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Matching numerical simulations to continuum field theories: A

lattice renormalization study

Julian Borrill and Marcelo Gleiser∗†

Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755

(May 9, 2018)

The study of nonlinear phenomena in systems with many degrees of

freedom often relies on complex numerical simulations. In trying to model

realistic situations, these systems may be coupled to an external environment

which drives their dynamics. For nonlinear field theories coupled to thermal

(or quantum) baths, discrete lattice formulations must be dealt with extreme

care if the results of the simulations are to be interpreted in the continuum

limit. Using techniques from renormalization theory, a self-consistent method

is presented to match lattice results to continuum models. As an application,

symmetry restoration in φ4 models is investigated.
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The study of nonlinear phenomena has changed dramatically during the last two decades or

so, as an increasing number of once forbidding problems have become amenable to treatment

by faster and cheaper computers. From coupled anharmonic oscillators to gravitational

clustering, from plasma physics to the dynamics of phase transitions, numerical simulations

are often the only tool to probe the physics of complex nonlinear systems [1].

Typically, we are interested in investigating the behavior of a particular physical system

described by ordinary or partial nonlinear differential equations. In the present work, focus

will be mostly on the latter case, which can be thought of as representing systems with finitely

or infinitely many coupled degrees of freedom. Apart from very few exceptions, such as kink

solutions for sine-Gordon or φ4 models [2], nonlinear partial differential equations have no

analytical solutions. The situation is even worse if we attempt to model realistic behavior by

coupling the system to an external environment. This external environment often represents

a thermal or quantum bath, adding an element of stochasticity to the deterministic evolution

equations. In order to gain some insight into the role of nonlinearities, perturbation theory

is frequently used. However, examples ranging from the simple pendulum equation [3] to

critical phenomena during phase transitions [4] remind us that perturbation theory breaks

down precisely in the region of parameter space where nonlinear effects become predominant.

The alternative is to address the problem numerically, solving the equations of interest

using a computer. In the case of partial differential equations, the problem is set up on

a lattice which represents a particular choice of discretization procedure. For a function

of d-dimensional position and time, f(x, t), satisfying some partial differential equation

with given initial and boundary conditions, we typically construct a d-dimensional lattice

of a given geometry, say cubic or triangular, to represent space at a particular instant,

and replicate it at (usually regular) intervals to represent time. The continuous function

may then be discretized following well-prescribed rules by which continuous derivatives are

approximated by finite ratios of the lattice variables [5].

The use of a spatial lattice introduces two artificial length scales; the ‘macroscopic’ size
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of the lattice in each dimension, L, and the ‘microscopic’ distance between neighbouring

lattice points, δx. These length scales provide bounds on the wavelengths of modes which

can be represented on the lattice, whilst the total the number of lattice points N (for cubic

lattices being N = (L/δx)d) is the restricted number of degrees of freedom being integrated

at each time step. Computational physicists (and computers) spend a considerable amount

of time trying to get around the limitations that these length scales introduce to numerical

studies of continuum systems. Occasionally, one or other of these limitations may become

insignificant due to the particular physical behavior of the system; for example, close to the

critical point of a second order phase transition the divergence of the characteristic length

scale of the system means that its bulk properties (and in particular its critical exponents)

are determined by the long wavelength modes alone, doing away with the need for the high

spatial resolution given by a small lattice spacing δx [4]. In general, however, since the

continuum corresponds to the limit L → ∞, δx → 0, N → ∞, a better approximation is

obtained from a larger and finer lattice, leading to the notion of the continuum limit of a

discrete system. For continuum systems described by continuous functions, such as fluids,

fields, or deformable bodies, our discrete representation should have a well-defined continuum

limit, i.e., one that is stable as δx → 0 (at fixed L). Moreover, we should also demand that

it is a good continuum limit, in that it matches the original continuum system. As discussed

below, for systems coupled to external environments, even if the continuum limit can be

achieved on the lattice it is not always clear how to match the lattice results to a continuum

theory. These two questions — how to achieve a continuum limit in lattice simulations, and

how to ensure that it is a good limit, in the sense of matching the appropriate continuum

theory — are the focus of this work.

