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GRB 060218/SN 2006aj: A GAMMA-RAY BURST AND PROMPT SUPERNOVA ATz p 0.0335
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ABSTRACT

We report the imaging and spectroscopic localization of GRB 060218 to a low-metallicity dwarf starburst
galaxy at . In addition to making it the second nearest gamma-ray burst known, opticalz p 0.03345� 0.00006
spectroscopy reveals the earliest detection of weak, supernova-like Siii near 5720 (∼0.1c), starting 1.95 daysÅ
after the burst trigger.UBVRI photometry obtained between 1 and 26 days postburst confirms the early rise of
supernova light, and suggests a short time delay between the gamma-ray burst and the onset of SN 2006aj if
the early appearance of a soft component in the X-ray spectrum is understood as a “shock breakout.” Together,
these results verify the long-hypothesized origin of soft gamma-ray bursts in the deaths of massive stars.

Subject headings: gamma rays: bursts — supernovae: individual (SN 2006aj) — supernovae: general

Online material: color figure

1. INTRODUCTION

It is now accepted that the so-called long-soft (�2 s) gamma-
ray bursts (GRBs) accompany some core-collapse supernovae
of Type Ic (Galama et al. 1998; Patat et al. 2001; Stanek et al.
2003; Hjorth et al. 2003). The collective evidence also lends
credence to the collapsar model for GRBs, in which a relativ-
istic jet breaks through and explodes a hydrogen-stripped Wolf-
Rayet star (Woosley 1993; MacFadyen & Woosley 1999). Un-
fortunately, our understanding of these energetic explosions is
still limited by the paucity of nearby ( ) GRBs with high-z � 0.2
quality photometry and spectroscopy.

On UT 2006 February 18.149, theSwift Burst Alert Tele-
scope (BAT) detected an unusually long duration high-energy
event (Cusumano et al. 2006a). Its prompt gamma-ray light
curve was soft, confined to the 15–50 keV band for the first
290 s (Barbier et al. 2006); this was followed by a spectrally
harder (25–100 keV) 10 s “spike” that concluded with an ex-
ponential coda extending beyond s (Barthelmy et al.t ≈ 2000
2006). The odd behavior of this transient generated uncertainty
as to its basic nature (Gehrels 2006 and references therein),
and poor observing conditions on Kitt Peak prevented a quick
resolution. However, the identification of an extended optical
object at the precise position of the X-ray and optical transient
(OT) in preburst observations of this field (Cool et al. 2006;
Mirabal 2006) favored an extragalactic location. Ultimately,
optical spectroscopic observations of the OT discovered by the
Swift UV/Optical Telescope (Cusumano et al. 2006a) confirmed
the low-redshift , extragalactic nature of this unusualz p 0.033
GRB (Mirabal & Halpern 2006a), making it the second lowest
burst redshift known to date after GRB 980425/SN 1998bw at

.z p 0.0085
In this Letter we describe the identification of the GRB 060218

host galaxy and its redshift, together with photometry and spec-
troscopy that verify its origin in the explosion of a massive star,
and discuss the implications of our results. We assume an

km s�1 Mpc�1, , cosmologicalH p 71 Q p 0.27 Q p 0.730 m L
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model, corresponding to a luminosity distance MpcD p 145L

at and an angular scale 0.658 kpc arcsec�1.z p 0.0335

2. OBSERVATIONS

Optical observations of GRB 060218 began at the MDM Ob-
servatory on February 19.146 UT using the 2.4 m telescope and
RETROCAM, the Retractable Optical Camera for Monitoring,
equipped with Sloan Digital Sky Survey (SDSS) filters (Morgan
et al. 2005) and continued on February 20. AdditionalUBVRI
photometric observations were carried out on the MDM 1.3 and
2.4 m telescopes using a SITe thinned, back side–2048# 2048
illuminated CCD on several nights from February 21 to March
16. All of the photometry was converted to a commonUBVRI
system using Landolt (1992) standard stars and corrected for Ga-
lactic extinction assuming from the dust mapsE(B � V ) p 0.142
of Schlegel et al. (1998). We note that this value is consistent with
the extinction estimated from high-resolution spectra by Guenther
et al. (2006) using the combined Nai D absorption-line equivalent
widths from the Galaxy and GRB host. This uniform data set,
listed in Table 1 and shown in Figure 1, can be fitted with a power-
law decay plus a supernova (SN) light curve that will be described
in more detail in the following section.

