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ABSTRACT

Solar type IV radio bursts present a theoretical challenge because they are composed of both continuum
emission and fine structures. The latter include ‘‘ zebra bursts,’’ which appear as harmonically spaced multi-
plets that shift in frequency with time. Similarities between these features and terrestrial auroral emissions
suggest a new model to explain zebra-structured type IV emissions. In this model, the basic generation mech-
anism is identical with that proposed byWinglee and Dulk: mode conversion of Z-mode waves generated by
the cyclotron maser mechanism under the condition fuh ¼ Nfce, with N an integer; however, we propose a
twist on this model whereby the ‘‘ zebra bursts ’’ do not arise from multiple N-values. Rather, the presence of
localized density irregularities within the type IV source region leads to trapping of the upper hybrid Z-mode
waves in density enhancements, which results in a discrete spectrum of upper hybrid modes with nearly con-
stant frequency spacing. The number m of quasi-harmonics is limited by the trapping (quantization)
conditions. The problem is described by an equivalent Schrödinger equation for the trapped mode, which is
solved for an (idealized) cylindrical square density irregularity. In this model, the eigenfrequency spacing
matches the observed type IV frequency spacings for less than 10% density enhancements with individual
scale sizes of 30–1000 thermal electron gyroradii, corresponding to 1–100 m scales in coronal loops. To pro-
duce the observed emitted power for a reasonable (<1%) efficiency requires a large number of such individual
microscopic sources occurring over a portion of a magnetic type IV loop at a restricted altitude within which
the magnetic field and density are approximately constant. The loop plasma in the zebra emission source is
thus highly turbulent in the sense that it contains a large number of density fluctuations. In this case transition
radiation can effectively contribute to the radiation background and may also provide the wave power
required in the upper hybrid range for generating zebra emissions.

Subject heading: Sun: radio radiation

1. INTRODUCTION

Type IV solar radio emissions are related to the injection
of large fluxes of mildly energetic electrons into a coronal
loop. These trapped electrons gyrate and bounce in the loop
magnetic field. The resulting incoherent radio emission in
the decimetric to decametric wavelength range maps out the
location and motion of the loop in the solar corona. The
nonthermal type IV emission from the gyrating particles is
complex, consisting of both a structureless continuum and a
number of fine structures referred to as pulsations, fibers,
spaghetti, zebra bursts, and many other descriptions.
Among the most remarkable of the fine structures is the
zebra emission, named after its zebra stripe appearance on a
dynamic spectrogram. It occurs at both metric and decimet-
ric wavelengths. It was first reported by Slottje (1972) and
observed extensively in the metric wavelengths (Slottje
1981; Bernold 1980; Chernov 1996; Kuipers, van der Post,
& Slottje 1981; and others) and also at decimetric wave-
lengths (e.g., Jiřička et al. 2001; Ledenev et al. 2001). The

zebra emission consists of a series of spectral bands. The
spacing between the bands is approximately constant with
slight systematic variation, which in many cases is hard to
resolve because of the limited resolution of the radio
receivers. The different bands move as an entity across the
spectrum, in many cases undulating around a quasi-station-
ary spectral position. Usually the number of such zebra
bands within one zebra burst is large (>5–8, sometimes even
exceeding 20). Observationally it remains unclear whether
zebras are emission or absorption lines on an otherwise
slowly varying continuous spectral type IV background,
although observations of zebra bands when the type IV
background is weak suggest that zebras are quasi-harmonic
emission lines, in contrast to other fine structures such as
‘‘ fiber emissions ’’ (see, e.g., Treumann, Güdel, & Benz
1990), which consist of emissions and absorption in close
connection. Frequency spacings are on the order of 1–18
MHz for metric zebras (e.g., histogram in Slottje 1981) and
on the order of tens of megahertz for decimetric zebras (e.g.,
Jiřička et al. 2001).

Since the loss cone feature of trapped electrons in a coro-
nal loop can naturally stimulate both electrostatic electron
Bernstein waves at harmonics Nfce of the local electron
cyclotron frequency fce, as well as electrostatic upper hybrid
f � fuh waves ( f

2
uh ¼ f 2ce þ f 2pe), early theories proposed that

wave-wave interaction between these modes leads to radiat-
ing modes with frequency spacings approximately equal to
the local fce in the source (Rosenberg 1972; Chiuderi,
Giachetti, & Rosenberg 1973). However, these theories do
not easily account for features of zebra bursts such as the
rapid changes in frequency or the occasional splitting of
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lines. Furthermore, they require too low a magnetic field to
account for the spacing of the bands. Alternative theories
based on whistler wave packets (Chernov 1990, 1996) or
whistler solitons (Treumann & Bernold 1981) propagating
across or along the region where the trapped electron distri-
butions emit type IV continuum or inertial kinetic Alfvén
waves for type IV fine structures (Treumann et al. 1990)
have also been proposed. These theories have difficulty
explaining why a large number of zebra bands occur simul-
taneously and why the emissions at widely different
frequencies across the spectrum shift frequency in tandem
almost simultaneously. Such simultaneous occurrence and
coordinated motion suggests that the emissions are confined
to a narrow location in physical space. In addition, whistler
soliton formation in solar magnetic loops of high field
strength is improbable as it requires substantial bending of
the magnetic field lines, which under the conditions usually
encountered there �5 1 is difficult to justify. Another possi-
bility is that the emissions result from transformation of
strongly localized electrostatic ion cyclotron waves at the
base of the corona, which are known to occur when field-
aligned currents flow or ion beams propagate across the
magnetic field, but this model requires that the magnetic
field strength in the source region, inferred from the fre-
quency spacing of the resulting emissions, is unreasonably
high, on the order of more than 103 G for 1 MHz spacing as
observed for metric type IV zebra emissions or on the order
of more than 104 G for 10 MHz spacing as observed for
decimetric zebra emissions. Other theories have been pro-
posed involving scattering of the high-frequency waves on
nonlinear sound waves (e.g., Fomichev & Fainshtein 1981).

The most successful theories involve the upper hybrid
double-resonance condition, which occurs in an overdense
plasma when fuh ¼ Nfce, with N an integer. Theories of this
kind have been presented by Zheleznyakov & Zlotnik
(1975) andWinglee & Dulk (1986). In both cases, the gener-
ated mode is electrostatic, and radiation requires mode
conversion. Winglee & Dulk (1986) point out that in the
presence of the loss cone distribution function implied by
the trapping of electrons in the coronal loop the cyclotron
maser mechanism results in large growth rates for Z-mode
waves for the conditions fpe=fce ¼ 1:7, fpe=fce ¼ 2:8, etc.,
corresponding to fuh ¼ Nfce. Inhomogeneity plays a key role
in this model: if the dominant inhomogeneity is the gradient
in plasma density, then the double-resonance condition act-
ing over a region of space will produce N nonoverlapping
harmonics and a zebra-type emission results; on the other
hand, if the dominant inhomogeneity is the gradient in
magnetic field, the harmonics generated by the double-
resonance condition overlap, leading to continuum
emission. In this way, Winglee & Dulk (1986) explain with
one mechanism a range of type IV emission characteristics.
This theory requires a relatively low magnetic field and high
density to obtain a large number N of harmonics, because
each observed harmonic represents a separate double-
resonance condition. The emissions come from spatially
separated locations. Though not in contradiction to obser-
vation, this runs contrary to the inference of a compact
source size suggested by the tendency of a wide range of
bands to change frequency in tandem almost simultane-
ously. It requires that the variations of the emission
properties along a loop have a high degree of coherence.

