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Abstract

PV1 protein is an essential component of stomatal and fenestral diaphragms, which are formed at the plasma membrane of
endothelial cells (ECs), on structures such as caveolae, fenestrae and transendothelial channels. Knockout of PV1 in mice
results in in utero and perinatal mortality. To be able to interpret the complex PV1 knockout phenotype, it is critical to
determine whether the formation of diaphragms is the only cellular role of PV1. We addressed this question by measuring
the effect of complete and partial removal of structures capable of forming diaphragms on PV1 protein level. Removal of
caveolae in mice by knocking out caveolin-1 or cavin-1 resulted in a dramatic reduction of PV1 protein level in lungs but not
kidneys. The magnitude of PV1 reduction correlated with the abundance of structures capable of forming diaphragms in the
microvasculature of these organs. The absence of caveolae in the lung ECs did not affect the transcription or translation of
PV1, but it caused a sharp increase in PV1 protein internalization rate via a clathrin- and dynamin-independent pathway
followed by degradation in lysosomes. Thus, PV1 is retained on the cell surface of ECs by structures capable of forming
diaphragms, but undergoes rapid internalization and degradation in the absence of these structures, suggesting that
formation of diaphragms is the only role of PV1.
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Introduction

Caveolae, fenestrae and transendothelial channels (TEC) are

endothelial structures involved in microvascular permeability

[1,2,3,4,5]. In the ECs of capillaries of visceral organs, these

structures are provided with diaphragms [1,6,7]. The only known

structural component of the diaphragms is PV1 [8,9,10,11,12], a

vertebrate protein encoded by the Plvap gene [1,11,13]. Knock-

down of PV1 in ECs in culture results in the disappearance of all

diaphragms [10,11,12]. Knockout of PV1 in mice also causes the

disappearance of all diaphragms and results in in utero and

perinatal mortality due to impairment of vascular permeability

[14].

Our understanding of the complex phenotype occurring in

PV12/2 mice would be strengthened by the knowledge of

whether the diaphragm formation is the only cellular role played

by PV1. We addressed this question by measuring the effect of

removal of endothelial structures capable of forming diaphragms

on the cellular PV1 protein level. PV1 and the diaphragms are

present only in ECs of microvessels (i.e. capillaries and venules) of

visceral organs. For the in situ approach, our analysis was focused

on microvessels in two types of vascular beds such as the lung and

the kidney. Lung capillaries are of a continuous type and their ECs

have only caveolae but no fenestrae or TEC [1]. Conversely,

kidney capillaries are of a fenestrated type, their ECs being

provided with fenestrae and TEC in great excess to caveolae

[1,15].

We showed that deletion of caveolae by knockout of their

components Cav1 [16,17,18] or PTRF/cavin-1 [19,20] resulted in

the dramatic decrease of PV1 protein level in lung microvascular

ECs, which lacked any structures capable of forming diaphragms.

We determined that the reduction in PV1 protein level was due to

increased internalization rate via a clathrin- and dynamin-

independent pathway followed by degradation in lysosomes. In

contrast to lungs, the absence of caveolae caused only slight

reduction in PV1 protein level in fenestrae- and TECs-rich

microvascular ECs of kidneys. Therefore, PV1 is retained on the

surface of microvascular ECs by structures capable of forming
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diaphragms. In the absence of these structures, PV1 undergoes

rapid internalization and degradation suggesting that formation of

diaphragms is the only function of PV1 protein.

Results

Protein level of PV1 is maintained by the presence of
structures capable of forming diaphragms in vivo

Knockout of Cav1 in mice (Cav12/2) led to the decrease

(84.4%+/27%) in PV1 protein level in the lungs (Fig. 1A), in accord

with a previous report [21]. This decrease was not due to a lower

number of ECs in Cav12/2, as indicated by similar protein levels

of endothelial marker CD31/PECAM-1 [22,23] in Cav12/2,

Cav+/2 and WT (Fig. 1A). A similar reduction (76.6+/211%) in

PV1 protein level in the lungs was observed for knockouts of cavin-1

(cavin-12/2) (Fig. 1B). In contrast to lungs, the removal of caveolae

in kidneys by knockout of Cav1 caused only a slight reduction

(17.5%+/23) in protein level of PV1 (Fig. 1C). PV1 mRNA levels

in lungs and kidneys were similar among WT, Cav12/2 and

cavin-12/2 mice (Fig. 1D), indicating that transcription of PV1

is not affected by the lack of caveolae.

We employed transmission electron microscopy (TEM) to get a

better understanding of structural differences between the

microvasculature of lungs and kidneys in the context of diaphragm

formation. In concordance with previous studies [8,9,24,25]

(reviewed in [1]), ECs in lungs of WT formed caveolae provided

with diaphragms but did not form fenestrae or TEC (Fig. 2A, left

lower panels). The removal of caveolae by knockout of either Cav1

or cavin-1 resulted in lung microvasculature completely devoid of

all structures capable of forming diaphragms (Fig. 2A, middle and

right lower panels). In contrast to the lungs, ECs in the peritubullar

capillaries of kidneys contained many fenestrae and TEC provided

with diaphragms [15] (Fig. 2A, left upper panel). Removal of

caveolae did not affect the ability of ECs in kidney peritubullar

capillaries to form these structures (Fig. 2A, middle and right upper

panels). Morphometric analysis confirmed on one hand the absence

of caveolae in the microvasculature of Cav12/2 lungs (Fig. 2B)

and kidneys (Fig. 2C), and on the other hand it showed that the

densities of fenestrae and TEC in the kidneys of Cav12/2 and

WT mice were similar (Fig. 2C). Thus, removal of caveolae caused

a complete absence of structures capable of forming diaphragms

and low PV1 protein level in the microvasculature of the lungs. In

contrast, the microvasculature of the kidneys of Cav12/2 mice

had high numbers of structures capable of forming diaphragms

(fenestrae and TEC) and high PV1 protein level.

Protein level of PV1 is maintained by the presence of
caveolae in vitro

To investigate the mechanism by which structures capable of

forming diaphragms maintain PV1 protein level, we employed

mouse lung endothelial cells (MLECs) which, when isolated from

WT (WT) mice, form caveolae but not fenestrae or TEC [26,27].

Caveolae do not form in MLECs isolated from Cav12/2 mice

(Cav1KO), but form in MLECs isolated from Cav12/2 mice in

which Cav1 expression was reconstituted with transgenic expres-

sion of canine Cav1 under the control of the endothelial-specific

preproendothelin promoter (Cav1ECRC) [26,27]. The amount of

PV1 protein translated and matured to fully N-glycosylated form

in MLEC-Cav1-ECRC was similar to that in the MLEC-WT and

higher than in MLEC-Cav1KO (Fig. 3A). Therefore, the PV1

protein level in MLEC in vitro is maintained by the presence of

caveolae.