The position of the OT was measured with respect to the
apparent host galaxy SDSS J032139.68�165201.7 using a set
of unsaturated stars common to MDM and SDSS images. We
find that the OT is centered on the compact galaxy to less than
0�.2 (130 pc) in each coordinate. This is to be compared with
the galaxy’s half-light radius, (1.0 kpc).r ≈ 1�.51/2

Spectra of GRB 060218 were obtained starting on February
20.097 UT with the Boller & Chivens CCD spectrograph
(CCDS) mounted on the 2.4 m telescope. The setup used pro-
vides 3.1 pixel�1 dispersion and≈8.2 resolution with a 1�˚ ˚A A
slit. The observations consisted of two 1800 s integrations under
fair sky conditions. The spectra were processed using standard
procedures in IRAF.5 The wavelength scale was established by
fitting a set of polynomials to Xe lamp spectra obtained im-
mediately after each target exposure. The spectrophotometric
standard star Feige 34 (Stone 1977), observed at comparable
telescope pointing to the GRB, was used for flux calibration.
Although no order-separating filter was used, we expect that

5 IRAF is distributed by the National Optical Astronomy Observatories, which
are operated by the Association of Universities for Research in Astronomy, Inc.,
under cooperative agreement with the National Science Foundation.
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TABLE 1
Optical Photometry of GRB 060218