In this paper, we propose a variant of the model of
Winglee & Dulk (1986). We adopt their excitation

mechanism of upper hybrid waves being the electrostatic
high-frequency branch of the electromagnetic Z-mode. As
in their case, the Z-mode is assumed to be generated via the
cyclotron maser mechanism under the condition of an over-
dense plasma with plasma frequency fpe > fce exceeding the
electron cyclotron frequency, while the emitted radiation is
generated at the double resonance fuh ¼ Nfce. Also, as in
their case, further unidentified mode conversion of the
resulting electrostatic upper hybrid waves is required to
obtain escaping free-space electromagnetic radiation mostly
in the X-mode. The difference with their model lies in that
the individual zebra components do not correspond to dif-
ferent integersN in the double-resonance condition. Rather,
all the emissions correspond to the same value of N, most
likely to smallN ¼ 2 or 3, where cyclotron damping is negli-
gible, as occurs commonly, for example, in the generation of
auroral roar emissions in the terrestrial auroral ionosphere
(see, e.g., Shepherd, LaBelle, & Trimpi 1998). The forma-
tion of the zebra stripes occurs because localized density
enhancements trap the upper hybrid waves and impose a
discrete frequency spectrum on them. In this model, all the
zebra bands are generated in one small volume. This is
suggested by the simultaneous rapid variations in the fre-
quencies of the zebra components. Imaging observations
indicate a much broader source, a fact to which we will
return later.

The theory put forth in this paper explains only the source
of the frequency-time structure of the radiation. It does not
include effects of radiation transport such as propagation,
absorption, and reradiation, although these undoubtedly
exert significant effects, even in the case of an optically thin
medium. Below, we briefly consider examples of experimen-
tal data. We then compare the results to calculations of the
frequency spacing inferred from the model on the basis of
parameters of the generation region.

2. OBSERVATIONS

Figure 1 shows spectra of a decimetric type IV solar radio
burst detected at Ondřejov Observatory in the Czech
Republic on 1998 May 2. The dynamic spectrogram Figure
1 (left) covers 1.2–1.6 GHz, and white represents high power
spectral densities, while dark represents low intensity. The
zebra pattern is evident, with more than six bands shifting
in frequency simultaneously on timescales less than 1 s.
Figure 1 (right) shows a single average spectrum, showing
that the frequency spacing between zebra bands is approxi-
mately 30 MHz in this example. Furthermore, the spacing
between the bands is approximately constant over the fre-
quency range covered by six to eight bands, and the width of
each band is of the same order as the spacing between them.
There is also evidence in both panels for a continuum com-
ponent in addition to the zebra bands. In this example the
zebras appear to most likely represent emission bands
superposed on a weak continuum background type IV emis-
sion. In some cases, decimetric zebra structures occur in two
branches roughly harmonically related, as in observations
of Ledenev et al. (2001) showing simultaneous zebra
features at 1.0–1.4 and 2–3 GHz (their Fig. 2).

Figure 2, taken from Chernov (1996), shows an example
of a metric type IV zebra emission recorded at the
IZMIRAN Observatory on 1989 March 12. Contrary to
Figure 1, dark represents high power spectral densities,
while white represents low intensity. In this example the

1196 LABELLE ET AL. Vol. 593



spacing between the zebra bands is of the order of 5 MHz
and is roughly constant at any given time across the more
than eight observed bands. The bands move up and down in
frequency by tens of megahertz on timescales of seconds.
All the observed bands shift in frequency simultaneously.
As in the decimetric case, metric zebra emissions also show
evidence for a mixture of continuum radiation, zebra struc-
tures, and other fine structures. The frequency spacing
observed in the metric zebras can sometimes be as narrow as
1MHz (Slottje 1981).

Zebra emissions strikingly resemble the fine structure of
auroral roar emissions originating in the F-region of the
Earth’s auroral ionosphere and observed at ground level
(LaBelle et al. 1995; Shepherd et al. 1998). These terrestrial
auroral emissions occur at approximately 3 and 4.5 MHz
and have bandwidths of up to a few hundred kilohertz. As
with type IV, the emissions show a complicated mix of con-
tinuum and fine structures, including many fiber-like and
spaghetti-like features superposed on a continuous back-
ground. At times, multiple discrete frequencies occur

separated by a few kilohertz, which shift in frequency simul-
taneously on subsecond timescales (for example, Fig. 4 of
Shepherd et al. 1998). These features, called ‘‘ multiplets ’’
by Shepherd et al. (1998), strongly resemble zebra
emissions. As with decimetric type IV, auroral roars are
occasionally observed simultaneously at widely spaced
frequencies, near 3 and 4.5 MHz versus 1.0–1.4 and 2–3
GHz in the decimetric type IV event studied by Ledenev
et al. (2001). Auroral roar has been attributed to cyclotron
maser–generated Z-modes at the double resonance (e.g.,
Yoon, Weatherwax, & Rosenberg 1998; review by LaBelle
& Treumann 2002, and references therein), and recently
Yoon, Weatherwax, & LaBelle (2000) reported a theory to
explain the multiplet structure, inspired by work of
McAdams, Ergun, & LaBelle (2000) explaining similar fre-
quency fine structures in rocket observations of auroral
Langmuir upper hybrid waves. These observations and the-
ories of auroral roar emissions inspire the model of type IV
put forth below, which is a variant of the generation
mechanism put forth byWinglee &Dulk (1986).

Fig. 1.—Example of decimetric solar type IV emission showing zebra structure, recorded at Ondřejov Observatory, Czech Republic, 1998May 2

Fig. 2.—Example of metric solar type IV emission showing zebra structure, recorded at IZMIRANObservatory, 1989 March 12. Note that in comparison
with Fig. 1 the gray scale has been inverted here. Now the zebra emissions are the dark lines.
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3. THEORETICAL MODEL

Following the McAdams et al. (2000) explanation for
Langmuir wave fine structure observed with sounding rock-
ets and the Yoon et al. (2000) explanation for fine structure
in terrestrial auroral roar emissions, we put forth that the
solar type IV fine structure may be interpreted by a similar
mechanism in terms of upper hybrid wave trapping. The
upper hybrid waves may have been excited in solar magnetic
loops by the energetic trapped electron distribution injected
into the loop during type IV radio bursts. As mentioned
above, the most probable excitation mechanism is the one
proposed by Winglee & Dulk (1986) in which the waves are
generated by the electron cyclotron maser instability in an
overdense plasma ð fpe=fceÞ2 > 1 at the double-resonance
condition fuh ¼ Nfce. This mechanism works in the (electro-
magnetic) Z-mode below the upper hybrid frequency. Close
to fuh the Z-mode becomes electrostatic, which is favorable
for wave trapping in density inhomogeneities. Whenever the
upper hybrid waves become trapped in regions of appropri-
ate-scale cylindrical field-aligned density striations, they will
evolve into a trapped mode exhibiting a discrete wavenum-
ber spectrum and hence also a discrete frequency spectrum
of a limited number of distinct quasi-harmonic trapped
eigenmodes the frequency spacing of which is determined
by the nature of the density variation.