The direct correlation between the presence of caveolae and

PV1 protein level in lung ECs suggests that PV1 predominantly

associates with caveolae on the cell surface of MLEC-WT. We

examined the specificity of PV1 association with caveolae in

MLEC-WT using two-color total internal reflection fluorescent

microscopy (TIRFM). TIRFM allowed us to visualize the

fluorescent signal only in the coverglass-proximal region of the

cell (<100 nm calculated penetration angle) mostly corresponding

to plasma membrane. Live MLEC-WT expressing Cav1-GFP

were labeled at 4uC with fluorophore tagged anti-PV1 antibodies

and imaged at 37uC immediately thereafter. PV1 predominantly

associated with caveolae as indicated by extensive co-localization

of PV1 with Cav1-GFP (white arrows, Fig. 3B).

Absence of caveolae does not affect the transcription
and translation rates of PV1

Reduction in total PV1 protein levels in ECs lacking caveolae

could be explained by defects in transcription or translation of

PV1. We examined this possibility by determining the effect of

Cav1 knockout on PV1 mRNA level and translation rate of PV1

protein in lung ECs isolated from wild type (MLEC-WT) and

Cav12/2 (MLEC-Cav1KO) mice. The level of PV1 mRNA

Figure 1. Protein level of PV1 is maintained by the presence of
caveolae in vivo. A–B) Protein levels of PV1, Cav1 and CD31 in the
lung (A) and kidney (B) total membranes of Cav12/2, Cav1+/2 and WT
mice were detected by immunoblotting. C) Protein levels of PV1, cavin-
1 and CD31 in the lung total membranes of cavin-12/2 and WT mice
were detected by immunoblotting. D) PV1 mRNA levels in the lung (left
panel) and kidney (right panel) of WT, Cav12/2 and cavin-12/2 mice.
doi:10.1371/journal.pone.0032655.g001

In Absence of the Diaphragms PV1 is Degraded
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normalized to beta-actin mRNA was similar in MLEC-WT and

MLEC-Cav1KO (Fig. 4A), in agreement with in vivo data (Fig. 1D).

Thus, deletion of Cav1 does not affect PV1 mRNA level in ECs.

The translation rates of PV1 mRNA into protein were measured

by pulse metabolic labeling of MLEC-WT and MLEC-Cav1KO

cells with 35S-methionine and 35S-cysteine. Immunoprecipitated

and SDS-PAGE resolved 35S-labeled PV1 appeared as five bands

by fluorography, representing the non-glycosylated, N-glycosylation

intermediates and fully N-glycosylated forms of PV1 polypeptide.

PV1 has four functional N-glycosylation sites [8] that were

confirmed by point mutagenesis (D. Tse, R. Stan, manuscript in

preparation). The amount of PV1 protein translated and matured to

fully N-glycosylated form in the MLEC-Cav1KO was similar to the

WT cells (Fig. 4B–C), demonstrating that Cav1 absence has no

effect on the translation rate of PV1 in lung ECs.

PV1 is retained on the surface of lung endothelial cells by
caveolae

We hypothesized that the low PV1 protein level in lung ECs

lacking caveolae may be explained by PV1 rapid internalization

and degradation due to the absence of structures that can form

diaphragms and retain PV1 on cell surface. We examined

internalization rates of PV1 from the surface of MLEC-Cav1KO

and MLEC-WT by flow cytometry (Fig. 5A). In accord with our

hypothesis, the amount of PV1 on the surface of MLEC-Cav1KO

was much lower than in MLEC-WT (Fig. 5B). PV1 was

internalized in time-dependent manner (Fig. 5C) but the rate of

PV1 internalization was significantly higher in MLEC-Cav1KO

than in MLEC-WT (Fig. 5D–E). Therefore, absence of Cav1, a

critical structural component of caveolae, resulted in an acceler-

ated rate of PV1 internalization from the surface of lung ECs.

Figure 2. Protein level of PV1 correlates with the number of structures capable of forming diaphragms in vivo. A) Electron micrographs
of capillary ECs of the kidneys (top panels) and lungs (middle and bottom panels) of WT, Cav12/2 and cavin-12/2 mice, as indicated. TEC and
fenestrae are present in the kidneys of WT, Cav12/2 and cavin-12/2 mice (top panels). (Middle and bottom panels) Caveolae with stomatal
diaphragms are present in the lungs of WT and absent in Cav12/2 and cavin-12/2 mice (middle panel). Insets in middle panels are a 2-fold
magnification of the noted stretches of ECs. Bottom panels are a 3-fold magnification of ECs of Cav12/2 (left) and cavin-12/2 (right). Bars 2200 nm.
B) Morphometric analysis of the number of lung endothelial caveolae in WT and Cav12/2 mice demonstrating the absence of caveolae in the latter.
C) Morphometric analysis of the numbers of kidney endothelial TEC, fenestrae and caveolae in WT and Cav12/2 mice.
doi:10.1371/journal.pone.0032655.g002

In Absence of the Diaphragms PV1 is Degraded
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Next, we examined degradation rates of PV1 in MLEC-

Cav1KO and MLEC-WT by using 35S metabolic labeling. The

cells were pulsed with 35S-methionine and 35S-cysteine and a chase

for 1, 4, 8 and 24 h allowed us to determine the half-life (t1/2) of
35S-labeled PV1 protein. In MLEC-Cav1KO cells, total cellular

PV1 t1/2 was in the range of ,4 h, significantly shorter than in

MLEC-WT (Fig. 5F). Therefore, the absence of caveolae in lung

microvascular ECs resulted in a higher rate of degradation of the

fully glycosylated PV1 protein.

To determine the mechanism of PV1 degradation we treated

MLEC-WT and MLEC-Cav1KO with pharmacological inhibi-

tors of either lysosomal or proteasomal degradation. Lysosomal

enzymes were inhibited by treatment with 1 or 10 mM

bafilomycin A1 (a V-ATPase inhibitor and inhibitor of lysosomal

acidification [28]), 50 mM leupeptin (a serine and cysteine

protease inhibitor) [29] or 10 mM E-64D (a membrane

permeable cysteine protease inhibitor) [30] for 24 h and

determination of PV1 levels by western blotting. Each of these

inhibitors increased total cellular PV1 protein levels at 24 h

(Fig. 5G). Inhibition of PV1 degradation had greater effect on

protein level of PV1 in MLEC-Cav1KO than in MLEC-WT in

agreement with an increased degradation rate of PV1 in the

former cells. Inhibitors of the proteasomal pathway such as 2 mM

epoxomycin [31] and 10 mM clasto-lactacystin b-lactone [32] had

no effect on PV1 levels after 4, 8 or 24 h treatment (Fig. 5G–H

and data not shown). Therefore, PV1 in MLECs is degraded in

lysosomes.