Date (UT) Filter Magnitude Date (UT) Filter Magnitude Date (UT) Filter Magnitude

2006 Feb 22.173. . . . . . U 17.10� 0.07 2006 Feb 20.208. . . . . . V 17.89� 0.06 2006 Feb 25.114. . . . . . R 16.96� 0.02
2006 Feb 23.210. . . . . . U 16.87� 0.04 2006 Feb 21.196. . . . . . V 17.73� 0.06 2006 Feb 26.112. . . . . . R 16.82� 0.03
2006 Feb 25.119. . . . . . U 16.82� 0.04 2006 Feb 22.186. . . . . . V 17.50� 0.03 2006 Feb 27.162. . . . . . R 16.84� 0.10
2006 Feb 26.154. . . . . . U 16.92� 0.05 2006 Feb 23.196. . . . . . V 17.30� 0.03 2006 Feb 28.136. . . . . . R 16.83� 0.02
2006 Feb 28.160. . . . . . U 16.93� 0.04 2006 Feb 25.112. . . . . . V 17.10� 0.02 2006 Mar 2.140. . . . . . . R 16.83� 0.04
2006 Mar 2.153. . . . . . . U 17.32� 0.07 2006 Feb 26.140. . . . . . V 17.01� 0.03 2006 Mar 3.098. . . . . . . R 16.85� 0.04
2006 Mar 4.106. . . . . . . U 17.62� 0.06 2006 Feb 27.167. . . . . . V 17.00� 0.11 2006 Mar 4.094. . . . . . . R 16.88� 0.04
2006 Mar 6.135. . . . . . . U 17.98� 0.20 2006 Feb 28.168. . . . . . V 16.93� 0.02 2006 Mar 6.113. . . . . . . R 16.90� 0.06
2006 Mar 16.111. . . . . . U 19.96� 0.13 2006 Mar 2.143. . . . . . . V 16.97� 0.03 2006 Mar 16.106. . . . . . R 17.60� 0.04
2006 Feb 20.214. . . . . . B 18.08� 0.10 2006 Mar 3.102. . . . . . . V 17.04� 0.02 2006 Feb 20.191. . . . . . I 17.65� 0.08
2006 Feb 22.169. . . . . . B 17.79� 0.03 2006 Mar 4.097. . . . . . . V 17.09� 0.05 2006 Feb 21.172. . . . . . I 17.82� 0.20
2006 Feb 23.202. . . . . . B 17.66� 0.03 2006 Mar 6.118. . . . . . . V 17.25� 0.04 2006 Feb 22.177. . . . . . I 17.36� 0.03
2006 Feb 25.109. . . . . . B 17.47� 0.02 2006 Mar 13.112. . . . . . V 17.86� 0.03 2006 Feb 23.100. . . . . . I 17.24� 0.04
2006 Feb 26.126. . . . . . B 17.44� 0.02 2006 Mar 16.108. . . . . . V 18.07� 0.03 2006 Feb 25.116. . . . . . I 16.86� 0.03
2006 Feb 27.173. . . . . . B 17.37� 0.13 2006 Feb 19.146. . . . . . R 17.25� 0.10 2006 Feb 26.102. . . . . . I 16.81� 0.10
2006 Feb 28.015. . . . . . B 17.47� 0.02 2006 Feb 19.230. . . . . . R 17.34� 0.10 2006 Feb 27.158. . . . . . I 16.74� 0.06
2006 Mar 2.147. . . . . . . B 17.66� 0.02 2006 Feb 20.162. . . . . . R 17.76� 0.06 2006 Feb 28.134. . . . . . I 16.77� 0.06
2006 Mar 3.105. . . . . . . B 17.78� 0.02 2006 Feb 20.168. . . . . . R 17.76� 0.06 2006 Mar 2.130. . . . . . . I 16.70� 0.10
2006 Mar 4.100. . . . . . . B 17.89� 0.03 2006 Feb 20.191. . . . . . R 17.77� 0.06 2006 Mar 3.089. . . . . . . I 16.72� 0.05
2006 Mar 6.124. . . . . . . B 18.19� 0.07 2006 Feb 20.240. . . . . . R 17.78� 0.06 2006 Mar 4.091. . . . . . . I 16.65� 0.06
2006 Mar 13.114. . . . . . B 19.20� 0.05 2006 Feb 21.180. . . . . . R 17.78� 0.15 2006 Mar 6.109. . . . . . . I 16.73� 0.06
2006 Mar 16.109. . . . . . B 19.58� 0.04 2006 Feb 22.161. . . . . . R 17.40� 0.02 2006 Mar 13.109. . . . . . I 17.09� 0.06
2006 Feb 20.162. . . . . . V 17.84� 0.06 2006 Feb 23.192. . . . . . R 17.22� 0.03 2006 Mar 16.105. . . . . . I 17.17� 0.04

Note.—The host galaxy with , , , , and was subtracted, and then remainders were corrected forU p 20.10 B p 20.41 V p 20.09 R p 19.91 I p 19.54
Galactic extinction: , , , , and , respectively.A p 0.77 A p 0.61 A p 0.47 A p 0.38 A p 0.28U B V R I

Fig. 1.—UBVRI data for GRB 060218, corrected for Galactic extinction and
host galaxy contamination. The solid line is a fit to theV-band light curve.
The dotted line is a fit to theV-band light curve after subtracting ana p

power-law decay (dot-dashed line) as justified in the text. The dashed line1.2
is a template of theV-band light curve of SN 1998bw (Galama et al. 1998)
shifted to . [See the electronic edition of the Journal for a colorz p 0.0335
version of this figure.]

Fig. 2.—Spectra of GRB 060218 obtained on 2006 February 20.097 UT (1.95
days after the burst) and March 17.12 (27 days postburst). Days relative to
supernova maximum are indicated. Starburst emission lines from the host galaxy
were excised from the second spectrum. The first spectrum marks the earliest
appearance of Siii near 5720 , while its continuum is reasonably well fittedÅ
by a spectral index (see text). Photometry before and after theb p 0.1� 0.3
spectrum was taken (Table 1) is consistent with this spectral index.

second-order contamination is less than 1.5% below 7000 (e.g.,Å
Izotov et al. 2001). Another set of spectra, consisting of three
720 s integrations, was obtained on March 17.12 UT using the
Modular Spectrograph (ModSpec) on the 2.4 m telescope, which
provides 2 pixel�1 dispersion and≈3.6 resolution with a˚ ˚A A
1�.1 slit. Similar reduction steps, plus correction for atmospheric
absorption bands, were performed. Figure 2 shows the dered-

dened (Cardelli et al. 1989), wavelength- and flux-calibrated
spectra of GRB 060218/SN 2006aj.

