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A Basis Theorem for Perfect Sets

Marcia J. Groszek
Theodore A. Slaman∗

November 17, 2000

Abstract

We show that if there is a nonconstructible real, then every perfect
set has a nonconstructible element, answering a question of K. Prikry.
This is a specific instance of a more general theorem giving a sufficient
condition on a pair M ⊂ N of models of set theory implying that every
perfect set in N has an element in N which is not in M .

1 Introduction

In this paper, we consider the following question, posed by K. Prikry in the
1960’s. It appeared in lists of open questions of Mathias [1979] (compiled in
1968) and Friedman [1975].

Question 1.1 (Prikry) Suppose there is a nonconstructible real. Does ev-
ery perfect set have a nonconstructible element?

Rephrased, Prikry’s question asks whether the assumption that there is
a nonconstructible real implies that the nonconstructible reals are a basis
for the perfect sets. From the opposite point of view, it asks whether it is
possible for there to be a nontrivial perfect subset of L, Gödel’s inner model
of constructible sets.

∗During the preparation of this paper, Slaman was partially supported by National
Science Foundation Grant DMS-9500878. The authors wish to thank W. H. Woodin for
the illuminating conversations they had with him on the topics of this paper.
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In private correspondence, Prikry described the environment in which
he posed his question, and we paraphrase his remarks in this paragraph.
Those were the early days of forcing, and his question was part of a larger
question then being addressed with the tools newly available: What are the
constructible reals like relative to the set of all reals? The particular import
of Prikry’s question is this: How substantial can the set of constructible re-
als be? In some models, it appears to be quite substantial. It is possible
for the constructible reals to fail to be Lebesgue measurable [Solovay] or to
fail to have the property of Baire [Solovay] and independently [Hrbáček and
Vopěnka, 1967] (see [Jech, 1978], section 44), or even both simultaneously
[Prikry], and it is possible to have only a single non-trivial degree of con-
structibility [Sacks, 1971]. On the other hand, Gödel [1947] suggested that
the constructible reals should be fairly insubstantial relative to the set of
all reals. A negative answer to Prikry’s question would provide a model in
which the set of constructible reals, having a perfect subset, was substantial
indeed.

Prikry’s problem bears on the question of the definability of the set of
constructible reals. In this connection, Friedman [1975] posed the following
question.

Question 1.2 (Friedman) Suppose that there is a nonconstructible real.
Can the constructible reals be an uncountable Σ1

1 set?

Friedman’s question asks whether the constructible reals can be a non-
trivial analytic set. By a theorem of Martin and Solovay [1970], they can be
a non-trivial co-analytic set. A positive answer to Friedman’s question would
imply a negative answer to Prikry’s question.

Velickovic and Woodin [n.d.] gave a negative answer to Friedman’s ques-
tion:

Theorem 1.3 (Velickovic and Woodin) Suppose that M is an inner
model of set theory and ω2M is Σ1

1. Then either ωM
1 is countable or M

contains all of the reals.

This suggests that Prikry’s question may have a positive answer; in a
similarly suggestive result in the same paper, Velickovic and Woodin show
that if there is a nonconstructible real, every superperfect set of reals has a
nonconstructible element. However, tending in the other direction, they also
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give an example of models M ⊂ N for which N contains a real not in M ,
but the reals of M have a perfect subset in N .

In this paper, we answer Prikry’s question positively. In Theorem 2.5, we
show that if there is a nonconstructible real, then every perfect set has a non-
constructible element. Since every uncountable Σ1

1 set has a perfect subset,
this yields a strengthening of Theorem 1.3 for L: if there is an uncountable
Σ1

1 subset of L, then every real is constructible.
We note, though without proof, that this theorem can be strengthened:

If there is a nonconstructible real, then every perfect set of reals contains a
perfect subset of nonconstructible reals.

Nothing here is specific to L. In Theorem 2.4 we give a sufficient condition
on a pair M ⊂ N of models of set theory implying that every perfect set
in N has an element in N which is not in M . This leads us to similar
conclusions for higher order definability classes with the appropriate large
cardinal assumptions. For example, if ω1 is inaccessible from reals, then
every uncountable Σ1

2 set has a perfect subset and any basis for the perfect
sets is one for the uncountable Σ1

2 sets as well.

2 The basis theorem

2.1 A technical lemma

Definition 2.1 1. A sequence of reals 〈Gi : i < ω〉 is dense in the set [T ]
of paths through a tree T ⊆ <ω2 if for every σ in T there is an i such
that Gi ∈ [T ] and σ is an initial segment of Gi.