PV1 is internalized in clathrin- and dynamin-
independent manner

We examined the mechanism of PV1 internalization by

studying its dependence on clathrin and dynamin, molecules with

essential roles in several endocytosis pathways [33,34,35]. PV1 on

plasma membrane did not colocalize with clathrin light chain at

the cell surface of WT cells (Fig. 6A). Unsurprisingly, treatment of

cells with PitStop2, a cell-permeant amphiphilic inhibitor of

clathrin-mediated uptake (CME), did not have a statistically

significant effect on the amount of internalized PV1 at 15 and

60 min time points in WT and Cav12/2 cells (Fig. 6B), while

inhibiting the uptake of transferrin that is known to undergo

Figure 3. Protein level of PV1 is maintained by the presence of
caveolae in vitro. A) Protein levels of PV1 in MLEC-wt(WT), MLEC-
Cav1KO (Cav1KO) and MLEC-Cav1-ECRC (ECRC) cells detected by
immunoblotting with anti-PV1 antibodies. M - Corresponds to
membrane proteins, C – cytosolic proteins. Equal amount of membrane
protein was loaded whereas the cytosolic proteins were normalized to
membrane extract volume. The membrane and cytosolic proteins were
also partially deglycosylated with PNGase F (+), which resulted in the
drop in PV1 molecular weight. Note very low PV1 level in Cav1KO cells
and increased PV1 protein level in cells reconstituted with Cav1 (Cav1-
ECRC). The top and bottom panels are different exposures of the same
blot. B) PV1 is predominantly associated with caveolae on the surface of
lung endothelial cells. PV1 (red) colocalizes with Cav1-EGFP (green) at
the plasma membrane of live MLEC, as shown by TIRFM. Insets
demonstrate the extensive colocalization of the two labels (white
arrowheads). Scale bars 220 mm.
doi:10.1371/journal.pone.0032655.g003

Figure 4. Absence of caveolae in lung ECs does not affect
transcription and translation levels of PV1. A) PV1 mRNA levels in
MLEC-wt (WT) and MLEC-Cav1KO (Cav1KO) cells measured by real time
quantitative PCR. The data was obtained from quadruplicate samples
and normalized to b-actin mRNA levels (DDCt). Bars – SEM. B) Pulse 35S
metabolic labeling of MLEC-WT (top panel) and MLEC-Cav1KO (bottom
panel) cells followed by PV1 immunoprecipitation at the indicated time
points and 35S fluorography. Duplicate samples are shown for each time
point assessed. PV1 has four active N-glycosylation sites and therefore
shows five bands, the lowest representing the non-glycosylated form
and the four higher bands representing various degrees of N-
glycosylation. C) Densitometric quantitation of the amount of PV1
translated after 10 min pulse with 35S-methionine and cysteine in
MLEC-WT and MLEC-Cav1KO cells. Error bars correspond to SEM (n = 3).
doi:10.1371/journal.pone.0032655.g004

In Absence of the Diaphragms PV1 is Degraded
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internalization in clathrin coated vesicles (Fig. 6E) [36,37].

Treatment with inhibitors of dynamin Dyngo4a [36] (Fig. 6C)

or Dynasore [38] (Fig. 6D) had no effect on PV1 internalization

while inhibiting the internalization of transferrin (Fig. 6E).

Similarly, inhibition of dynamin by overexpression of dynamin

2(K44A)-EGFP construct encoding a dominant negative form of

Figure 5. PV1 is retained on the surface of lung endothelial cells by caveolae. A) Schematic of the timeline (upper right) and the principal
steps of PV1 internalization flow cytometric assay (right). An example of data gating and fluorescence intensity histogram is given in the lower left
panels. B) Amount of PV1 on the surface of MLEC-wt (WT) and MLEC-Cav1KO (Cav1 KO) at t0 expressed as median fluorescence intensity per cell from
fluorophore-labeled anti-PV1 (PV1). Labeling of cells with isotype control non-immune antibodies showed the level of unspecific binding (control)
(error bars correspond to stdev, n = 4, *p,0.01). C) Amount of internalized PV1 at different time points in MLEC-WT at 37uC (solid line) and 4uC (dashed
line) expressed as median fluorescence intensity per cell from fluorophore-labeled anti-PV1 (PV1) (stdev, n = 6, *p,0.01). D) PV1 internalization in
MLEC-WT (WT, top panels) and MLEC-Cav1KO (Cav1 KO, bottom panels) cells at different time points, as detected by confocal microscopy. Images are
maximum projections of confocal stacks in green channel (PV1, lower panels) or green merged with blue (nuclei labeled with DAPI, upper panels). E)
Internalization rate of PV1 in MLEC-WT (solid line, solid circles) and Cav1KO (dashed line, open circles) cells, expressed as a percentage from the total
amount of PV1 on the cell surface. (stdev, n = 4 per time point, *p,0.01). F) Degradation curves of 35S labeled PV1 in MLEC-Cav1KO (Cav1KO, dashed
line, open circles) and MLEC-WT (WT, solid circles), isolated from Cav12/2 and wild type mice, respectively. Data is representative of three experiments
carried out in duplicate. G, H) PV1 degradation rates were measured in MLEC-WT (WT) and MLEC-Cav1KO (Cav1KO) treated with lysosomal or
proteasomal inhibitors. G) Western blots used for densitometric quantifications of PV1 protein level. H) Quantitation of protein levels of PV1.
doi:10.1371/journal.pone.0032655.g005

In Absence of the Diaphragms PV1 is Degraded
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dynamin 2 [39] had no effect on PV1 internalization at 15 and

60 min (Fig. 6F), while inhibiting the uptake of transferrin

(Fig. 6G). Thus, PV1 is internalized via a clathrin- and

dynamin-independent pathway.