3. RESULTS

Strong, redshifted nebular emission lines identified in the spec-
trum are listed in Table 2. The fluxes are taken from the CCDS
spectrum, while the more accurate wavelengths from the
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TABLE 2
Host Galaxy Emission Lines

Line lair
( )˚l Ahelio

aF(l)/F(Hb)

[O ii] l3727.5. . . . . . . . 3850.7b 2.61� 0.4
Hb l4861.33 . . . . . . . . . 5024.36 1.00� 0.3
[O iii] l4958.92. . . . . . 5124.84 2.03� 0.3
[O iii] l5006.85. . . . . . 5174.31 5.09� 0.6
Ha l6562.79. . . . . . . . . 6782.25 2.94� 0.3
[N ii] l6583.39. . . . . . . … !0.08
[S ii] l6716.42. . . . . . . … !0.65
[S ii] l6730.78. . . . . . . … !0.54

a Flux relative to ergs cm�2�16F(Hb) p 9.94# 10
s�1, corrected for Galactic extinctionE(B � V) p

.0.142
b Poor wavelength calibration in this region.

ModSpec are listed. The weighted mean heliocentric redshift
derived from the emission lines is , andz p 0.03345� 0.00006
the line widths are unresolved at the resolution of≈160 km s�1.
The emission-line redshift is consistent with the Nai D absorp-
tion-line velocities from the host (Guenther et al. 2006), falling
within the 20 km s�1 spread of the latter. The Balmer decrement
indicates little or no intrinsic reddening. In addition, the earlier
spectrum reveals a relatively blue continuum that is reasonably
well fitted by a power law of the form with spectral�bf ∝ nn

index and by a broad P Cygni feature with theb p 0.1� 0.3
bottom of the absorption trough at≈5720 rest wavelength.Å

We argue that this spectral feature corresponds to Siii l6355
with velocity �31500� 9200 km s�1. An identification with
Na i D at �8700 km s�1, or with He i l5876 at even lower
velocity, appears less likely when compared to the early-time
optical spectra of Type Ic SNe (Patat et al. 2001). This detection
signals the emergence of the supernova designated SN 2006aj
(Masetti et al. 2006; Soderberg et al. 2006; Fugazza et al. 2006;
Mirabal & Halpern 2006b; Fatkhullin et al. 2006; Mazzali &
Pian 2006; Modjaz et al. 2006) and seals the connection be-
tween GRB 060218 and the explosion of a massive star. The
weak Si ii line, as well as a nearly featureless continuum at
early times, are typical of Type Ic SN explosions lacking both
a hydrogen and helium envelope (e.g., Filippenko 1997). SN
2006aj appears much bluer than the Type Ic SN 1998bw. The
early spectral shape of SN 2006aj resembles more closely the
Type Ic GRB 030329/SN 2003dh spectra obtained within a
week of that burst (Stanek et al. 2003; Hjorth et al. 2003).

The emergence of a weak, broad Siii feature so soon after
theSwift BAT localization implies that SN 2006aj began!1.95
days after the GRB 060218. This basic picture is confirmed by
the flattening and rise in the optical light curve on 2006 Feb-
ruary 21.181 UT (Fig. 1). To better constrain the SN contri-
bution to the light curve, we subtracted the host galaxy con-
tribution and, optionally, a power-law decay assumed to be
from relativistic ejecta interacting with the circumburst me-
dium. The host galaxy magnitudes were transformed from Cool
et al. (2006), Adelman-McCarthy et al. (2006), and our own
Landolt star calibrations. There is direct evidence that emission
generated by the relativistic ejecta began on the first day after
the trigger, when a temporal power-law index describesa ≈ 1.2
the X-ray observations (Cusumano et al. 2006b). Such decay
is slightly steeper than a power-law index thata ≈ 0.7� 0.3
can be fitted to ourR-band measurements prior to February
21, but these are consistent because the optical band is already
affected by the SN rise at this point.