Below we show that to be effective in upper hybrid wave
trapping these density variations must necessarily be
enhancements of density over background. On conversion
to an escaping radiating mode, these modes most probably
retain the discrete frequency spectrum imposed by the trap-
ping conditions. The result is a complicated mix of radiation
features: at times when the density structure in the source
region is appropriate, zebra emissions may dominate, with
frequency variations corresponding to variations in the den-
sity structure. At other times, wave trapping may be
inefficient or nonexistent, and the resulting radiation will be
dominated by the type IV continuum radiation. In the case
of the appearance of zebra bands, the bands must originate
in a rather large number of physically small density
enhancements (the wave-trapping structures) of similar
characteristics, which may be packed within a volume much
smaller than a coronal loop but still of macroscopic size for
producing an observable modulation of radio wave emissiv-
ity. Thus, this model of zebra emissions involves generation
of all the zebra bands within a relatively small volume, as is
suggested by the observations discussed above.

We proceed to calculate the eigenfrequencies of the
trapped Z-modes within a single electron density enhance-
ment by using a simple ‘‘ waterbag ’’ model for the density
enhancement. This simple model is analogous to applying
the Schrödinger equation to a square-well potential in quan-
tum mechanics. It gives an analytical expression for the
energy levels that is easily evaluated numerically to give an
estimate of the eigenfrequency spacing. By using plasma
and magnetic field parameters corresponding to type IV
magnetic loops in the solar corona and matching the result-
ing eigenfrequencies to the observed type IV frequency
spacings, the model predicts the size of the trapping density
irregularity at the source. The frequency spacing depends
naturally on the shape of the density irregularity. The esti-
mate based on the square irregularity thus provides only a
guide to the range of source sizes that can occur in the case
of real density irregularities.

The wave electric field associated with the upper hybrid
mode in a cylindrical plasma column with radial density
variation is governed by the equation

1

r

d

dr
r
dE

dr

� �
þ 1

r2
d2E

d�2
þ k2?ðrÞE ¼ 0 : ð1Þ

The dispersion relation of the upper hybrid Z-mode waves
implies

k2?ðrÞ ¼
2

�2e

�2
ce

!2
peðrÞ

!2
peðrÞ þ �2

ce

!2
� 1

" #
: ð2Þ

Note that this dispersion relation includes the electron tem-
perature through the electron gyroradius �e ¼ 2kBTe=ð
m�2

ceÞ1=2 and therefore describes upper hybrid Z-mode
waves propagating in a hot electron plasma of temperature
Te. Cold plasma theory is irrelevant to our calculation, since
in that limit the Z-modes degenerate to a pure oscillation,
inhibiting wave trapping. Further kinetic effects are not con-
sidered here; such effects are important for determining the
growth rate of the Z-mode (see, for example, Winglee &
Dulk 1986), but they have higher order effects only on the
real part of the dispersion relation; therefore we neglect
them here. The objective of this calculation is to obtain an
estimate of required characteristics of the trapping density
enhancements. To this end, we use the simplest relevant the-
oretical framework. More accurate calculations, for
example, full wave calculations accounting for the inhomo-
geneity or calculations incorporating kinetic theory effects
are beyond the scope of this work.

Writing the solution to equation (1) in separable form,
Eðr; �Þ ¼ RðrÞ�ð�Þ, we obtain the expression

r

R

d

dr

�
r
dR

dr

�
þ k2?ðrÞr2 ¼ � 1

�

d2�

d�2
¼ m2 :

The periodic solution in the interval 0 � � � 2�with integer
m ¼ 0, 1, 2, . . . is

�ð�Þ � expð�im�Þ :

Hereafter m is referred to as the azimuthal quantum
number. The radial part of the equation becomes then

1

r

d

dr

�
r
dR

dr

�
þ k2?ðrÞ �

m2

r2

� �
R ¼ 0 : ð3Þ

To proceed requires matching the eikonals across the wave-
turning point. For a cylindrical density column, if only one
turning point r0 is found the matching condition is applied
across a pair of symmetric turning points r0 on opposite
sides of the column centered around the axis,Z r0

�r0

dr k2?ðrÞ �
m2

r2

� �1=2
¼ 2

Z r0

0

dr k2?ðrÞ �
m2

r2

� �1=2
¼

�
nþ 1

2

�
� :

ð4Þ

On the other hand, in the presence of two turning points,
say r1 and r2, the matching condition is applied across both
of them: Z r2

r1

k2?ðrÞ �
m2

r2

� �1=2
dr ¼

�
nþ 1

2

�
� : ð5Þ
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Equations (4) and (5), whichever applies, determine the
radial quantum number n and are hereafter referred to as
the quantization condition.

The eigenfrequencies can be determined only after assum-
ing a geometry for the density variation that traps the
waves. For simplicity, we model this density variation as a
‘‘ waterbag ’’ model; assuming a square density profile,

nðrÞ ¼
n0 for r > L ;

n0ð1þ �Þ for r < L :

�
ð6Þ

It is shown in Appendix A that, similar to whistler waves,
upper hybrid Z-mode waves can be trapped only in density
enhancements. Thus local irregularities in density must be
density increases to trap the upper hybrid mode and cause
zebra emission. The integrand of the quantization condition
in equation (4) or (5) then transforms into

k2? �m2

r2
¼ 2

�2e

�2
ce

!2!2
p0

ð!2
min � !2Þ �m2

r2
ðr > LÞ ;

¼ 2

�2e

�2
ce

!2!2
p0

!2
max � !2

1þ �
�m2

r2
ðr < LÞ ; ð7Þ

where !2
min ¼ !2

p0 þ �2
ce and !2

max ¼ ð1þ �Þ!2
p0 þ �2

ce are the
upper hybrid frequencies outside and inside the waterbag,
respectively. From the above result, it is easy to see that the
frequency range defined by the inequality !2 > !2

max

corresponds to a forbidden band.
Henceforth, we consider only modes with finitem, and we

define dimensionless versions of the critical variables: � ¼
�e=L; � ¼ !p0=�ce; x ¼ !=�ce; and y ¼ r=L. This allows
us to rewrite equation (7) as

Q2ðyÞ � k2?L
2 �m2L2

r2

¼ 2

�2
1þ ð1þ �Þ�2 � x2

ð1þ �Þ�2x2
�m2

y2
ðy < 1Þ ;

¼ 2

�2
1þ �2 � x2

�2x2
�m2

y2
ðy > 1Þ : ð8Þ

The turning points are obtained by solving the equation
Qðy�Þ ¼ 0, with the ranges of x2 and m restricted as
described in Appendix A. Solving for y�, we obtain

y� ¼ m�ffiffiffi
2

p ð1þ �Þ1=2�x
½1þ ð1þ �Þ�2 � x2�1=2

: ð9Þ

In terms of y� and considerations of Appendix A, the
quantization condition in equation (5) becomesZ 1

y�
QðyÞ dy ¼ nþ 1

2

� �
� ; ð10Þ

which can be explicitly rewritten as

I �
Z 1

y�
dy

2

�2
1þ ð1þ �Þ�2 � x2

ð1þ �Þ�2x2
�m2

y2

� �1=2

¼ nþ 1

2

� �
� : ð11Þ

This integral can be solved analytically (see Appendix B).
The solution for fixed n, which is the desired dispersion

equation for the discrete eigenmodes, is

�m � arctan �m ¼ ð2nþ 1Þ�
2m

; ð12Þ

where

�m ¼ 2

m2�2
1þ ð1þ �Þ�2 � x2

ð1þ �Þ�2x2
� 1

� �1=2
; ð13Þ

n ¼ 0, 1, 2, . . . are arbitrary integers, and m is an integer
greater than 1, which is subject to the constraints derived in
Appendix A. The main constraint given in equation (A2)
restricts the number of harmonics to m <

ffiffiffi
�

p
=�, showing

that the maximum number of harmonics depends essentially
on the small parameter �. Consequently, for a column size L
much larger than the electron gyroradius �e the number of
harmonics can be quite large. Expecting maximum density
increases of the order of � < 1, the number of harmonics
becomesm < ��1, which implies that for a not unreasonable
value of � � 0:01, the harmonic number m may approach
m � 100. Further discussion on this point can be found in
the following section and in Appendix A.