Discussion

PV1 is an essential component of endothelial diaphragms and a

molecule critical for postnatal survival of mice. A major

unanswered question in the interpretation of the dramatic

phenotype of PV12/2 mice is whether the absence of

diaphragms is the only function of PV1. Here, we addressed this

question by combining in vivo and in vitro approaches in which we

looked at PV1 retention on the plasma membrane in the presence

and absence of structures capable of forming diaphragms on the

surface of endothelial cells. We found that, in the absence of

structures capable of forming diaphragms, PV1 protein is

transported to the cell surface followed by rapid internalization

and degradation. In our model (Fig. 6H), PV1 is delivered via the

secretory pathway to the plasma membrane where PV1 is

incorporated into the diaphragms formed on subcellular structures

such as caveolae, fenestrae and TEC. PV1 molecules, which are

not part of the diaphragms, are rapidly internalized by a clathrin-

and dynamin-independent pathway and degraded into lysosomes.

In summary, our results strongly suggest that the only role of PV1

is to form diaphragms on the cell surface.

The magnitude of PV1 protein level reduction as a result of

caveolae removal was different in the lungs and kidneys. The

observation of reduced lung PV1 protein level was in accord to a

previous report [21]. The reduced PV1 protein level in the lung

microvascular ECs of Cav12/2 mice could not differentiate the

roles of Cav1 and/or caveolae in regulation of cellular PV1

amounts. To define whether the reduced PV1 protein level was

due to the absence of Cav1 per se or to the absence of caveolae, we

analyzed another mouse model in which caveolae do not form,

namely cavin-12/2 mice. In cavin-12/2 mice Cav1 is still

expressed and transported to the plasma membrane but it does not

induce caveolae formation and is rapidly internalized and

degraded [19,40]. PV1 protein level in lung ECs of cavin 12/2

was reduced as compared to WT demonstrating that PV1

expression is down regulated by the absence of caveolae. In

contrast to the lungs, PV1 protein level in kidneys was only slightly

reduced in Cav12/2 compared to WT consistent with the fact

that caveolae represent only a minority of the structures capable of

forming diaphragms in the kidney microvascular ECs. TEM

analysis of the Cav12/2 kidney demonstrated that the numbers

of fenestrae and TEC are unchanged from WT, whereas caveolae

were absent. Thus, the drop in PV1 protein level in different

organs as a result of Cav1 knockout correlated with the level of

reduction in the number of structures capable of forming

diaphragms.

To gain insight into the mechanism responsible for PV1

decrease as a result of caveolae removal, we have employed an in

vitro system of cultured lung microvascular ECs isolated from

Cav12/2, Cav1-ECRC and WT mice. As shown before [27], the

WT lung microvascular ECs have only caveolae and no fenestrae

and TEC. Similar to in situ, the lack of caveolae in Cav1KO-

MLEC correlates with low total cellular PV1 level. Thus, our data

show, both in situ and in vitro, that the absence of structures capable

of forming diaphragms leads to a decrease of PV1 protein level.

The low PV1 protein level in absence of caveolae could be due

to decreased production, increased degradation rate or a

combination of the two. Our data showed that the decrease in

PV1 protein level was not due to diminished PV1 transcription

(both in situ and in culture) or translation rates, which are similar in

WT and Cav12/2 ECs in culture. Moreover the N-glycosylation

rate of PV1 is similar in WT and Cav12/2 MLECs,

demonstrating similar progression through the secretory pathway

components such as the endoplasmic reticulum and the Golgi

complex, where the N-glycosylation is completed and from where

PV1 is delivered to the cell surface. Our data in the kidney

capillary ECs in situ and in MLECs show that PV1 does not

require caveolae or Cav1 in order to be delivered to the cell

surface. Previous surface biotinylation experiments showed that

most (.95%) of the cellular PV1 in ECs occurs at the cell surface,

all of it in its fully N-glycosylated form [11]. Similarly, in our

experiments PV1 is delivered to the cell surface and .95% of PV1

is fully N-glycosylated in both WT and Cav12/2 ECs (and

Cav1ECRC). Thus, the production and trafficking of PV1 protein

to the cell surface do not seem to be affected by the absence of

caveolae and as such are not the cause of the decrease in PV1

protein levels. Still PV1 protein level on plasma membrane of

Cav12/2 ECs is significantly lower as compared to WT. This is

not due to proteolysis and shedding but rather to an accelerated

rate of internalization followed by degradation, as shown by pulse

metabolic labeling and experiments using lysosomal degradation

inhibitors. Altogether, these data argue that while PV1 arrives at

the plasma membrane in normal fashion, it is not retained on the

cell surface in the absence of structures capable of forming

diaphragms (i.e. caveolae) being internalized and targeted toward

lysosomal degradation.

Our in situ experiments strongly suggest a role for fenestrae and

TEC similar to caveolae in retaining PV1 at the plasma

membrane. Technical limitations do not allow us to use cell

culture methods to confirm the role of fenestrae and TEC in

retention of PV1 on the cell surface. Induction of fenestrae and

TEC can be achieved by treatments with phorbol esthers [11] and

VEGF [12,41] but these treatments also cause an increase PV1

mRNA transcription. Other methods using actin cytoskeleton

disruptors [12] perturb many cellular functions aside from

endocytosis. Therefore, we can rely only on our in situ data to

draw conclusions on the role of fenestrae and TEC in retention of

PV1 at the plasma membrane.

The internalization of PV1 occurs via a clathrin- and dynamin-

independent pathway in both WT and Cav12/2 lung ECs.

These criteria exclude clathrin-mediated uptake and also exclude

the dynamin-sensitive clathrin-independent pathways such as

caveolae [42,43,44], the RhoA controlled IL-2R pathway [45]

and the growth factor induced macropinocytosis [46]. Similar

dynamin-insensitive non-clathrin endocytic pathways have been

already described such as the CLIC pathway [47], the pathway for

syndecan 4 internalization in ECs [48], the pathway induced by

multivalent toxins and SV40 virus [49,50] and the pathway for

CD36 and oxidized low density lipoprotein particles [51], to name

a few. Our data suggest that to enter ECs, PV1 needs to dissociate

from caveolae following some form of signal or following to

caveolae disassembly. Finally, the faster rate of PV1 internalization

in the Cav12/2 ECs suggests that: i) Cav1/caveolae have a

direct inhibitory effect on the PV1 uptake pathway in WT ECs, or

ii) PV1 uptake acts in constitutive manner and the rate of

dissociation of PV1 from caveolae controls the rate of its

internalization. PV1 is internalized via a pathway that feeds into

the endolysosomal system leading to its degradation in the

lysosomes. Further work will elucidate the details of PV1

internalization and trafficking.