Taking as an estimate for the early optical decaya ≈ 1.2
(the dot-dashed line in Fig. 1) and subtracting it and the con-
tribution of the host galaxy will produce the residualV-band

SN light curve shown as the dotted line in Figure 1. Allowing
for uncertainties in the initial optical decay rate, which could
be slower than in the X-ray, the SN rise is consistent with an
origin at the GRB trigger time. Alternatively, if we ignore the
R-band points obtained on February 19–20 and assume that
the light curve is completely accounted for by the SN on Feb-
ruary 21, we get a much flatter SN light curve (the solid line
in Fig. 1). The latter model is less attractive, as it neglects the
first 2 days of bright, decaying optical emission and points to
a supernova time several days before the GRB.

For comparison we show a fit of theV-band light curve of
SN 1998bw (Galama et al. 1998) shifted to . Bothz p 0.0335
the raw and modeledV-band light curves suggest that SN
2006aj reached maximum inV on 2006 February 28.3 UT
( days after the burst). The peak of SN 2006aj occurs10.2� 0.3
earlier than in SN 1998bw and is more like the Type Ic SN
2002ap (Gal-Yam et al. 2002; Mazzali et al. 2002). The peak
absolute magnitude of SN 2006aj is . AlthoughM p �18.87V

it was much bluer than SN 1998bw early on, SN 2006aj’s
maximum is 0.53 mag fainter than SN 1998bw, which probably
translates into�0.5 M, of ejected56Ni mass during the ex-
plosion (Iwamoto et al. 1998; Woosley et al. 1999).

At a redshift of , theg-ray fluence of GRBz p 0.0335
060218 corresponds to isotropic energyE p (6.2�iso

ergs, and the peak luminosity is490.3)# 10 L p (5 �p

ergs s�1 (Sakamoto et al. 2006; Campana et al. 2006).463) # 10
This energy release is at least an order of magnitude lower
than the average energy measured in long-duration GRBs and
yet a factor of∼20 larger than the intrinsically weak GRB
980425/SN 1998bw (Galama et al. 1998). It is in fact com-
parable to the soft X-ray flash XRF 020903 (Sakamoto et al.
2006). In terms of X-ray emission, the isotropic luminosity of
GRB 060218 at hr is ergs s�1 (Cusumano et43t p 10 L ∼ 10X

al. 2006b). This is 103 times fainter than the sample of GRB
X-ray luminosities culled by Berger et al. (2003). However,
this strict comparison may not be meaningful, since it does not
take into account the contribution from an earlier flaring period.
In fact, a rough estimate of the X-ray fluence of GRB 060218
for the first orbit ofSwift data (159–2770 s posttrigger) yields
≈2.3 # 1049 ergs, a large fraction of the total.

Next, we examine the host galaxy of GRB 060218. The
observed line ratios are typical of a high-excitation starburst
galaxy. In particular, the measured Ha line flux, uncorrected
for extinction at the host galaxy, implies a star formation rate
(SFR) equivalent to≈0.05–0.15 yr�1 (Kennicutt 1998). AM,

similar computation of the SFR using [Oii] yields 0.09�
yr�1. We also find a good agreement with the SFR0.05 M,

derived using an extrapolation of the UV continuum luminosity
of the host galaxy as tabulated in Cool et al. (2006).

Turning our attention to host galaxy metallicity, we estimate
relative abundances from intensities of [Oii], Hb, and [O iii]
(Table 2) by adopting the calibrations in Kobulnicky & Kewley
(2004). Under this approximation, the metallicity is [O/H]p
�0.34 � 0.3, assuming (Allendelog (O/H) � 12 p 8.72,

Prieto et al. 2001). This value is slightly larger than the measure-
ment for the XRF 031203 host (Prochaska et al. 2004), but it is
still among the lowest observed for GRB hosts. We also estimate

for SDSS J032139.68�165201.7, which ranks atM ≈ �16.01B

the bright end of Local Group dwarf galaxies (Mateo 1998).

