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Abstract

We give two new criteria by which pairs of permutations may be compared in
defining the Bruhat order (of type A). One criterion utilizes totally nonnegative
polynomials and the other utilizes Schur functions.

The Bruhat order on Sn is often defined by comparing permutations π = π(1) · · ·π(n)
and σ = σ(1) · · ·σ(n) according to the following criterion: π ≤ σ if σ is obtainable from π
by a sequence of transpositions (i, j) where i < j and i appears to the left of j in π. (See
e.g. [7, p. 119].) A second well-known criterion compares permutations in terms of their
defining matrices. Let M(π) be the matrix whose (i, j) entry is 1 if j = π(i) and zero
otherwise. Defining [i] = {1, . . . , i}, and denoting the submatrix of M(π) corresponding
to rows I and columns J by M(π)I,J , we have the following.

Theorem 1 Let π and σ be permutations in Sn. Then π is less than or equal to σ in the
Bruhat order if and only if for all 1 ≤ i, j ≤ n − 1, the number of ones in M(π)[i],[j] is
greater than or equal to the number of ones in M(σ)[i],[j].

(See [1], [2], [3], [6, pp. 173-177], [8] for more criteria.) Using Theorem 1 and our defining
criterion we will state and prove the validity of two more criteria.

Our first new criterion defines the Bruhat order in terms of totally nonnegative poly-
nomials. A matrix A is called totally nonnegative (TNN) if the determinant of each
square submatrix of A is nonnegative. (See e.g. [5].) A polynomial in n2 variables
f(x1,1, . . . , xn,n) is called totally nonnegative (TNN) if for each TNN matrix A = (ai,j)
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the number f(a1,1, . . . , an,n) is nonnegative. Some recent interest in TNN polynomials is
motivated by problems in the study of canonical bases. (See [10].)

Theorem 2 Let π and σ be two permutations in Sn. Then π is less than or equal to σ
in the Bruhat order if and only if the polynomial

x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n) (1)

is totally nonnegative.

Proof: (⇒) If π = σ then (1) is obviously TNN. Suppose that π is less than σ in the
Bruhat order. If π differs from σ by a single transposition (i, j) with i < j, then we have
π(i) = σ(j) < π(j) = σ(i), and the polynomial (1) is equal to

x1,π(1) · · ·xn,π(n)

xi,π(i)xj,π(j)

(xi,π(i)xj,π(j) − xi,π(j)xj,π(i)) (2)

which is clearly TNN. If π differs from σ by a sequence of transpositions, then the poly-
nomial (1) is equal to a sum of polynomials of the form (2) and again is TNN.

(⇐) Suppose that π is not less than or equal to σ in the Bruhat order. By Theorem 1
we may choose indices 1 ≤ k, ` ≤ n − 1 such that M(σ)[k],[`] contains q + 1 ones and
M(π)[k],[`] contains q ones. Now define the matrix A = (ai,j) by

ai,j =

{
2 if i ≤ k and j ≤ `,

1 otherwise.

It is easy to see that A is TNN, since all square submatrices of A have determinant equal
to 0, 1, or 2. Applying the polynomial (1) to A we have

a1,π(1) · · ·an,π(n) − a1,σ(1) · · ·an,σ(n) = −2q,

and the polynomial (1) is not TNN. �
Our second new criterion defines the Bruhat order in terms of Schur functions. (See

[9, Ch. 7] for definitions.) Any finite submatrix of the infinite matrix H = (hj−i)i,j≥0,
where hk is the kth complete homogeneous symmetric function and hk = 0 for k < 0, is
called a Jacobi-Trudi matrix. Let us define a polynomial in n2 variables f(x1,1, . . . , xn,n)
to be Schur nonnegative (SNN) if for each Jacobi-Trudi matrix A = (ai,j) the symmetric
function f(a1,1, . . . , an,n) is equal to a nonnegative linear combination of Schur functions.
Some recent interest in SNN polynomials is motivated by problems in algebraic geome-
try [4, Conj. 2.8, Conj. 5.1].

Theorem 3 Let π and σ be permutations in Sn. Then π is less than or equal to σ in the
Bruhat order if and only if the polynomial

x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n) (3)

is Schur nonnegative.
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Proof: (⇒) If π = σ then (3) is obviously SNN. Let A be an n × n Jacobi-Trudi
matrix and suppose that π is less than σ in the Bruhat order. If π differs from σ by
a single transposition (i, j), then for some partition ν and some k, `, m (`, m > 0), the
evaluation of the polynomial (3) at A is equal to

hν(hk+`hk+m − hk+`+mhk), (4)

and (3) is clearly SNN. If π differs from σ by a sequence of transpositions, then the
evaluation of (3) at A is equal to a sum of polynomials of the form (4) and again (3) is
SNN.

(⇐) Suppose that π is not less than or equal to σ in the Bruhat order. By Theorem 1 we
may choose indices 1 ≤ k, ` ≤ n−1 such that M(σ)[k],[`] contains q+1 ones and M(π)[k],[`]

contains q ones. Now define the nonnegative number r = (k−q)(n+k−`−2) and consider
the Jacobi-Trudi matrix B defined by the skew shape (n − 1 + 2r)k(n − 1 + r)n−k/r`,

B =




hn−1+r · · · hn+`−2+r hn+`−1+2r · · · h2n−2+2r
...

...
...

...
hn−k+r · · · hn−k+`−1+r hn−k+`+2r · · · h2n−k−1+2r

hn−k−1 · · · hn−k+`−2 hn−k+`−1+r · · · h2n−k−2+r
...

...
...

...
h0 · · · h`−1 h`+r · · · hn−1+r




.

The polynomial (3) applied to B may be expressed as hλ − hµ for some appropriate
partitions λ, µ depending on π, σ, respectively. We claim that λ is incomparable to or
greater than µ in the dominance order. Since M(π)[k],[`+1,n] contains k − q ones we have
that

λ1 + · · · + λk−q ≥ (k − q)(n − k + ` + 2r). (5)

Similarly, we have

µ1 + · · · + µk−q ≤ (k − q − 1)(2n − 2 + 2r) + max{n + ` − 2 + r, 2n − k − 2 + r}. (6)

Subtracting (6) from (5), we obtain

(λ1 + · · ·+ λk−q) − (µ1 + · · · + µk−q) ≥ n − max{`, n − k} > 0,

as desired.
Recall that the Schur expansion of hµ is

hµ = sµ +
∑
ν>µ

Kν,µsν ,

where the comparison of partitions ν > µ is in the dominance order and the nonnegative
Kostka numbers Kν,µ count semistandard Young tableaux of shape ν and content µ.
(See e.g. [9, Prop. 7.10.5, Cor. 7.12.4].) It follows that the coefficient of sµ in the Schur
expansion of hλ − hµ is −1 and the polynomial (3) is not SNN. �

The authors are grateful to Sergey Fomin, Zachary Pavlov, Alex Postnikov, Christophe
Reutenauer, Brendon Rhoades, Richard Stanley, John Stembridge, and referees for helpful
conversations.
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