In summary, we found that PV1 is faithfully associated with the

diaphragms formed in the neck of caveolae, fenestrae and TEC. In

the absence of the structures capable of forming the diaphragms,
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Figure 6. PV1 is internalized in clathrin and dynamin independent manner in WT and Cav12/2 cells. A) PV1 does not colocalize with
clathrin-GFP on the cell surface. Confocal micrographs of MLEC-WT transfected with clathrin-GFP (Clathrin, green) and labeled with fluorescent anti-
PV1 antibodies (PV1, red). The insets represent a low power field with two transfected cells. The areas in shaded in grey are magnified in lowed panels.
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PV1 undergoes rapid internalization and degradation. These

findings will prove to be important in future investigations on the

cause of metabolic defects observed in PV1 knockout mice [14] as

well as on the significance of PV1 upregulation observed during

angiogenesis [41,52] and inflammation [53,54] (reviewed in [1,7]).

Materials and Methods

Materials
Cell culture regents were from Lonza (Walkersville, MD).

Pharmacological inhibitors bafilomycin A1 (from Streptomyces

griseus), Dynasore (3-Hydroxynaphthalene-2-carboxylic acid-(3,4-

dihydroxybenzylidene)-hydrazide), E-64D ((2S,3S)-trans-Epoxysuc-

cinyl-L-leucylamido-3-methylbutane Ethyl Ester) and leupeptin

were from EMD Biosciences/Merck (San Diego, CA), Dyngo 4a,

PitStop2 and PitStop2 negative control were from Ascent

Scientific/Abcam (Princeton, NJ), whereas epoxomycin and

clasto-Lactacystin b-Lactone were from Boston Scientific (Natick,

MA).

Mice
Caveolin 12/2 (Cav12/2) mice on C57Bl/6 background

(strain B6.Cg-Cav1tm1Mls/J) [55] were obtained from The Jackson

Laboratory (Bar Harbor, Maine). The mice were maintained by

heterozygous (Cav1+/2) cross breeding to generate to generate

Cav12/2, Cav1+/2 and WT littermates. Every 5 generations

Cav12/2 mice were bred to C57Bl/6J mice from Jackson

Laboratory. Cavin-12/2 mice on C57Bl/6 background were

from Dr. P. Pilch, Boston University [20].

Cells
Mouse polyoma virus middle T antigen immortalized mouse

lung ECs (MLEC) obtained from Cav1KO (MLEC-Cav1KO),

Cav1 ECRC (MLEC-Cav1 ECRC) and WT (MLEC-WT) mice,

as described [27,56,57,58]. The cells were flow sorted for surface

expression of both CD31 and PV1 using a FACSAria sorter (BD

Biosciences), as described below. All mouse lung ECs were

cultured on plastic in MLEC growth medium consisting of

endothelial growth medium 2 (EGM2) (Lonza, Walkersville, MD)

supplemented with 15% heat inactivated fetal bovine serum

(Hyclone), 100 mg/ml penicillin, 100 mg/ml streptomycin and

100 mg/ml glutamine (Invitrogen, Carlsbad, CA). HUVEC were

obtained from Lonza and were cultured in EGM2 medium. The

hybridoma secreting the rat anti-mouse PV1 IgG2a mAb MECA-

32 [6,59] were from the Developmental Studies Hybridoma Bank,

University of Iowa.

Antibodies
Rabbit anti caveolin 1 pAb (cat# 610060) and mouse anti –

PTRF (cavin1) mAb, clone #4 (Cat# 611259) were purchased

from BD Bioscience (San Diego, CA). Rat anti-mouse CD31

(PECAM-1) clone MEC13.3 – APC (Cat# 102510) was from

BioLegend. Mouse anti-beta-actin mAb (AC40) was from Sigma

(St.Louis, MO). Rabbit anti ERK1/2 mAb was from Cell

Signaling (Beverly, MA). Goat anti-CD31 (PECAM-1) pAb (M-

20, cat# sc-1506) and goat anti-Cdh5 (VE Cadherin, CD146) pAb

(C-19, cat# sc-6458) were from Santa Cruz. The unlabeled and

HRP-conjugated rabbit anti-chicken IgY and the goat anti-mouse

IgG-HRP were from Biodesign (Kennebunk, ME). Rat anti-mouse

PV1 IgG2a mAb, clone MECA-32 mAb was produced in serum

free media by BioXCell, Lebanon, NH. Chicken anti-mouse PV1C

pAb was raised in chickens against the last 12 aa of mouse PV1 C

terminus, as described in the past for chicken anti-human PV1C

pAb [8,11].

Primary antibody labeling with fluorophores
Affinity purified primary antibodies rat anti-mouse PV-1 mAb

clone MECA-32 and chicken anti-mouse PV-1C pAb, were

labeled with either Alexa (488, 568 or 647) fluorophores

(Molecular Probes, Invitrogen), as per manufacturer’s instructions.

Cell Sorting
MLEC-Cav1KO, MLEC-Cav1 ECRC and MLEC-WT cells

were cultured in 10 cm dishes to confluence. The cells were

incubated (30 min, 10uC) live with 1:500 anti-CD31-APC

(BioLegend) and anti-PV1-AF488 mAb clone MECA-32 (1 mg/

ml) diluted in MLEC growth medium. The excess antibody was

rinsed (365 ml) with sterile PBS (Invitrogen) and the cells

dissociated nonenzymatically with cell dissociation solution

(Sigma). The gating parameters were set on CD31+/PV1+
positive cells.

Electron microscopy
Specimen preparation for electron microscopy was done as

before [8,9]. Cav12/2 mice or WT littermates were perfused

(10 min, RT) under anesthesia, with oxygenated DMEM through

the left ventricle, followed by fixation by perfusion (10 min at RT)

with 2.5% glutaraldehyde and 3% paraformaldehyde in 0.1 M

sodium cacodylate buffer (pH 7.3). Specimens were taken from

different tissues and trimmed into small blocks. The blocks were

immersed into fresh fixative (1 h at RT), washed twice (15 min,

RT) in 0.1 M cacodylate, postfixed in Palade’s OsO4 (1 h on ice),

en bloc-stained in Kellemberger’s uranyl acetate (overnight at

RT), dehydrated in graded ethanol, and embedded in LX112

resin (Ladd Research Industries, Burlington, VT). Thin sections

(40 nm) with a Leica Ultracut (UC-6) using an ultrasonic

oscillating diamond knife (Diatome, US), stained with lead citrate,

and examined and photographed under an electron microscope

(JEOL 1010).