4. DISCUSSION

Together, its energetics and host galaxy metallicity place
GRB 060218 somewhere between GRB 980425/SN 1998bw
(Galama et al. 1998) and XRF 031203 (Soderberg et al. 2004).
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Most importantly, this event continues to shape a picture in
which subluminous, subenergetic GRBs/supernovae born in
low-metallicity, dwarf galaxies dominate the local ( )z � 0.5
population of GRB events (e.g., Soderberg et al. 2004). It re-
mains to be seen whether this empirical result constitutes a
selection effect (i.e., we are simply missing the analogs of faint
explosions at higher redshifts) or whether the trend is indeed
a real consequence of stellar and/or metallicity evolution over
the ages (Ramirez-Ruiz et al. 2002b; Woosley & Janka 2005;
Langer & Norman 2006). If the latter is correct, low-metallicity
progenitors in the local universe may differ from GRB pro-
genitors at higher redshifts.

It is notable that during the early, X-ray bright phase, the
absorbing column density needed to fit theSwift X-ray spec-
trum, cm�2 (Campana et al. 2006), is consid-21N p 6 # 10H

erably greater than both the Galactic and host extinction derived
from optical emission and absorption lines, as well as from the
optical colors of the afterglow. The standard Galactic ratio

cm�2 mag�1 (Bohlin et21N(H i � H )/E(B � V ) p 5.8# 102

al. 1978) predicts , rather than theE(B � V ) ≈ 1 E(B � V ) ≈
observed from the optical methods. Since “X-ray0.17� 0.03

” is not really but a proxy for the heavier elements thatN NH H

dominate X-ray photoelectric absorption, this implies a dust-
deficient medium. The stellar wind of a Wolf-Rayet progenitor
has enough column density to be the location of this excess
photoelectric X-ray absorption.

Phenomenologically, GRB 060218 does share some prop-
erties with the “classical” high-redshift burst population, show-
ing the canonical imprint of emission from a relativistic blast
wave or jet running into circumstellar material ( ) priora ≈ 1.2
to the SN emergence. It also has extended prompt X-ray emis-
sion remarkably similar to the early X-ray light curves inferred
from Swift X-Ray Telescope observations (Zhang et al. 2005).

Based solely on the early results from GRB 060218, and using
our sparse optical data before the SN rise, we cannot firmly
distinguish among a relativistic jet afterglow, emission from a
jet cocoon (Ramirez-Ruiz et al. 2002a), or decaying blackbody
radiation associated with “shock breakout” (Campana et al.
2006). In spherical SN models, shock breakout refers to the
first observable event after core collapse, and it will occur at

hr (Arnett 1996). But in the case of a highly asymmetricDt ∼ 1
explosion accompanying a GRB, a narrow “jet breakout” can
be observed, as well as a jet-driven shock emerging with dif-
ferent delays from around the stellar envelope.

5. CONCLUSIONS

We report the identification of GRB 060218 as the second
nearest GRB known to date. Taken together, the emerging SN
light curve, the development of a Siii feature, and the lack of
hydrogen lines in the spectrum indicate that the progenitor was
a massive star, most likely in the Wolf-Rayet family, that was
stripped of its hydrogen and helium envelope prior to the ex-
plosion. The residual decay�2 days after the burst suggests
that a fraction of the early emission was created by a mildly
relativistic blast wave or jet running into circumstellar material.
Furthermore, the extrapolation of a derived SN 2006aj light
curve back in time supports the idea that the GRB was nearly
simultaneous with the massive core collapse that gave rise to
the SN. Finally, the subenergetic nature of this nearby event
and its location within a low-metallicity host galaxy highlight
the possibility that the variety in massive stellar explosions is,
in part, intrinsic to the metallicity of their progenitors.

This work was supported by the National Science Foundation
under grant 0206051.
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