4. APPLICATION TO ZEBRA EMISSIONS

It is straightforward to solve equation (11) numerically
for the eigenfrequencies x ¼ f =fce for selected parameters.
We consider two choices for � ¼ fpe=fce, � ¼ 1:7, corre-
sponding to the double-resonance condition fuh ¼ 2fce, and
� ¼ 2:8, corresponding to the triple-resonance condition
fuh ¼ 3fce. These are the two conditions for which the mech-
anism appears to operate in the terrestrial auroral
ionosphere, so we start by assuming these conditions for the
solar corona as well. Figures 3 and 4 show numerical solu-
tions of equation (11) for these two choices of fpe=fce, for
� ¼ 0:2, corresponding to 20% density enhancements, and
for � ¼ �e=L, the ratio of the electron gyroradius to the

Fig. 3.—Eigenfrequencies of upper hybrid cavity modes in a 20%
field-aligned cylindrical density enhancement for fpe=fce ¼ 1:7 (fuh ¼ 2fce).
Frequencies for each of 10 radial quantum numbers (n) and up to 12 azimu-
thal quantum numbers (m) are calculated for four cavity dimensions
(� ¼ �e=L ¼ 0:001, 0.003, 0.01, and 0.03). The eigenfrequencies are normal-
ized to the electron gyrofrequency. Frequency spacings on the order of 1%
occur for � ¼ 0:01–0.03.
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radius of the density enhancement, ranging from 0.001
(L ¼ 1000�e) to 0.03 (L � 30�e). For each case, the normal-
ized eigenfrequency (x ¼ f =fce) is shown on the y-axis for
the first 10 radial quantum numbers (n ¼ 0, . . ., 9). For each
radial quantum number, only solutions for up to 12 azimu-
thal quantum numbers (m) are shown, although fewer m-
numbers are shown for cases for which the range of m is
restricted by the constraints given in equations (A1) and
(A2).

From the numerical results it is evident that if all combi-
nations (n, m) are included, values of � in the range 0.01–
0.03 lead to spacings in the normalized eigenfrequencies on
the order of a few percent, corresponding to the observed
zebra band spacings of a few megahertz at metric wave-
lengths and a few tens of megahertz at decimetric
wavelengths (Figs. 1 and 2). This result implies density
enhancements with scale sizes 30–100 times the electron
gyroradius. Turning to the decimetric example (Fig. 1),
matching the emission frequency of �1.4 GHz to the
double-resonance condition implies fce ¼ 700 MHz or
B ¼ 270 G. For a temperature of 1 keV, the electron gyrora-
dius is about 25 cm. Therefore 1–10 m scale field-aligned
irregularities of order 20% would be required to explain the
observed type IV zebra spacings as resulting from eigenmo-
des of trapped upper hybrid waves generated by the cyclo-
tron maser mechanism at the double-resonance condition.
Admittedly, such strong density contrasts seem unreason-
ably high, and below we will strongly relax the requirement
of density fluctuation amplitudes so high. Incidentally, cal-
culations show that less severe density enhancements, of
order 1%–5%, are also effective in forming discrete eigen-
modes in meter-scale enhancements, but one expects that
fewer eigenmodes could satisfy the restrictions in Appendix
A, equation (A2). This restriction, however, is not impor-
tant as the number of harmonics is determined by � rather
than the density contrast, �. The latter can be made much
smaller for shallow density structures and still will cause a
large number of harmonics for small �. As described in

Appendix A, the temperature plays an important role in
determining how many discrete eigenmodes occur, because
the ratio of the width of the density enhancement to the
gyroradius determines the number of allowed azimuthal
modes for each radial quantum number n. As discussed at
the end of the previous section, for small � and wide density
enhancements, on the order of tens of meters rather than
meters, large numbers of zebra stripes may be expected.

The above range of values, � � 0:01–0.03, indeed implies
large m even for moderate density increases. For instance,
with � � 0:2, the maximum harmonic number is mmax ¼ 44
for � � 0:01, andmmax ¼ 15 for � � 0:03, and larger density
increases lead to even larger mmax. In the 270 G magnetic
field the gyroradius of a 1 keV electron is 25 cm, which for
� � 0:01 yields L � 50 m for the radial extension of the col-
umn of enhanced density, still extremely narrow compared
with the radial size of a type IV magnetic loop. Hence, such
small � values are not at all unreasonable.

Examples of simultaneous sets of zebra emissions on
widely spaced frequencies, such as the zebra features near
1.0–1.4 and 2–3 GHz shown by Ledenev et al. (2001), can be
explained as arising either from the double-resonance con-
dition met in two rather widely spaced source regions
characterized by a factor of �2 in differing magnetic field
and plasma density environments or from different reso-
nance conditions being met at locations where the magnetic
field is slowly varying but the electron density varies by fac-
tor of �2, leading, for example, to fuh ¼ 2fce for one branch
of zebras and fuh ¼ 3fce or fuh ¼ 4fce for the other branch.
This latter situation is analogous to the sources in the terres-
trial auroral ionosphere for which auroral roar emissions
occur simultaneously at frequencies near 3MHz ( fuh ¼ 2fce)
and near 4.5MHz ( fuh ¼ 3fce).

The theory given here, based on the simplified ‘‘ water-
bag ’’ model of the density enhancement, predicts that the
zebra emissions originate from remarkably compact sour-
ces, as small as 1 m scale or 10 m scale. Consideration of
more complex shapes of the density enhancement may yield
some shapes that imply a somewhat larger source. It is, how-
ever, unlikely that a more complicated (more realistic)
density profile of the striation will affect the result by a large
amount. The theory is rather robust with respect to a varia-
tion of the profile. The strikingly small source size implied
by the theory raises three important questions: (1) whether
there is sufficient energy for such a source to feed into the
emission, (2) whether such a compact source is stable for a
sufficiently long time to explain zebra emissions that last
�10 s or longer, and (3) whether such a compact source is
consistent with radio images of type IV bursts, in other
words, whether it could ever be resolved by remote sensing
and imaging instrumentation.