For linear systems, achieving a continuum limit does not usually present any difficulties.

Typically there is a minimal length-scale in the problem which can be used as a guideline for

the choice of δx. For example, when solving the wave equation, it is possible to find a small

enough δx and show that the same results are obtained if smaller values are used, provided
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one makes sure the discretization of time is appropriately chosen so that the evolution is

stable.

For nonlinear systems, the situation is more complicated. If we think for a moment in

terms of a Fourier decomposition of the function f(x, t), the effect of nonlinearities is to

couple different wavelength modes in a nontrivial way; the dynamics of short wavelength

modes will influence the dynamics of long wavelength modes and vice-versa. Mechanisms to

handle this problem are sensitive both to the particular system under study and to which of

its properties are of interest, often seeming to be more an art than a science. For example,

if we are solely interested in the dynamics of long wavelength modes with slow relaxation

time-scales, it may be possible to add extra artificial terms to the evolution equations which

damp the behavior of faster modes. For situations in which nonlinear fields are coupled

to an external environment with stochastic properties, say a thermal (or quantum) bath,

a detailed investigation of how to approach the continuum limit on the lattice is lacking.

This does not imply that this problem has been completely overlooked, but that it may have

received less attention than it deserves.

In the context of classical field theories at finite temperature there has been some work

on obtaining such a continuum limit. For example, Parisi [6] suggested the addition of

renormalization counterterms, a proposal then implemented by Alford and Gleiser [7] in

the context of 2-dimensional nucleation studies (albeit with a somewhat ad hoc match to a

continuum theory), and by Kajantie et al. [8] in lattice gauge simulations of the electroweak

phase transition. Alford and Gleiser in particular showed that neglecting lattice spacing

effects in the numerical determination of nucleation rates can lead to severe errors in the

measured values. This conclusion is not particular to systems exhibiting metastable states,

but to any nonlinear field model in contact with external stochastic environments. Thus,

the issues that are raised here are of concern to a wide range of physical systems modelled

through the separation of system and environment, from quantum field theories to effective

field theories describing condensed matter systems.
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Even if a continuum limit can be achieved on the lattice, we must still ensure that the

numerical results correspond to the appropriate continuum theory. In general, the coupling

to a stochastic environment modifies the effective lattice theory, which cannot be naively

matched to the original continuum model. The question then becomes what theory is the

lattice simulating, and can we extract it in a self-consistent way? These questions will be

addressed below in the context of two continuous nonlinear models in 2+1 dimensions, one

temperature independent and the other temperature dependent (the well-known Ginzburg-

Landau model). Both models describe phase transitions in the Ising universality class.

Extensions to d+ 1 dimensions should be straightforward.

Formulating continuum models on a lattice: The issues

Consider a single scalar field φ(x, t) in a potential V0(φ) which may or not be temperature

dependent. This potential can model interactions of φ with itself and with other fields. For

example, a linear term of the form φH is often used to represent the coupling of φ to an

external magnetic field for models of ferromagnetic transitions. In this report, focus will

be on potentials which are simple polynomials of even power in φ, although our approach

is equally valid for potentials with odd powers of φ, typical of nucleation studies. The

Hamiltonian for this system is, (in units of c = kB = 1)

H [φ]

T
=

1

T

∫

d2x
[

1

2
(∇φ · ∇φ) + V0(φ)

]

. (1)

The field φ can be thought of as representing a scalar order parameter in models of

phase transitions in the Ising universality class, such as ferromagnets, binary fluid mixtures,

metal alloys, or in studies of domain wall formation in cosmology. As such, it is convenient

to model its dynamics in contact with a heat bath by means of a generalized Langevin

equation,

∂2φ

∂t2
= ∇2φ− η

∂φ

∂t
− ∂V0

∂φ
+ ξ(x, t) , (2)

where the viscosity coefficient η is related to the stochastic force of zero mean ξ(x, t) by the

fluctuation-dissipation relation,
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〈ξ(x, t)ξ(x′, t′)〉 = 2ηTδ(x− x′)δ(t− t′) . (3)