Morphometry
Morphometry was done as before [9,57] on lungs and kidneys

obtained from Cav12/2 and WT mice. The measurements were

obtained from capillaries found in 15–20 sections per animal per

B–G) PV1 and transferrin internalization rates in MLECs were quantified by flow cytometry. Error bars correspond to StDev. B–D) Percentage of
fluorescent antibody labeled PV1 internalized from the cell surface. B) PV1 internalization at 15 and 60 min in presence and absence of the clathrin
pathway inhibitor PitStop2 (PS2) or the inactive PitStop2 negative control (NC) (n = 4, p.0.05). C,D) PV1 internalization at 15 and 60 min in presence
of dynamin inhibitors Dyngo-4a (C) (n = 4, p.0.05) or Dynasore (D) (n = 4, p.0.05). E) Median fluorescent intensity of transferrin-Alexa647 internalized
within 10 min in the presence and absence of PitStop2, Dynasore or Dyngo4a (n = 4, *p,0.01). D–G) Internalization of PV1 (F) and transferrin (G) at
15 min in untransfected MLECs (mock) and MLECs transfected with eGFP-encoding plasmid (GFP), dynamin 2-eGFP fusion (Dyn2 wt) or dominant-
negative form of dynamin 2 fused to eGFP (Dyn2 K44A MLECs (n = 4, *p,0.01). H) Schematic of PV1 (green) trafficking in ECs. De novo formed PV1
enters the secretory pathway and arrives at the cell surface by exocytosis (green arrow) using secretory vesicles (Step 1). On the plasma membrane
PV1 is targeted to caveolae, fenestrae or TEC (Step 2) where it forms diaphragms. PV1 is internalized via clathrin- and dynamin-independent endocytic
mechanism (Step 3 and 4) followed by degradation in the lysosomes (Step 5).
doi:10.1371/journal.pone.0032655.g006
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tissue (n = 3 mice per group, 5 blocks per animal, 3–4 sections per

block).

In the case of the lung, the number of caveolae per mm of EC

length was determined by counting the number of uncoated

plasmalemma invaginations in the 50–100 nm size range [6] at the

luminal or abluminal front of the ECs in capillaries (i.e. blood

vessels with ,10 mm diameter) [1]. The total membrane length

examined was determined by summing the total length of luminal

membrane to the total length of abluminal membrane. The data

obtained in all animals per group was expressed as number of

caveolae per mm endothelial membrane length. Student’s t test was

used to determine statistical significance between WT and

Cav12/2 groups.

In the case of the kidney, we have determined the number of

caveolae, TEC and fenestrae per mm EC length in the ECs of the

peritubullar capillaries following the methodology previously

described by Millici, et al., [15]. By this, caveolae, TEC and

fenestrae were counted only in the areas in which EC thickness

was less than 400 nm, as these are the areas where TEC and

fenestrae occur. In the case of uncertainty as to whether a

transendothelial opening was a TEC (i.e. with two diaphragms) or

a fenestra (i.e. only one diaphragm) we have labeled this as an

unknown (U). The data is expressed as the total number of

structures found in 45–50 sections from each genotype divided by

the membrane length. Because the fenestrae and TEC involve

both fronts of the EC plasma membrane (i.e. luminal and

abluminal) we have considered the total membrane length as an

average of the luminal and abluminal plasma membrane.

Colocalization of PV1 and Cav1 by Total Internal
Reflection Fluorescence Microscopy (TIRFM)

MLEC-wt cells were seeded at 50% confluence on glass bottom

dishes (MatTek) and were trasnfected with Cav1-EGFP [48], using

Fugene 6 (Roche). Twenty four to forty eight hours post

transfection the cells were labeled live with 1.5 mg/ml MECA-

32-Alexa 568 mAb for 30 min at 4uC in MLEC growth medium,

the cells rinsed (36, RT) in MLEC growth medium and

immediately used for live TIRFM.

TIRFM images were acquired live as before [60], using an

Olympus IX71 inverted microscope equipped with a temperature-

controlled stage set at 32uC, a 1.45 NA 606 TIRFM lens

(Olympus), back-illuminated electron-multiplying charge-coupled

device camera (5126512, 16-bit; iXon887; Andor Technologies),

and controlled by Andor iQ software (Andor Technology).

Excitation was achieved using a 488-nm and a 514-nm line of

laser, and exposure times were 0.1–0.2 s and acquired at 0.5–

4 Hz. The calculated evanescent field depth was 100 nm.

Due to optical characteristics of the two wavelengths leading to

an uneven signal in the two wavelengths in TIRFM, the

colocalization was done by scoring puncta positive for the two

labels and not by the usual thresholding and calculation of the

colocalization index but manually.

Transfections
MLEC-WT were seeded at 70–90% confluence in 12 well plates

and transfected with different DNA constructs using Superfect

(Qiagen), as per manufacturer’s instructions. The DNA constructs

were as reported before [48]: EGFP-clathrin light chain from J.

Keen (Thomas Jefferson University, Philadelphia, PA) and

dynamin 2 wt-EGFP and dynamin 2(K44A)-EGFP in pEGFP-

N1 vector from M. McNiven [39] (Mayo Clinic, Rochester MN).

pEGFP-N1 empty vector was from Clontech. Forty-eight hours

post transfection the cells were labeled with fluorescent anti-PV1

and processed for either confocal microscopy or flow cytometry.

Confocal microscopy
MLEC were serum starved (2 h, 37uC, EBM2), labeled (30 min,

10uC, EBM2+1%BSA) with fluorescent anti-PV1 (5 mg/ml) and

rinsed (36, RT) in PBS containing calcium and magnesium (PBS-

CM) and chased (37uC, MLEC growth medium) for different

amounts of time. After 0, 15, 60 and 120 min the cells were rinsed

(2630 sec, RT) at low pH to facilitate detachment of non-

internalized antibodies, rinsed 16 in neutral PBS, fixed (10 min,

RT) in 4% paraformaldehyde in PBS-CM, rinsed again in PBS-

CM containing DAPI, mounted in PermaFluor (Thermo Fisher)

mounting medium and examined by confocal fluorescence

microscopy using a Zeiss 510 Meta confocal system equipped

with a 636oil immersion objective and appropriate lasers. Stacks

of images were acquired with the pinhole set at 1 Airy unit and

processed using ImageJ software. For PV1 internalization, stacks

were transformed through the maximum intensity projection

function to obtain global images of the cells. Figures were prepared

using Adobe Photoshop and Adobe Illustrator CS3 software.