4.1. Radiation Intensity

Assuming zebra bursts subtend solid angles �1 sr, have
bandwidth�106 Hz, and are observed with intensity 500 sfu
(500	 10�22 W m�2 Hz) at 1 AU as in Figure 1, the power
at the source must be of order 109 W in each single zebra
harmonic line. Hence, the total zebra emission, depending
on the number of harmonics, may range from a few times
109 to �1011 W (assume 1010 W in calculations below). This
power comes ultimately from the energy of the electrons
trapped on the field lines intercepting the source. According
to our model, the radius of the density enhancement that

Fig. 4.—Eigenfrequencies of upper hybrid cavity modes in a 20%
field-aligned cylindrical density enhancement for fpe=fce ¼ 2:8 ( fuh ¼ 3fce).
Frequencies for each of 10 radial quantum numbers (n) and up to 12 azimu-
thal quantum numbers (m) are calculated for four cavity dimensions
(� ¼ �e=L ¼ 0:001, 0.003, 0.01, and 0.03). The eigenfrequencies are normal-
ized to the electron gyrofrequency. Frequency spacings on the order of 1%
occur for � ¼ 0:01–0.03.
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traps the upper hybrid waves is 1–10 m, implying a source
dimension perpendicular to the magnetic field of 3–300 m2

(assume 30 m2 in calculations below). If the temperature of
the trapped electrons is of the order of 1 keV (1:6	 10�16 J),
then the number flux required to produce 1010 W is
�3	 1024 m�2 s�1. For 1 keV electrons the thermal velocity
of �1	 107 m s�1 implies an electron density of 2	 1017

m�3, or 2	 1011 cm�3, required for the electron energy per
time entering a single narrow source region to match the
emitted wave power. The estimated conditions at the source,
fpe=fce ¼ 1:7 in a 270 G field, imply a total electron density
of 2	 1010 cm�3, a factor of 10 smaller than that required to
produce the observed wave power, even assuming all elec-
tron energy goes into radiating waves; therefore this mecha-
nism cannot account for the emitted power of the zebra
bands on the basis of a single density enhancement as the
single source. Rather one needs many sources.We will argue
below that many sources favor the reality of this
mechanism.

That a single 10 m scale source cannot be responsible for
the zebra emission is not surprising and also not required.
The smallness of the source compared with the dimensions
of a coronal magnetic loop suggests that a very large num-
ber of those microscopically small density irregularities, fit-
ting in a tiny region of the loop, generate the zebra
emissions. Figure 5 shows a schematic of the zebra emission

region proposed. Three characteristics of the source volume
are critical: first, the altitude range spanned by the source
volume must be small so that the average electron density
and magnetic field are approximately the same for all the
sources; second, the density enhancements should all be
approximately of the same size so that the trappedmode fre-
quency structure for each is approximately the same; and
third, the density contrast in the enhancements must be of
the same approximate magnitude to contribute to about the
same number of harmonics. The second criterion could
easily be met, for example, if the density irregularities are
associated with low-frequency electrostatic modes such as
ion-acoustic waves excited within a relatively narrow range
of wavenumber space. If the low-frequency waves compos-
ing the density enhancements had too broad a wavenumber
spectrum, the emissions from the trapped waves in the
enhancements would start overlapping and would cause
continuum emission rather than zebra emissions. The third
criterion implies that the spectrum of density irregularities
should peak around amost probable amplitude.

To consider the required number and packing density of
such sources, let us assume a mode conversion efficiency of
1%, comparable to the mode conversion efficiency estimated
for emission of terrestrial continuum radiation at the
Earth’s plasmapause by a similar mode conversion process
to that required here (e.g., Etcheto et al. 1982). We assume

Fig. 5.—Schematic model of a zebra emission region in type IV solar radio bursts. The type IV continuum is generated by the trapped particle distribution.
The figure shows two source regions of zebra burst emission, one in the decimetric domain at low altitudes above the chromosphere, the other in the metric
domain at higher altitudes. It is assumed that these regions are at constant altitudes, filled with (e.g., ion acoustic) density irregularities. Variations andmotions
of these source regions cause the slow simultaneous frequency variations of the zebra bands.
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further that the hot electrons give up 0.01% of their energy
to electrostatic upper hybrid waves in passing through the
source region. This implies a factor of 10�6 between electron
power and wave power. If the hot trapped component of the
total electrons amounts to only 10%, then the total electron
density in the source region (2	 1010 cm�3) and the source
size of �30 m2 imply that approximately 108 such sources
are required to produce the observed power of the zebra
emissions. Even with a tiny filling factor this quantity of
emissions can fit within a volume small compared with a
coronal loop; for example, a filling factor of 0.01 requires
that the cross-sectional area containing the 108 sources be
3	 1011 m2 or only 500	 500 km, roughly 10% or less of a
loop cross section. It is essential that the sources occupy a
small altitude range, so that the electron density and mag-
netic field strength be approximately constant over the
entire volume permeated by these sources. Another way of
expressing this calculation is the following: suppose the
sources inhabit an altitude range of only 10 km but a cross-
sectional area of about 1000 km radius. The corresponding
source volume is about 1016 m3, giving room for 3	 109

individual sources of cross section 30 m2 with a packing fac-
tor of 0.01, or 108 if a packing factor of 0.001 is assumed. To
produce total emission of 109–1011 W, each source would
need to radiate 10–1000 W, the high end of which would
require an electron number flux of �3	 1024 m�2 s�1,
assuming 1 ke V source electrons, 0.01% efficiency for elec-
trons in upper hybrid waves, and 1% efficiency for mode
conversion; this yields the number flux estimated above for
the source conditions in the coronal loop.

The assumption of many microscopic sources in zebra
emission raises the question of the coherence of the radia-
tion. Of course, the sources need not be phase coherent as in
a laser but only need be coherent in the sense that they must
produce the same frequencies. As long as the sources are
confined to a narrow layer within the type IVmagnetic loop,
which is of order 1–10 km high and of radius 500–1000 km
as described above, in such a layer the altitude variation of
the loop magnetic field and the electron density can be
neglected. The whole layer acts like a single emitter since the
differences in the emissivity among the single radiators can-
not be resolved. Moreover, the individual density increases
affect mainly the individual numbers of harmonics radiated
while for the same plasma and cyclotron frequencies they all
contribute to the same emission lines though at possibly dif-
ferent times. The other critical criterion to produce zebra
rather than continuum type IV emission is that the sources
all have similar dimensions perpendicular to the magnetic
field; this condition would hold, for example, for density
irregularities associated with ion sound waves of a restricted
wavenumber spectrum.

Differences in the velocities of the individual emitters
along the magnetic field contribute to broadening of the
zebra emission lines. Measuring the width of each line pro-
vides a measure of the average velocities of the single
emitters along the loop magnetic field lines. To obtain an
impression we assume that the density irregularities are
essentially caused by ion-acoustic fluctuations in the loop
plasma, which may be excited by field-aligned currents, heat
fluxes, ion beams, or other mechanisms. The common prop-
erty of such irregularities is that they propagate mostly
along the magnetic field at the ion acoustic speed,
cia ¼ ð�kBTe=miÞ1=2, where �kBTe is the electron thermal
energy, � the adiabatic index, and mi the ion mass. For

kBTe � 1 keV, the ion acoustic speed is cia � 310 mp=mi

� �1=2
km s�1, where mp is the proton mass. The localized density
enhancements in this mode propagate at speeds well below
cia. Assuming that the Df � 2 MHz bandwidth associated
with metric zebra bands (Fig. 2) is produced by thermal
Doppler shift broadening, the typical extension of an indi-
vidual radiation source along the magnetic field must be
	 � 2�cia=Df , about several meters. In ion sound wave tur-
bulence the perpendicular scales are of the same order or up
to an order of magnitude longer, which is in agreement with
our previous estimates of the scale of the microscopic den-
sity irregularities. Also, the bandwidth of the single zebra
bands falls well into the domain of frequencies below the
local ion plasma frequency Df < fci ¼ me=mið Þ1=2fpe, which
is another condition for ion-acoustic waves to be involved.