This approach guarantees that φ will be driven into equilibrium, although the time-scale

η−1 is arbitrary. It has been extensively used in numerical simulations of thermal creation of

kink-antikink pairs [9], nucleation [7,10], spinodal decomposition [11], and pattern formation

in the presence of external noise [12], to mention but a few examples. Note that in the high

viscosity limit the second-order time derivative can be neglected, as is common practice in

systems with slower dynamical time-scales.

The next step is to discretize this system and cast it on a lattice. Using a standard

second-order staggered leapfrog method we can write,

φ̇i,m+1/2 =
(1− 1

2
ηδt)φ̇i,m−1/2 + δt(∇2φi,m − V ′

0(φi,m) + ξi,m)

1 + 1
2
ηδt

φi,m+1 = φi,m + δtφ̇i,m+1/2 (4)

where i-indices are spatial and m-indices temporal, overdots represent derivatives with re-

spect to t and primes with respect to φ. The discretised fluctuation-dissipation relation now

reads

〈ξi,mξj,n〉 = 2ηT
δi,j
δx2

δm,n

δt
(5)

so that

ξi,m =

√

2ηT

δx2δt
Gi,m (6)

where Gi,m is taken from a zero-mean unit-variance Gaussian.

Note that as a first guess we have used V0(φ) in the lattice formulation of the model.

Is this the correct procedure? It is well-known that classical field theory in more than one

spatial dimension is ultraviolet divergent, the Rayleigh-Jeans ultraviolet catastrophe [13].

Formulating the theory on a lattice takes care of the problem, as a sharp momentum cutoff is

introduced by the lattice spacing δx, with Λ = π/δx. However, a finite lattice spacing creates

two difficulties. First, the lattice theory is coarse-grained on the scale δx; in other words,

the lattice theory is not equivalent to the continuum theory we started with, and our results
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will depend on δx, unless this dependence is handled by a proper renormalization procedure.

Second, if the lattice theory is not equivalent to the continuum theory we started with, to

what continuum theory is it equivalent to? Fortunately, there is a well-defined procedure

that addresses both difficulties at once. Within its validity, it is possible to establish a

one-to-one correspondence between lattice simulations and field theories in contact with

stochastic baths.

Formulating continuum models on a lattice: The procedure

In order to recover the continuum limit on the lattice we must eliminate any dependence

on the cutoff. The coupling to the heat bath will induce fluctuations on all possible scales.

Since the cutoff sets the scale for the smallest possible spatial fluctuations in the system, we

may incorporate the effects of all fluctuations down to the smallest scale using perturbation

theory. Thus, the lattice theory must be equivalent to a continuum theory with a sharp

ultraviolet cutoff. For classical field theories, the one-loop corrected effective potential with

a large momentum cutoff is given by [14],

V1L(φ) = V0 +
T

2

∫ Λ

0

d2p

(2π)2
ln
(

p2 + V ′′
0

)

+ counterterms . (7)

These theories describe fluctuations with h̄ω ≪ kBT . In semi-classical language, the ex-

citations of the field contain many fundamental quanta. Note that there is a one-to-one

correspondence between classical statistical field theory in d + 1 dimensions and Euclidean

quantum field theory in d dimensions. While the loop expansion is in powers of T for the

former, it is in powers of h̄ for the latter. For d = 2, the only divergences are at one loop,

although higher loops can generate finite terms which modify the effective Hamiltonian. The

dependence on the cutoff Λ can be handled by introducing proper counterterms.