2. A path G ∈ [T ] is eventually constant in T if there is an s such that G
is either the leftmost or rightmost path in T extending G � s.

Lemma 2.2 Let T be a perfect tree, S any real, and 〈Gi : i < ω〉 any
sequence of reals with a subset that both is dense in [T ] and has no element
which is eventually constant in T . Then there are branches X, Y ∈ [T ] such
that S is recursive in X, Y and 〈Gi : i < ω〉.

We will give the proof of Lemma 2.2 in Section 2.3.
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2.2 Proof of the basis theorem

Definition 2.3 Suppose that M ⊆ N are models of set theory. We say that
ω2M countably covers ω2N if for every H ∈ N such that H ⊂ ω2M and H is
countable in N , there is a G ∈ M such that H ⊆ G and G is countable in
M .

For example, if ωM
1 = ωN

1 and M |= 2ω = ω1, then ω2M countably covers
ω2N : Take a well-ordering of ω2M in M of height ωM

1 . Since ωM
1 = ωN

1 , any
subset H of ω2M which is countable within N is contained in a proper initial
segment G of this well-ordering. Then G ∈ M and G is countable in M .

Theorem 2.4 Suppose that M ⊆ N are models of set theory, that ω2M

countably covers ω2N , and that ω2M 6= ω2N . Then every perfect set in N has
an element which is not in M .

Proof: We work within N . For the sake of a contradiction, suppose that T
is a perfect tree such that [T ] ⊆ M .

Let S be a real not in M . Let
−→
H be any countable sequence of reals

that is dense in [T ] and has no element which is eventually constant in T .

Let
−→
G = 〈Gi : i < ω〉 be a sequence in M whose elements contain H. Fix

X, Y ∈ [T ] as in Lemma 2.2. By assumption, [T ] ⊆ M and so X, Y ∈ M ;

since
−→
G ∈ M and S is recursive in X, Y and

−→
G , we see that S ∈ M , a

contradiction.

Theorem 2.5 If ω2 6= ω2L, then every perfect set has a nonconstructible
element.

Proof: If ωL
1 is countable, then since every perfect set is uncountable, every

perfect set has an element which is not constructible. Otherwise, ω1 = ωL
1 ,

and since 2ωL = ωL
1 we have ω2L countably covers ω2. By assumption, not

every real is constructible, and Theorem 2.4 then implies that every perfect
set has a nonconstructible element.

We can replace L by any inner model M satisfying 2ω = ω1.
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2.3 Proof of Lemma 2.2

In order to prove Lemma 2.2, we need to produce branches X and Y through

T such that S is computable from X, Y and
−→
G . The basic idea is this:

We define X together with a sequence 〈Gx[r] : r < ω〉 of elements of
−→
G ,

so that each Gx[r] is a path through T that is not eventually constant in T ,
X agrees with the Gx[r] on longer and longer initial segments, and S is coded

into X and
−→
Gx: S(r) is the value of X at the first place where X differs from

Gx[r]. It is easy to see that S will be recursive in X and
−→
Gx.

There is no problem in recursively defining such an X and 〈Gx[r] : r < ω〉:
Given Gx[r] that is not eventually constant in T , there are infinitely many
places where Gx[r] branches left in T and infinitely many places where it
branches right, so we can define X to agree with Gx[r] on a long initial
segment and then split off in the direction determined by S(r). Then having
determined that X splits off from Gx[r] through a node σ, by the density

properties of
−→
G , we can choose a new Gx[r + 1] extending σ. The problem

is to recover
−→
Gx from X, Y and

−→
G .

To address this, we simultaneously define Y and
−→
Gy with the same prop-

erties (except that S need not be coded), in such a way that
−→
Gx and

−→
Gy can

be computed from X, Y and
−→
G : Given Gx[r] and Gy[r], we code our choice

of Gx[r + 1] into Y and Gy[r] as follows. Having chosen Gx[r + 1] = Gi,
choose n large enough so Gi � n 6= Gj � n for all j < i. Then let Y split away
from Gy[r] (while X continues to agree with Gx[r + 1]) at some m > n; so
Gx[r +1] is the least Gi such that Gi agrees with X up to the point where Y
splits away from Gy[r]. Then we choose Gy[r + 1], and code that choice into

X and Gx[r + 1] in the same way. This ensures that we can compute
−→
Gx and

−→
Gy by simultaneous recursion from X, Y and

−→
G , which suffices to prove the

lemma.
We now present the proof of Lemma 2.2.