Apparently, an important restriction is imposed by the
assumed large amplitude in the density variation, which is
of the order of some � � 10%, implying very strong density
fluctuations and a large density contrast, indeed. It seems
entirely unlikely that any ion-acoustic or other electrostatic
plasma mode would produce solitary structures of ampli-
tudes that large. Ion-acoustic soliton amplitudes are
expected to range around 1% or even smaller. It is desirable
to reduce the high density contrast to more realistic values.
This can be easily done with little consequence when noting
that for large numbers �4� of electron gyroradii that fit
into one striation lengthL the number of harmonics is deter-
mined mainly by � and is proportional to �. Small � thus
imply a linear reduction of the number of zebra bands.
However, in the case of ion-acoustic solitary density stria-
tions there is an inverse proportionality between � and L
(e.g., Horton & Ichikawa 1996). Large density contrasts
imply narrow striations, small contrasts imply shallow stria-
tions. The smaller the density contrast, the wider the
striation and, consequently, the greater the number of elec-
tron gyroradii that fit into it. This property compensates for
the decrease in the number of harmonics. One therefore
finds that at the small reasonable density contrasts, the
number of harmonics will not change remarkably but
remains approximately constant. On the other hand, widen-
ing the striations reduces the absolute number of density
structures that can be fitted into the macroscopic radiation
source region in our model. Referring to the above esti-
mates, we conclude that the model proposed here is rather
insensitive to the reduction of the total number of striations.
Reducing the large filling factor estimated above even by an
order of magnitude does not imply any serious violation of
our general conclusions that many striations are needed to
be present in the zebra source.

The zebra emission mechanism proposed in this paper is a
coherent one. It raises the question of whether or not coher-
ence is demanded by observation of high radiation power
corresponding to extreme brightness temperatures or
whether it is merely concluded from observation of the nar-
row spectral bandwidths and ‘‘ coherent ’’ variations of the
observed zebra frequency bands. The present model solely
refers to the latter, while the radiation intensities and bright-
ness do not explicitly enter other than in the above
discussion of the energy source. Hence, our ‘‘ coherence ’’ is
strongly model-dependent. The observations of, say, fluxes
of �500 sfu at �1 GHz in a zebra line correspond to a
brightness temperature of not more than Tbð1 GHzÞ �
5	 104 K, suggesting high thermal but indeed not extraor-
dinarily high coherent brightness temperatures in zebra
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bands, thus not making an inherently coherent radiation
mechanism inevitable. The radiation intensities are moder-
ately enhanced only over the type IV background that is
known to be produced by an incoherent mechanism. How-
ever, the mechanism proposed here does not necessarily
imply that continuum and zebra emissions are generated by
the same process. It is indeed required only that in the region
of interest upper hybrid waves that can be trapped in density
irregularities are excited. This is grossly independent of any
mechanism that generates the type IV continuum.

4.2. Nature of the Continuum

In this paper we assumed that the radiation is produced
by some mechanism that is independent of the formation
mechanism of zebra emissions. As such a mechanism we
proposed that Z-mode (upper hybrid) waves are excited by
the electron cyclotron maser mechanism in dense plasma as
originally suggested by Winglee & Dulk (1986). Their
theory is well suited for a homogeneous plasma, however. It
is not known how it works under the conditions relevant to
our case, in which the dense background plasma is assumed
to be locally in a highly turbulent state with a very large
number of small-scale density striations superposed on the
background plasma and these striations are slowly moving
ion-acoustic solitary structures of weak amplitudes � � 1%.
In plasmas of this kind it has been shown by Fleishman &
Kahler (1992), Fleishman & Tokarev (1995), and Fleishman
(2001), referring to earlier suggestions (e.g., Ginzburg &
Tsytovich 1984), that energetic particles moving across a
turbulent plasma with a spectrum of density inhomogene-
ities emit so-called transition radiation at frequencies above
the average local plasma frequency ! > !pe. For nonrelativ-
istic particles this radiation is emitted in both modes, the L-
O and R-Xmodes, such that the radiation will essentially be
nonpolarized and only weakly polarized in the L-O-mode
near the plasma frequency. Indeed, type IV radiation is
grossly nonpolarized and would fit into this class of radia-
tion. This suggests that the observed background in events
when zebra emission is present and is generated by our tur-
bulent mechanism could result from transition radiation.

For an estimate of the relevance of this assumption we
refer to the presentation of the mechanism of transition
radiation as given by Fleishman (2001). The case applicable
to the conditions in a zebra burst is described by
equation (25) of Fleishman (2001), with relativistic factor
� � 1 for electrons of energy 1–10 keV. Introducing the elec-
tron skin length 	e ¼ c=!pe we write the expression for the
transition radiation radio flux at Earth (in sfu) in the form

FTRð!Þ ¼ 6�	 104C
!pe

2� GHz

N>

1033
mec2

kBTe

	 !pe

!

� ��f

�2�
þ2 2�	e�

rce

� �
�1

: ð14Þ

The flux decreases with increasing emitted frequency ! and
electron temperature being maximum close to !pe. It
increases with density contrast � and �, the number of gyro-
radii fitting into one density striation. It also increases with
the total number of energetic electrons N> above thermal
energy. In addition, for relativistic electrons it increases as a
power of �.

The constant C in the above expression is a combination
of the power-law indices entering the theory of transition

radiation. These indices are the index 
� of the distribu-
tion of the density contrast, index � of the suprathermal
electron distribution, and the above index �f . Fleishman
(2001) has shown that �f � 3, and for developed nonrelativ-
istic turbulence 
� � 5

3 is about Kolmogorov. Since in the
case of type IV zebra emissions there is no indication for the
presence of very energetic electrons, the electron spectrum is
soft, with a large power-law index � � 6–7. In this case it
can be shown that C ¼ Oð1Þ. With the parameters used in
this paper, 5 < 	e=rce < 50.

Adopting the value for N> � 1032 as estimated by
Fleishman (2001), we thus obtain for the continuum flux in
transition radiation in typical zebra events

FTRð!Þ � 6
N>

1032
�

1%

� �2
�

10�3

� �2=3

sfu : ð15Þ

This flux is in the range of weak continuum radiation condi-
tions. Fluxes up to 2 orders of magnitude higher can be
expected for larger density increases and larger numbers of
irregularities, explaining strong type IV backgrounds gener-
ated by transition radiation.

We may thus conclude that transition radiation in the
ion-acoustic solitary structure (density striation) turbulent
state investigated in the present paper is obviously
important and can essentially contribute to the enhanced
background observed in zebra emission. It should be noted
in this context that recently Lee et al. (2003) found evidence
for transition radiation in microwave observations during a
solar flare.

There is another very interesting aspect concerning the
transition radiation contribution mentioned in this subsec-
tion. The transition radiation is emitted just above the
electron plasma frequency. Since this is close though less
than the upper hybrid frequency the part emitted in the
R-mode actually propagates in the Z-mode, and close to the
upper hybrid frequency it is mainly electrostatic. Hence,
there arises the possibility that transition radiation may as
well generate sufficient intensity in the upper hybrid branch
to be trapped in the density striations and generate zebra
emissions. If this is the case transition radiation and zebra
emission are even more closely coupled than by the presence
of ion-acoustic solitary turbulence as the latter makes poss-
ible both transition radiation and zebra emission resulting
from transition radiation.