Integration gives,

V1L(φ) = V0 +
T

8π
V ′′
0

[

1− ln

(

V ′′
0

Λ2

)]

+ counterterms . (8)

The form of V0 will determine the counterterms needed to cancel the dependence on Λ. For

polynomial potentials of order φn, one typically needs counterterms up to order φn−2. In
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the case of interest here, degenerate double-well potentials, only one quadratic counterterm

is needed, of form aφ2, with a constant. As usual, the value of a is fixed by imposing

a renormalization condition. Because of the logarithmic divergence, the renormalization

condition must be imposed at some energy scale M , which is chosen to be,

V ′′
1L(φ =

√
M) = V ′′

0 (φ =
√
M) . (9)

The renormalized one-loop corrected potential is then,

V1L(φ) = V0 +
T

8π
V ′′
0

[

1− ln

(

V ′′
0

Λ2

)]

+
T

16π

(

V ′′′′
0 ln

(

V ′′
0

Λ2

)

+
(V ′′′

0 )2

V ′′
0

)∣

∣

∣

∣

∣

φ=
√
M

φ2 (10)

The above procedure incorporates thermal fluctuations to the original potential V0(φ)

at some energy scale M to one-loop order. As with any perturbative approach, it will

break down wherever large amplitude fluctuations are present, and in particular close to the

critical point Tc. Although there are techniques to improve the perturbative expansion in

the neighborhood of the critical point, such as ε-expansion methods [15] (not too reliable

for 2-d), in this work we will concentrate on the matching of the continuum theory to the

lattice simulation in regions of the parameter space where the one-loop calculation is valid.

Close to criticality the theory of Eq. 10 breaks down, and we restrict our investigation to

the extraction of the critical exponent controlling the divergence of the order parameter.

How is this continuum theory matched to the lattice simulation? The procedure we

propose is quite simple. Since the continuum theory above incorporates fluctuations from

momentum scales up to Λ, we write the lattice potential as,

Vlatt(φ) = V0 + aφ2 , (11)

where a is fixed by the renormalization condition in the continuum, but with Λ = π/δx.

That is,

Vlatt(φ) = V0 +
T

16π

(

V ′′′′
0 ln

(

V ′′
0

(π/δx)2

)

+
(V ′′′

0 )2

V ′′
0

)∣

∣

∣

∣

∣

φ=
√
M

φ2 . (12)

As we show below, this procedure takes care of the two problems raised by formulating the

continuum theory on the lattice, namely, the dependence of lattice results on lattice spacing
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and the matching of the lattice theory to the continuum at some renormalization energy

scale M . The generic emergence of a good continuum limit from Eq. 12 is the central result

of this work.

Applications

We will apply the above procedure to two cases, with potentials which are tempera-

ture independent and temperature dependent, respectively. Consider first the temperature-

independent potential,

V0(φ) = −1

2
m2φ2 +

1

4
λφ4 . (13)

Choosing the renormalization point to be φRN =
√

M2+m2

3λ
, the renormalized continuum

potential is, from Eq. 10,

V1L(φ) = −1

2
m2φ2 +

1

4
λφ4 +

3λT

8π

(

1 + 2
M2 +m2

M2

)

φ2 − T

8π
(3λφ2 −m2) ln

(

3λφ2 −m2

M2

)

.

(14)

It is convenient to introduce dimensionless variables (because there is no h̄ in this theory, m

has dimensions of (length)−1 while φ has dimensions of (energy)1/2), x̃ = xm, t̃ = tm, φ̃ =

φλ1/2m−1, η̃ = ηm−1, θ = Tλm−2, M̃ = Mm−1, Λ̃ = Λm−1. From the discussion in the

previous section, the lattice-spacing independent lattice potential is, using dimensionless

variables (and dropping the tildes),

Vlatt(φ) = −1

2
φ2 +

1

4
φ4 +

3θ

4π

(

ln

(

Mδx

π

)

+
M2 + 1

M2

)

φ2 . (15)

Fig. 1 shows the impact of the added counterterm to the lattice results. We display the

time evolution of the spatially averaged field, φ̄ = 1
A

∫

dAφ, starting from a broken sym-

metric phase φ̄ = −1, without the counterterm (Fig. 1a) and with the counterterm (Fig.