Isolation of total membranes from lungs and kidneys
Lung and kidney membrane lysates were obtained from WT,

Cav12/2, Cav1+/2 and cavin-12/2 mice, as described in the past

[9]. The mice were anesthetized with a mixture of ketamine :

xylazine : acepromazine (3:1:0.25). The lungs and the kidneys

were immediately flushed free of blood by perfusion (10 min,

25uC) with oxygenated phenol-red free HBSS, via the pulmonary

artery or the left ventricle, respectively. The organs were freshly

collected, weighed, minced and homogenized (20 strokes, Teflon

pestle-glass Thomas type BB homogenizer) in an ice-cold buffer

(1:4/w:v) containing 25 mM Hepes, pH 7.2, 250 mM sucrose,

2 mM MgCl2 and a protease inhibitors cocktail (10 mg/ml each

leupeptin, pepstatin, o-phenantrolin, E-64 and 1 mM PMSF). The

homogenate was filtered through 53 mm nylon net and centrifuged

for 15 min at 5006g to yield a nuclei/cell debris pellet and a

postnuclear supernatant (PNS). The PNS was further fractionated

by centrifugation (1 h, 4uC, 100,0006g, using a TLA45 rotor) in a

total membranes pellet and a cytosolic supernatant. The

membrane pellet was solubilized in 200 ml 10 mM Tris, pH 6.8,

0.5%SDS, and protease inhibitors (Sigma). Protein concentration

was determined by a bicinchoninic acid method (Pierce, Rockford,

IL/USA) using BSA standards standards prepared in solubiliza-

tion buffer, as described previously [10,11]. Equal amounts of

protein (20 mg) were adjusted to 16 reducing SDS-PAGE sample

buffer, boiled for 5 min, resolved by 12% or 8% SDS-PAGE,

transferred to PVDF membrane and probed by immunoblotting.

Antibodies used were either the rat anti-mouse PV1 MECA-32

mAb, the chicken anti-mouse PV1C pAb described here, rabbit

anti caveolin 1 pAb, mouse anti-Cavin-1/PTRF, goat anti CD31

pAb, goat anti-VE Cadherin pAb and rabbit anti-Cavin 2/SDPR

(Abcam). The lung membrane lysates were obtained from WT,

Cav1KO, Cav1+/2 and Cavin-12/2 mice.

MLEC fractionation
CD31 and PV1 positive MLEC-WT, -Cav1KO or -Cav1-

ECRC grown to confluence in 2615 cm dishes were scrapped and

collected by centrifugation in tubes, the pellets resuspended in

1 ml ice-cold buffer (containing 25 mM Hepes, pH 7.2, 250 mM

sucrose, 2 mM MgCl2 and a broad spectrum protease inhibitors

cocktail - Sigma), homogenized (4uC, 20 strokes, Teflon pestle-

glass Thomas type A homogenizer) followed by sonication

(3630 sec bursts) using a Branson sonicator. The homogenate

was fractionated as described above for the lung and kidney

membranes.
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RNA isolation
MLEC-wt and MLEC-Cav1KO cells were grown to confluence

in quadruplicate in 15 cm Petri dishes. Freshly harvested lungs

and kidneys from WT, Cav12/2 and cavin-12/2 mice were used

for total RNA isolation. Total RNA was isolated using Trizol

(Invitrogen), as per manufacturer’s instructions.

Real-time quantitative PCR
RNA integrity and quality were determined using Bioanalyzer

(Agilent) and NanoDrop (Thermo-Fisher). One microgram of total

RNA was reverse transcribed using High Capacity cDNA Reverse

Transcription Kit (Applied Biosystems). cDNA amplified from

10 ng RNA were used in triplicate for quantitative real-time PCR

using TaqmanH Gene Expression Assays (ABI) designed for mouse

PV1 (PV1/Plvap), Cav1, cavin-1 and Actin B (ActB) mRNA

detection and the TaqManH Gene Expression Master Mix, as per

manufacturer’s instructions. The PCR was performed on ABI

7500 Real Time PCR System with SDS software. The

comparative CT method (22DDCT) of relative quantitation was

used to compare the two genotypes.

PNGase treatment to remove N-linked glycans
Solubilized membrane (Mem) and cytosolic (Cyt) proteins

(100 mg) were treated with PNGase F (New England Biological),

as per manufacturer’s instructions. Controls were incubated in the

same conditions except that PNGase F was omitted. The samples

were resolved by 8% SDS-PAGe and the proteins transferred to

PVDF membrane and immunoblotted with chicken anti-PV1C

pAb.

35S metabolic labeling of MLEC
MLEC-wt and MLEC-Cav1KO cells were grown to confluence

in 60 mm dishes. Cells were Met and Cys starved by incubation

(2 h, 37uC) in 35S labeling medium consisting of EBM medium

lacking these Met and Cys (Lonza). 100 mCi of 35S Translabel

(Perkin-Elmer) consisting of a mix of 35S labeled Met and Cys were

added to the 35S labeling medium and the cells were incubated for

10 min at 37uC to allow for the 35S-labeled aminoacids to be

incorporated in proteins during translation. Mouse PV1 has 8

methionines and 10 cysteines in its primary sequence. After 2

washes in EBM2, the cells were chased for 0, 5 min, 15 min,

30 min or 1, 2, 4, 8, 12 and 24 h when the cells were rinsed in

PBS, collected by scrapping in 1 ml solubilization buffer [1%

Triton X-100 in 10 mM Tris-Cl, pH 7.4, 150 mM NaCl and

protease inhibitors cocktail (Sigma cat# P8340)] followed by

incubation (4uC, 2 h) with end over end rotation to complete the

solubilization, These conditions are known to efficiently solubilize

PV1 [8]. The samples were centrifuged (1 h, 4uC, 100,0006g) to

remove the insoluble material as a pellet. The supernatant,

containing the solubilized PV1, was added to 50 ml (settled gel) of

chicken anti-mouse PV1 directly coupled to AffiGel 10 beads, as

described before [8]. Beads coupled with preimmune chicken IgG

were used as controls. The samples were incubated (o/n, 4uC) by

rotation after which the beads were collected by centrifugation

(5 min, 4uC, 3006g) and washed 3 times at 4uC with solubilization

buffer. PV1 bound to the beads was solubilized in SDS-PAGE

sample buffer, resolved by 8% SDS-PAGE, the gel treated with

Amplify (GE Healthcare), vacuum dried and exposed to a

multipurpose standard (MS) phosphor storage screen (Kodak).

The signal was imaged using a Typhoon 9400 scanner (Molecular

Dynamics, GE Healthcare) and quantified using ImageJ or

GelEval v1.35 (FrogDance, UK) software. Data from three

separate experiments were used to obtain the degradation curves.