4.3. Stability of Sources

Small-scale structures such as those proposed here are
conventionally believed to suffer rapid destruction by the
energetic electron component trapped in the loop. Indeed,
the mean free path of an electron in a solar coronal loop
under conditions of type IV radio bursts is many orders of
magnitude larger than the size of the density enhancement
both parallel and perpendicular to the magnetic field, which
seems to suggest that the density enhancement should be
wiped out by the diffusive motion of the electrons. However,
this is not necessarily the case in a collisionless plasma as
assumed here.

There is little problem with the perpendicular stability of
the individual structures because the electron gyroradius is
much less than the perpendicular dimension of the density
enhancement. Perpendicular diffusion of electrons is rather
slow (see, for example, Treumann, LaBelle, & Bauer 1995),
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usually much less than the maximum Bohm diffusion limit,
DB ¼ kBTe?=16�meB, where kB is Boltzmann’s constant,
Te? the perpendicular electron temperature, and B the mag-
netic field. For electron temperatures a few times 10 keV
and magnetic fields on the order of a few hundred gauss,
Bohm diffusion is aboutDB � 104 m2 s�1. For a structure of
perpendicular length L to survive a time � one has
L ¼ DB�ð Þ1=2, implying that 300 m wide density enhance-
ments are required to survive � ¼ 10 s while suffering Bohm
diffusion. However, theory and in situ measurements in the
Earth’s magnetosphere have shown that Bohm diffusion
strongly overestimates the collisionless diffusion limit by
roughly 2 orders of magnitude. If similar scaling applies to
the collisionless plasma in the solar coronal loops, meter-
scale or somewhat larger density enhancements would
survive for a time on the order of 10 s. Moreover, our con-
clusion that many such microscopic radiators are present
liberates us from the restriction of long survival as a
decaying radiator will readily be replaced by another one
that is just generated by the process that generates the
irregularities.

Parallel to the magnetic field, the question is more compli-
cated and concerns the stability of relatively long-lived
localized irregularities in collisionless plasmas, where in the
absence of collisions the particles simply undergo free
streaming. Under these conditions many mechanisms lead
to formation of spatially localized quasi-stationary
density irregularities, so called solitary structures, as well
as Bernstein-Green-Kruskal or BGKmodes (e.g., Davidson
1972), which are stable over many plasma and gyroperiods.
Examples of such structures are Korteweg–de Vries soli-
tons, ion-acoustic solitons, drift wave solitons (e.g., Horton
& Ichikawa 1996), and also ion holes (e.g., Gray et al. 1991)
and electron holes (e.g., Muschietti et al. 1999). Since here
we are interested only in density enhancements, the most
promising of these quasi-equilibria are either ion-acoustic
or drift wave solitary structures, either of which could
explain the scale size and lifetime of type IV sources. Their
stability against depletion by the trapped particle compo-
nent in the loops is maintained by a subtle temporary equili-
brium either between the dispersive properties of the waves
and the trapped particle dynamics or between the trapped
wave pressure and plasma pressure. These structures endure
only in hot collisionless plasma where collisions are inhib-
ited to such an extent that either trapping of some low-
energy particles in the wave potential becomes possible or
the dispersive properties of the waves involved are not
inhibited by collisional damping. The detailed application
of these theories to the hot plasma in the coronal loop is
beyond the scope of this paper, other than noting that the
theories do apply there, and it is reasonable to assume that
sufficiently long-lived density enhancements occur.

At this point a caveat related to the amplitude of the den-
sity enhancement should be pointed out. We have so far
used local density increases � of the order of�20%, which is
a high value. In a mechanism such as that of Treumann &
Bernold (1981) on the basis of nonlinear whistler theory it
would be very hard to achieve local density increases of this
size. This difficulty is related to the electromagnetic nature
of the whistler, which requires substantial bending of the
magnetic field in accord with a density increase that thus
can be excluded in a �5 1 plasma like that of the loop. In
the case considered here, � � 3	 10�3. Substantial density
variations are generated solely by electrostatic waves like

the ion-acoustic wave mode used above, in which the den-
sity increase � � eD�=�kBTe is given by the potential energy
eD� in the electrostatic wave normalized to thermal energy.
With �kBTe � 1 keV this implies an average ion-acoustic
electric field strength of (hEiai1200=L) V m�1, where L is in
meters. This is still high. Thus, one should rather use smaller
density variations of the order of 1% or less, which implies
that the number of harmonics contributed by the sources
will be reduced to only a few. Hence, in spite of our initial
discussion, the number of zebras is still restricted to a rela-
tively small number; for � � 2% it is m < 10, unless the
structures are wider or high ion-acoustic wave electric fields
are present in the source region, which cannot be entirely
excluded, however. Such large density irregularities are
familiar in the Earth’s upper ionosphere, where at magnetic
field strengths of only 10�3 G and � � 0:1 wave amplitudes
between 0.1 and 1 V m�1 are measured. In view of these
numbers the above wave amplitudes do not look too unrea-
sonable. Moreover, we can without running into difficulties
relax the restriction on the extension of the density struc-
tures. For L � 100 m the average electric field amplitude
would then become on the order of hEiai � 10 V m�1. By
observing large harmonic numbers one concludes either
that the structures are wider or the average electric field
amplitudes in the ion-acoustic modes are larger.

4.4. Spatial Resolution

Ground-based imaging observations at metric wave-
lengths tend to associate type IV emissions with relatively
large source sizes, comparable to the size of the entire coro-
nal loop. For example, Chernov et al. (1998) present
imaging results on a structured type IV burst by using the
Nançay radioheliograph (their Fig. 3). The suggested source
size is large and centered between two active regions simul-
taneously imaged with the Yohkoh satellite, suggesting a
type IV source that is extended high in the coronal part of
the active loop. In this observation no zebras are resolved
spatially. In a follow-up observation Chernov et al. (1999)
present an image of another type IV burst, noting ‘‘ two
remarkable peculiarities. . .: The source of the zebra-
patterns was located above the filament far (>80) from the
source of the strong continuum, [and] strong changes in
position of zebra-lines and pulsations were observed. The
most common property of the zebra-patterns in all the con-
sidered events should be the displacement between the
sources in emission and ones in absorption. The average dis-
tance should be of about 50,000 km. Great dimensions of
the source were observed for the isolated zebra-lines, com-
parable to the FWHM of the beam (about 20 at 236.6
MHz) . . . however such dimensions are rather similar to the
scattering size of the electromagnetic waves in the
corona . . .. However sources of zebra patterns were not
deconvolved completely by the Nançay radioheliograph
(the source size was similar to the FWHM of the beam at
236.6 MHz).’’ These remarks indicate the difficulty and
uncertainty in imaging the zebra patterns and determining
their location and size from such an image in the solar
corona. To our knowledge, zebra patterns have not been
convincingly imaged yet. Obviously it represents an enor-
mous experimental challenge to identify source sizes as
small as those we put forth here even for multiple sources
filling a substantial cross section of a loop.
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However, if the observation of extended source sizes cited
above pertains to the zebra emission rather than the contin-
uum, the physical source size of the zebra features is not sig-
nificantly constrained by it. Observation of an extended
source implies most likely that the radio emission from the
source on its way to the Earth is multiply scattered and that
the apparent size of the source is thereby considerably
enlarged. This interpretation is supported by the observa-
tion of Chernov et al. (1999) that the apparent source size
compares with the typical scattering dimensions of radio
waves in the corona.