1b). The parameters θ, M , and physical lattice size L, were kept fixed, and only the lattice

spacing δx was varied. (Throughout this work we keep the viscosity coefficient η = 1 as we

are only interested in final equilibrium quantities.) Clearly, omitting the counterterm leads
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to severe lattice spacing dependence of the results, even to the point of having symmetry

restoration. Experiments varying θ and M showed that the procedure is robust, with excel-

lent δx-independence being achieved, even close the critical point, as long as the expansion

parameter θ/8π ≪ 1.

The next step is to compare the lattice results with the continuum models of Eq. 14

in their domain of validity. Being perturbative, we expect the continuum models to break

down when the fluctuations become large, at high temperatures or close to the critical point.

By contrast, the lattice models incorporate fluctuations up to the limiting size L, and so

may remain valid even when the continuum models break down. The continuum potential

gives a prediction for the critical temperature of

θc =
2π

3(1 +M−2 + lnM)
. (16)

Note that θc has its maximum value at M2 = 2; as we move away from this point in

either direction θc decreases, and we should expect perturbation theory to continue to be a

valid approximation closer and closer to the critical point. Ultimately, however, the phase

transition is nonperturbative, the field fluctuations become large, and perturbation theory

must fail. Fig. 2 shows the variation in the equilibrium mean field value φ̄eq with temperature

θ, squares from the lattice and lines from the continuum, for values of the renormalization

energy-scale M = 0.1 (Fig. 2a), M =
√
2 (Fig. 2b), and M = 10 (Fig. 2c). The

discontinuities in the continuum are related to the concavity of the corrected potential

between the inflection points, which gives rise to an imaginary part. As shown by Weinberg

and Wu [16], the imaginary part of the potential represents unstable physical states typical

of the process of phase separation; the figure shows only the real part of the corrected

potential. There is indeed excellent agreement at low temperatures, which is progressively

lost as the temperature increases.

At the one-loop level, perturbation theory is equivalent to mean field theory. Close to

the critical point, where mean field theory breaks down, we expect the equilibrium value of

φ̄ to diverge as a power law,
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φ̄eq ∝
(

θc − θ

θc

)β

(17)

with the critical exponent β = 1/2 for mean field theory and β = 1/8 for the 2-d Ising model.

Figure 3 shows the behavior of the lattice and continuum equilibrium mean field values φ̄eq

with reduced temperature θr ≡ (θc − θ)/θc for M = 0.1 — squares being results from

the lattice simulations, triangles the predicted behavior from the continuum, and the lines

indicating the two slopes β = 1/2 and β = 1/8. We see that the continuum perturbation

theory behaves as a mean field theory, whilst the lattice theory in the neighborhood of the

critical point is in the universality class of the 2-d Ising model as expected.

We now consider the case of a temperature-dependent potential. The goal is to show

that the above procedure works equally well in this case; both lattice-spacing independence

and the matching to a continuum theory can be achieved in a consistent way. Coupling a

temperature-dependent potential to a heat bath does not necessarily imply a double counting

of the thermal degrees of freedom. The choice of potential V0 simply reflects different physical

models. For example, one may include phenomenological temperature-dependent terms in

V0, as in the Ginzburg-Landau model, or may obtain temperature corrections by integrating

out from the partition function either other fields coupled to φ or short wavelength modes

of the field φ itself [17]. In either case, the heat bath may then be representing stochastic

forces not included in the integration process, or simply an external environment coupled to

φ phenomenologically, which drives the system to its final equilibrium state. As an example,

we choose the Ginzburg-Landau potential,

V0(φ) =
1

2
a(T − T ′

c)φ
2 +

1

4
λφ4 , (18)

where the prime is a reminder that the critical temperature has an arbitrary value in the

mean field model. Fixing the renormalization energy scale at φRN =
√

M2−a(T−T ′

c
)

