tumors in PyMT mice through inhibition of tumor cell production of

Fig 5. Altered TAM polarization by CDDO-Me inhibits EC vessel formation. F4/80+ tumor associated macrophages (TAMs) were isolated from the
tumors of 12-week old female PyMTmice and treated in vitro with DMSO control or CDDO-Me (300 nM) for 16 hrs. Conditioned media (CM) were collected
from TAM cultures. ECs were cultured on basement membrane extract in the presence of complete endothelial growth media (EGM; top left), endothelial
basal media (EBM; top right), endothelial growth media in the presence of CDDO-Me (EGM+CDDO-Me; top center) vehicle-treated TAM CM (TAM+Vehicle,
bottom left), or CDDO-Me treated TAM CM (TAM+CDDO-Me, bottom center). Total number of junctions was quantified by AngioTool software and is
represented in the bottom right panel. Data are representative of 2 independent experiments. *p<0.05, **p<0.01. Quantification represents mean ± standard
deviation.

doi:10.1371/journal.pone.0149600.g005
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CCL2 and CXCL12 [13]. This finding, coupled with chemokine data from our current study,
implicates CDDO-Me as a regulator of myeloid cell migration and activation. Notably, we
detected a marked decrease in surface expression of CD163, which is characteristic of M2macro-
phages and TAMs and is associated with poor clinical prognosis [46, 47]. Previous work has
demonstrated that CD163 is upregulated by IL-10 [48] and that IL-10 induces M2 activation of
macrophages [49]. As we have now shown that IL-10 production is inhibited by CDDO-Me, it is
therefore possible that this provides a negative feedback mechanism for diminished expression of
CD163 and redirection of TAM activation. In this regard, we noted that CDDO-Me-mediated
attenuation of another M2-associated maker, CD206, was greatly amplified under conditions of
cellular activation. It is possible that CDDO-Me modulates expression of CD206 in these condi-
tions by both direct and indirect mechanisms. Our findings suggest that CDDO-Me may modu-
late expression of an LPS-inducible regulator of CD206, which may account for the difference in
the magnitude of the effect under basal and stimulated conditions. One potential candidate is
GM-CSF, which has been reported to induce CD206 expression [50], and which we have shown
is inhibited by CDDO-Me (unpublished observations). Experiments are currently underway to
test this hypothesis. Furthermore, because CDDO-Me is pleiotropic, the molecular mechanism
(s) by which CDDO-Me regulates TAM activation are likely to be multifactorial. Candidate path-
ways include NFκB, STAT3, and PPARγ, as each of these is modulated by CDDO-Me [51–53]
and has been shown to regulate macrophage polarization [54–56].

While this work has focused on direct drug effects on TAM activation, CDDO-Me may
mediate indirect effects on TAM polarization through modulation of tumor cell-secreted fac-
tors. In this regard, tumor cells have been shown to direct TAM polarization through release of
cytokines including IL-4 and TGF-β[57]. Indeed, tumor cell apoptosis has been implicated in
enhancing immune-suppressive breast TAM activation [58], and CDDO-Me induces tumor
cell apoptosis in some cancer models [12]. Thus, it will be important to define the contribution
of CDDO-Me-modulated tumor cells to TAM polarization.

Angiogenesis plays a significant role in tumor growth and progression to metastatic disease,
and TAMs contribute to vessel formation in a phenotype-dependent manner [59]. Since
CDDO-Me redirection of TAM activation significantly impaired endothelial cell tube formation,
this drug may be important therapeutically in eliciting both immune activation and in com-
batting angiogenesis. In accordance with recent findings [60], we failed to observe direct effects
of CDDO-Me on EC viability. Furthermore, our studies suggest CDDO-Me effects on EC vascu-
larization are likely mediated indirectly though changes in TAM polarization, rather than
through direct effects on ECs, as we did not observe changes in EC tube formation in the absence
of CDDO-Me TAM conditioned media. These findings differ from a previous observation [61],
but may be attributable to differences in drug timing and dose. Notably, these authors also
reported that CDDO-Me suppressed angiogenesis much more potently in vivo compared with in
vitro, suggesting that CDDO-Me anti-angiogenic activity is likely the result of drug effects on
multiple cell types within the tumor microenvironment. Nevertheless, our studies demonstrate
that CDDO-Me-mediated changes in TAM activation influence EC angiogenesis. We speculate
that CDDO-Me induces these changes through downregulation of M2 angiogenic cytokines
(VEGF and IL-10). Our results imply that re-education of TAM polarization is a promising anti-
angiogenic approach, and stress the importance of analyzing TAM function as well as numbers.

It is imperative to note that while the M1/M2 designation is useful in assigning immune-
suppressive and immune-enhancing properties to macrophages, it is somewhat limited in its
utility to accurately describe macrophage activation. Because macrophages are plastic and sub-
ject to modulation by local micro-environmental factors, in vivomacrophage activation spans
a broad spectrum of polarization states [62]. We selected M-CSF to mediate M2 activation of
human macrophages, as tumor cell-derived M-CSF has been shown to drive the differentiation
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of pro-angiogenic TAMs in breast cancer [63]. However, because the tumor microenvironment
is diverse and replete with many other potential immune-modulatory factors, it will be impor-
tant to verify the effects of CDDO-Me on TAM activation in vivo. As such, experiments to
address in vivo regulation of TAM activation by CDDO-Me are ongoing. Nevertheless, it is
notable that we were able to recapitulate CDDO-Me effects on primary TAMs in human
monocyte-derived macrophages. These findings suggest our observations in the PyMT model
may be potentially extrapolated to other types of cancer.

Because inhibition of IL-10 has been shown to mediate enhanced responsiveness to chemo-
therapy [64], CDDO-Me treatment may also be beneficial in increasing the efficacy of other
chemotherapeutic agents. TAMs are the dominant source of IL-10 in mammary carcinomas
[65], and recent work demonstrates that TAM-derived IL-10 blocks CD8+ T cell-dependent
responses to chemotherapy by suppression of IL-12 expression by intra-tumoral dendritic cells
[64]. Although we were unable to detect direct changes in IL-12 expression by CDDO-Me-
treated TAMs in vitro, our preliminary studies suggest that in vivo administration of
CDDO-Me does elicit IL-12 production from PyMT TAMs (data not shown). It is also entirely
possible these effects are mediated indirectly by DCs. Current studies in our laboratory are
focused on optimizing the efficacy of combination therapies utilizing CDDO-Me and other
chemo and immuno-therapeutics to halt tumor growth and progression.

The immunosuppressive tumor microenvironment not only fosters tumor progression but
has also proven a major impediment to the efficacy of cancer immunotherapies. Because
TAMs constitute the dominant myeloid cell population in mammary tumors and are a major
source of immunosuppression, altering TAM activation may provide a means of alleviating
this barrier. Although previous attempts have been made to modulate TAM function using
cytokines and immune activators such as LPS, these approaches have been hampered by issues
associated with delivery and substantial toxicity [11, 66]. This study is the first to demonstrate
that CDDO-Me, an orally available drug that is well-tolerated in cancer patients [67], redirects
TAM activation. We also show that CDDO-Me stimulates M2-polarized macrophages to
induce proliferation of autologous T cells to levels that are comparable to M1-activated cells.
Furthermore, CDDO-Me-redirected TAMs also inhibit EC vessel organization. The potent
immuno-stimulatory and anti-angiogenic activity of CDDO-Me, coupled with its direct anti-
proliferative effects on tumor cells, suggests that this drug may be an important component in
our arsenal of immuno-therapeutics to combat cancer.
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