Proof: Let T be a perfect tree, S any real, and 〈Gi : i < ω〉 any sequence
of reals with a subset that both is dense in [T ] and has no element which is
eventually constant in T . It is safe to assume that G0 is a path through T
not eventually constant in T .

We define X and Y in [T ] by recursion so that S is recursive in X, Y
and 〈Gi : i < ω〉. During the recursion, we use variables Gx, Gy, and t; we
assign values to Gx, Gy by specifying their indices x and y then interpreting
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Gx and Gy within 〈Gi : i < ω〉, and we assign a value to t by specifying an
integer; we carry the values assigned to Gx, Gy, and t during one step to the
beginning of the next step, but these variables do not achieve a limit over
the course of the recursion. When we speak of the least Gk, we are referring
to the Gk with minimal index.

Initially X and Y are not defined anywhere, Gx = Gy = G0, and t = 0.
In the recursion step, we are given that X and Y are defined on all

numbers less than or equal to t and are equal to Gx and Gy, respectively,
where defined. We now describe the rth step in the recursion.

A.r.1. Let n be minimal so that n is greater than t, Gx(n) 6= S(r), and
Gx � n_〈S(n)〉, the concatenation of 〈Gx(0), . . . , Gx(n − 1)〉 with
〈S(n)〉, is in T ; we replace Gx with the least Gj such that Gj extends
Gx � n_〈S(n)〉, Gj ∈ [T ], and Gj is not eventually constant in T .

A.r.2. We let s be the least number such that for all i < x, there is an m < s
such that Gi(m) 6= Gx(m). We replace Gy with the least Gk so that
Gk ∈ [T ], Gk is not eventually constant in T , Gy and Gk agree on all
numbers less than or equal to s, and Gk is not equal to Gy.

A.r.3. We replace t with the least number u such that for all i < y, there is
an m < u such that Gi(m) 6= Gy(m), and extend the definitions of X
and Y so that they agree with Gx and Gy on all numbers less than u,
using the values for Gx and Gy assigned during steps A.r.1 and A.r.2.

This completes the definition of X and Y .
We can now compute S from X, Y and 〈Gi : i < ω〉 by recursion. We

begin the following recursion with r = 0 and Gx = Gy = G0.

B.r.1. Compute S(r) as the value of X at the least n such that X(n) does
not equal Gx(n).

B.r.2. Replace Gx with the least Gj that agrees with X on all numbers less
than the first difference between Y and Gy.

B.r.3. Replace Gy with the least Gk that agrees with Y on all numbers less
than the first difference between X and Gx, using the value for Gx

assigned in B.r.2.
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Finally, we prove by induction on r that the above computation of S is
correct and that, as is the case initially, the values of held by Gx and Gy at
the beginning of step B.r equal the values held by Gx and Gy at the beginning
of step A.r. Let Gx[r] and Gy[r] denote these values.

By the definition of Gx in step A.r.1, S(r) is computed correctly in step
B.r.1. By the definition of Gy in step A.r.2 and the fact that the definition
of Y is extended past s in step A.r.3, the first number at which Y and Gy[r]
disagree is larger than the value of s assigned during step A.r.2, and thereby
is large enough that the new Gx computed in step B.r.2 is the one assigned
to Gx in step A.r.1. Finally, the least number at which X disagrees with this
new Gx is greater than the value of t set during step A.r.3. Consequently,
the new Gy of step B.r.3 is the one assigned to Gy during step A.r.2. Thus,
the new values of Gx and Gy at the end of step B.r are the ones held at
the end of step A.r. And so, Gx and Gy are interpreted identically at the
beginning of steps A.r + 1 and B.r + 1, as required.

3 Conclusion

We close with two questions.

Question 3.1 Does there exist a perfect tree T which is not recursive such
that for every element X of [T ], if X ≤T T then X is recursive?

Question 3.1 is the effective version of Prikry’s question, replacing relative
constructibility with Turing reducibility. It is related to the recursion theo-
retic problem of Yates: Does every minimal degree m have a strong minimal
cover, that is, a degree c such that the only degrees less than c are 0 and
m? A tree such as is asked for in Question 3.1 is antithetical to a positive
solution to Yates’s problem.

Question 3.2 (Woodin) Assume that there is a nonconstructible subset of
ω1. Does every countably closed perfect tree on ω1 have a nonconstructible
path?

Our proof of Lemma 2.2 cannot be applied to Question 3.2. In Lemma 2.2
we code information into a pair of sets to be retrieved by a recursion in which
the outcome of the nth step is needed to determine what to retrieve during
the n + 1st step. This organization does not propagate through limit stages,
which would have to be confronted in a tree on ω1.
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