3λ
, the

renormalized continuum potential becomes,

V1L(φ) =
1

2
a(T − T ′

c)φ
2 +

1

4
λφ4 +

3λT

8π

(

1 + 2
M2 − a(T − T ′

c)

M2

)

φ2
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− T

8π

[

3λφ2 + a(T − T ′
c)
]

ln

(

3λφ2 + a(T − T ′
c)

M2

)

. (19)

Following the same steps as before and arbitrarily setting θ′c = 1, this theory is matched on

the lattice to

Vlatt(φ) =
1

2
(θ − 1)φ2 +

1

4
φ4 +

3θ

4π

[

ln

(

Mδx

π

)

+
M2 − (θ − 1)

M2

]

φ2 . (20)

Fig. 4 compares the lattice results without (Fig. 4a) and with (Fig. 4b) the renormalization

counterterm. The prescription to obtain lattice-spacing independence works equally well in

this case. Fig. 5 again compares the lattice simulations (squares) and the continuum model

(lines) for renormalization scales M = 0.1 (Fig. 5a), M =
√
2 (Fig. 5b), and M = 10

(Fig. 5c). For low temperatures excellent agreement is obtained, as in the temperature

independent case. Note that this also confirms that our model has not been ‘twice-cooked’;

had it been, no such agreement would be possible. Finally, in Fig. 6, we show the critical

behavior of the lattice (squares) and continuum (triangles) for M = 0.1. Again the lattice

obtains the Ising critical exponent, β = 1/8, close to criticality.

In summary, we have presented a self-consistent method to match lattice simulations to

nonlinear field theories in contact with an external stochastic environment. This approach

is of potential interest in a wide range of physical problems, from noise-induced pattern-

forming instabilities and phase separation in condensed matter physics to symmetry breaking

in high energy physics and cosmology. It was shown that adding the right renormalization

counterterms to the lattice potential provides a good continuum limit, independent of the

lattice-spacing and matching the appropriate continuum theory. That this matching breaks

down at high temperatures and/or close to a critical point is not surprising, as it reflects

the limitations of perturbation theory in probing critical phenomena quantitatively. The

procedure was demonstrated to work well for a large class of widely-used potentials — both

temperature independent and dependent — and over a wide range of the renormalization

energy scale M .
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List of Figures

Figure 1. The time evolution of the mean field φ̄(t) at five different lattice spacings

δx = 0.125, 0.25, 0.5, 1.0 and 2.0 for the temperature independent potential — (a) without

the renormalisation counterterms added (δx increasing downwards), and (b) with the renor-
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malisation counterterms added.

Figure 2. The variation in the equilibrium mean field φ̄eq with the dimensionless temper-

ature θ from the lattice (squares) and the continuum (lines) for the temperature independent

potential — (a) for M = 0.1, (b) for M =
√
2, and (c) for M = 10.

Figure 3. The variation in the equilibrium mean field φ̄eq with the reduced dimensionless

temperature θr from the lattice (squares) and the continuum (triangles) for the temperature

independent potential. The dashed lines have slopes of 1/8 and 1/2.

Figure 4. The time evolution of the mean field φ̄(t) at five different lattice spacings

δx = 0.125, 0.25, 0.5, 1.0 and 2.0 for the temperature dependent potential — (a) without

the renormalisation counterterms added (δx increasing downwards), and (b) with the renor-

malisation counterterms added.

Figure 5. The variation in the equilibrium mean field φ̄eq with the dimensionless temper-

ature θ from the lattice (squares) and the continuum (lines) for the temperature dependent

potential — (a) for M = 0.1, (b) for M =
√
2, and (c) for M = 10.

Figure 6. The variation in the equilibrium mean field φ̄eq with the reduced dimensionless

temperature θr from the lattice (squares) and the continuum (triangles) for the temperature

dependent potential. The dashed lines have slopes of 1/8 and 1/2.
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