5. CONCLUSIONS

Solar type IV emissions have a complicated nature, con-
sisting sometimes of a continuum, but at other times
exhibiting fine structures variously called fibers, spaghetti,
zebras, etc. In this way, they are similar to terrestrial auroral
roar emissions, which also sometimes consist of continuum,
but at other times they show fine structures, including
‘‘multiplet ’’ structures, which resemble the type IV zebra
emissions. This similarity inspires us to propose that type IV
emissions may be generated by a similar mechanism that
generates the terrestrial auroral roar. The basic mechanism
is that proposed previously by Winglee & Dulk (1986): in
the presence of trapped electron distributions, the cyclotron
maser mechanism leads to growth of Z-mode waves that
close to the upper hybrid frequency become electrostatic.
Here they can produce radio emission when meeting the
double-resonance condition fuh ¼ Nfce, where N is an inte-
ger
 2. In our treatment the zebra structures are not caused
by different values of N. Instead, we put forth that type IV
zebra emission arises from the double-resonance condition
in a hot electron plasma occurring over an extended region.
When density irregularities are weak or absent, or when
these are of inappropriate scale for causing a discrete spec-
trum of density striation trapped upper hybrid eigenmodes,
continuum radiation may be generated. However, when
density enhancements of the appropriate scale occur, these
trap the cyclotron maser–produced Z-mode waves propa-
gating in the upper hybrid frequency branch and impose a
discrete trapped-mode eigenstructure on them. Escaping
mode-converted waves retain the discrete frequency struc-
ture of these trapped modes. In this case, the local type IV
emission appears as discrete fine-frequency structures, such
as zebra bands. Separate instability of the trapped eigen-
modes is not required. The presence of the density striations
then simply removes the degeneracy of the upper hybrid
wave. To produce the radiation it is further assumed that
the mode conversion at double resonance does not distin-
guish between the single eigenharmonics of the trapped
waves as their separation in frequency space is very small in
comparison with the upper hybrid frequency and probably
also small compared with the bandwidth of the double
resonance.

Quantitative calculation of the spacing of the eigenfre-
quencies of the trapped waves near the double-resonance
condition shows that for density enhancements with scale
sizes 30–100 times the electron gyroradius the frequency
spacing between eigenmodes is of order of 1% as in the
observations. In a 1 keV plasma with a 270 Gmagnetic field,
this corresponds to a 1–10 m scale. We have noted that the
number of harmonic zebra bands for shallow density con-
trasts depends essentially on the number of electron
gyroradii fitting into the density striation. If the density
enhancements are ion-acoustic soliton-like, arising from
dispersive ion-acoustic waves, their wavenumber range
inferred from interpreting the width of the zebra emissions
as Doppler broadening matches the 1–10 m scale size
required by the theory. For such ion-acoustic soliton stria-
tions the number of harmonics increases with increasing
shallowness, implying that the number of harmonics in one
striation is about constant, independent of the density
contrast �5 1.

However, a 1 m scale or 10 m scale source in a 1 keV coro-
nal plasma cannot reproduce the observed radiation
intensities. Instead a large number (�107–108) of micro-
scopic emitters distributed over a substantial portion of a
loop cross section and confined to a narrow altitude range
along the loop easily accounts for the observed radiation
power. To produce the banded zebra signatures, it is critical
that these sources inhabit only a narrow altitude range,
hence corresponding to approximately the same magnetic
field and average plasma density, and that the causative
electron density enhancements have similar average dimen-
sion perpendicular to the magnetic field, as would be the
case, for example, if they originated from the above-
mentioned ion-acoustic waves of restricted bandwidth.
When these conditions do not obtain, the mechanism prob-
ably produces a kind of continuum radiation or perhaps
structured radiation more complex than the zebra bands.

In the case of our highly density-structured (ion-acoustic
solitary) turbulent background plasma, transition radiation
generated by the energetic electron component of a type IV
burst should also contribute to the background and may in
principle be responsible as well for providing waves at the
upper hybrid frequency as a prerequisite to the zebra
generation mechanism proposed.
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APPENDIX A

For discrete modes to exist, we must have Q2ðyÞ > 0 at least for a finite range inside the region defined by y < 1, while
Q2ðyÞ < 0 in the outer range y > 1. For this to happen, we must haveQ2ðy ! 1þ Þ > 0 andQ2ðy > 1Þ < 0; that is,

2

�2
1þ �2 þ ��2 � x2

ð1þ �Þ�2x2
�m2 > 0; x2 > 1þ �2 ;
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or equivalently,

1þ �2 < x2 <
1þ �2 þ ��2

1þ ðm2�2=2Þð1þ �Þ�2
: ðA1Þ

However, for this relation to be meaningful, one must have

1þ �2 þ ��2

1þ ðm2�2=2Þð1þ �Þ�2
> 1þ �2 ;

which can be shown to reduce to

m2 <
2

�2
�

ð1þ �Þð1þ �2Þ : ðA2Þ

This shows that not all quantum numbersm are allowed, but only a few low-order numbers are meaningful.
As equation (A2) shows, the maximum quantum number (mmax) is a function of the density enhancement � and the plasma-

to-cyclotron frequency ratio �. For moderate density enhancements � � 1 and moderate ratios � the denominator depends
only weakly on these parameters, implying mmax �

ffiffiffi
�

p
=�, while for large �41, mmax becomes approximately independent of

density. Since usually � ¼ �e=L5 1, the maximum azimuthal quantum number is thus essentially determined by the number
of electron gyroradii fitting into the column. Existence of a small number of harmonics, resulting in few zebra stripes, might
occur for narrow density enhancements (� small), small density enhancements (small �), or large plasma-to-cyclotron fre-
quency ratios (large �). This last condition is constrained by the double-resonance condition, so observations of few zebra
stripes would more often correspond to one of the other two conditions; for example, narrow density enhancements result in
small numbers of harmonics, and wide density enhancements result in large numbers of harmonics.

APPENDIX B

To analytically solve the integral in equation (10), define

q2? � 2

�2
1þ ð1þ �Þ�2 � x2

ð1þ �Þ�2x2
:

Then we may write

I ¼
Z 1

y�
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? �m2

y2

s
¼

Z 1

y�
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2?y

2 �m2
p

y
:

Let us further define

z2 � q2?y
2 �m2 :

Note that the lower bound of the z-integral is zero, since

q2?y
2
� �m2 ¼ 0 :

If we define

zm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? �m2

q
;

then we may rewrite

I ¼
Z zm

0

z2dz

z2 þm2
¼ zm �m arctan

zm
m

;

where the well-known integral indentity Z
dx

x2 þ 1
¼ arctan x

has been used.We then obtain the desired dispersion equation for the discrete eigenmodes

�m � arctan �m ¼ ð2nþ 1Þ�
2m

;
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where

�m ¼ 2

m2�2
1þ ð1þ �Þ�2 � x2

ð1þ �Þ�2x2
� 1

� �1=2
;

n ¼ 0, 1, 2, . . . are arbitrary integers, and m is an integer greater than 1, subject to the constraints implied by equations (A1)
and (A2).
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