Flow Cytometry
Labeled cells were analyzed by either using a FacsCalibur or a

CANTO flow cytometer controlled by either CellQuest or DIVA

software, respectively (BD Biosciences). The data analysis was

carried out using FlowJo (Tree Star, Ashland, OR) software. Each

experiment had 4–8 samples per time point and was repeated at

least three times. Median fluorescence from at least 10,000 live

cells was calculated in each sample. Statistical significance was

calculated using Student’s t test.

Evaluation of cell surface PV1 levels by flow cytometry
Either MLEC-wt or MLEC-cav1KO cells were labeled live and

while adherent with 1.5 mg/ml MECA-32-Alexa 647 mAb for

30 min at 4uC in MLEC growth medium. The cells were rinsed

(36, RT) in PBS and non-enzymatically detached using EDTA

(Cell Dissociation Solution, Sigma). The cells were mixed with an

equal volume of 1% BSA in PBS, and kept on ice in the dark until

examined by flow cytometry.

Evaluation of PV1 internalization rate by flow cytometry
Prior to the experiment the MLEC-wt and MLEC-Cav1KO

cells were serum-starved (2 h, 37uC) in serum-free endothelial

basal medium 2 (EBM2) (Lonza), followed by labeling (30 min,

10uC) with fluorophore coupled rat anti-mouse PV1 MECA-32

mAb (1.5 mg/ml) in EBM2 supplemented with 2% BSA. After

washing (36, EBM2) the excess primary antibody off, the cells

were incubated with full MLEC growth medium at 37uC for the

indicated periods of time to allow for the internalization of the

antibody. To determine the internalized fraction, the cells were

washed once (30 s, RT) in acidic PBS, pH 2.5, once in neutral

PBS and detached by incubation (10 min, 37uC) in a mixture of

trypsin/EDTA (Lonza). The combination of acid wash and the

trypsin treatment were very effective in removing the surface anti-

PV1, demonstrated on separate control samples incubated at 4uC.

To determine the initial surface pool of PV1, cells were

incubated with fluorescent anti-PV1 as above, rinsed in neutral

PBS and non-enzymatically detached using EDTA (Cell Dissoci-

ation Solution, Sigma). These conditions do not disrupt the anti-

PV1 - PV1 interaction on cell surface.

The cell suspensions were mixed with an equal volume of 1%

BSA in PBS, and kept on ice in the dark until examined by flow

cytometry. The average median fluorescence was calculated from

each time point and the percentage of internalized PV1 was

calculated from the ratio of internalized/initial anti-PV1 signal.

Fluorescent rat IgG2a was used as isotype control for MECA-32

antibody.

Evaluation of PV1 degradation pathway
Equal numbers of MLEC-WT and MLEC-Cav1KO were

seeded into 6 cm dishes at 90% confluence the evening before and

cultured in full growth medium until the next day when the

medium was replaced with MLEC growth medium containing

either proteasome inhibitors (i.e. epoxomycin or clasto-Lactacystin

beta Lactone), lysosome inhibitors (i.e. leupeptin, E64-D or

bafilomycin A1) or DMSO vehicle. The cells were further

incubated for 4 h, 8 h or 24 h at 37uC in a cell culture incubator

with 5%CO2 atmosphere. The final inhibitor concentrations

obtained from 1000-fold concentrated stocks in DMSO were as

follows: 2 mM epoxomycin, 10 mM clasto-Lactacystin b-Lactone,

10 mM E-64D, 50 mM leupeptin, 1 mM or 10 mM bafilomycin A1.

At the end of the experiment cells were rinsed (26, RT) in 5 ml

PBS and then solubilized (1 h, 4uC) in .5 ml RIPA buffer (1%

Triton X-100, 0.4% sodium deoxycholate, 0.1% sodium dodecyl
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sulfate, 150 mM NaCl in 25 mM Tris, pH7.6) with protease

inhibitors. The samples were centrifuged (1 h, 4uC, 100,0006g) to

remove the insoluble material as a pellet. The supernatant was

transferred to a fresh tube and used to determine the protein

concentration using the BCA assay and standards made in RIPA

buffer. Equal amounts (20 mg) of proteins from different samples

were resolved by 8% SDS-PAGE, transferred to PVDF mem-

branes and immunoblotted with either rat-anti-mouse PV1 mAb

MECA-32 or chicken anti-mouse PV1C pAb, as described

[10,11].

Evaluation of the effect of dynamin and clathrin
inhibitors on PV1 internalization

To determine the effects of clathrin mediated uptake inhibitor

PitStop2 [61] or the dynamin inhibitors Dynasore (10 and 80 mM)

[38] or Dyngo4a (30 mM) [36] on PV1 internalization, cells were

serum-starved (2 h, 37uC) in serum-free endothelial basal medium

2 (EBM2) (Lonza), followed by labeling (30 min, 10uC) with

Alexa647-MECA-32 mAb (1.5 mg/ml) in EBM2 supplemented

with either: 25 mM PitStop2 (Ascent Scientific), 25 mM PitStop2

negative control compound (Ascent Scientific), 10 mM or 80 mM

dynasore (EMD Chemicals) or 30 mM Dyngo4a (Ascent Scientif-

ic). Negative controls consisted of cells not treated or treated with

DMSO vehicle (1 ml/ml medium). After washing (36, EBM2) the

excess primary antibody off, the cells were incubated (37uC,

15 min or 60 min) with either EMB2 or full MLEC growth

medium supplemented with inhibitors or vehicle. For each

inhibitor we have determined the total surface PV1 signal at

t0 min, t15 min and t60 min by nonenzymatic digestion as well as

the internalized fraction using the combination of acid wash and

trypsin/EDTA, as described above. For each inhibitor the samples

were run in quadruplicate in three separate experiments. Because

protein in the medium might inactivate the inhibitors, for each

inhibitor the assay was carried out in absence and presence of

protein in the medium (EBM2 vs. full growth MLEC medium).

Positive controls for each inhibitor effectiveness consisted of

Alexa647 labeled human transferrin or EGF (Invitrogen, Molec-

ular Probes). Serum starved (o/n, 37uC, EBM2+1%BSA)

endothelial cells were incubated (30 min, 10uC) in serum-free

medium supplemented with inhibitors and either 25 mg/ml

transferrin-F647 or 1 mg/ml biotinEGF-streptavidin-Alexa647,

the excess label washed away, the cells incubated (10 min, 37uC)

in growth medium with inhibitors to allow internalization of the

surface bound label, when the cells were acid washed, resuspended

using trypsin/EDTA and examined by flow cytometry.
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