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ABSTRACT

We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs
BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account
systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical
origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the
basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature
invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top
experiments.

Key words: atomic processes – gravitation – white dwarfs

1. INTRODUCTION

The recent discovery at the Large Hadron Collider (LHC)
of a resonance at 125 GeV compatible with the expectations
for the Higgs particle (Chatrchyan et al. 2012; Aad et al.
2012) represents a major step toward understanding the origin
of the mass of fundamental particles. Eventually, this should
also affect the other subfield in which mass has a pivotal
role, i.e., gravitation. This is particularly relevant in models in
which the Higgs field has nonminimal coupling to the general
relativity sector, as invoked in various extensions of the standard
model. Nonminimal coupling between the Higgs and spacetime
curvature may be beneficial to have the Higgs responsible for
inflation (Bezrukov & Shaposhnikov 2008; Bezrukov et al.
2009), and as a suppression mechanism for the contribution
to dark energy expected from quantum fields (Shapiro & Solà
2000). Upper bounds on the gravitational interaction of Higgs
bosons from the LHC experiments have been recently discussed
(Atkins & Calmet 2013; Xianyu et al. 2013).

Bounds on the crosstalk between the Higgs particle and
gravity may also be obtained by considering strong-gravity
astrophysical objects, as proposed in Onofrio (2010) in the
case of active galactic nuclei (AGNs) and primordial black
holes. The presence of a strong spacetime curvature deforms the
vacuum expectation value of the Higgs field and therefore the
mass of fundamental particles such as the electron. Nucleons
instead should be minimally affected by the strong curvature
since most of their mass arises from the gluonic fields that,
being massless, are not coupled to the Higgs field at tree level.
Peculiar wavelength shifts are therefore predicted which should
be present for electronic transitions and strongly suppressed
for molecular transitions in which the main role is played
by the nuclei themselves, such as in vibrational or rotational
spectroscopy. Due to the vanishing of the Ricci scalar for
spherically symmetric objects, attention was focused on the
possibility of couplings to the only non-null curvature invariant,
the Kreschmann invariant, defined as K = RμνρσRμνρσ , where
Rμνρσ is the Riemann curvature tensor. This invariant plays an
important role in quadratic theories of gravity (Deser & van
Niewenhuizen 1974; Stelle 1977; Hehl et al. 1978), and more
in general in modified f (R) theories (Sotiriou & Faraoni 2010)
and Einstein-Gauss-Bonnet models of gravity (Lovelock 1971).

While AGNs would provide a strong-gravity setting near
their black holes, their complex structure and the presence
of turbulence and high-energy interactions near the accretion
region induce uncontrollable systematic effects which hinder
the possibility for extracting bounds on a Higgs–Kreschmann
coupling as this relies upon the simultaneous observation of
atomic and molecular transitions. To our knowledge, no neutron
stars appear to show both molecular and atomic lines in their
spectra, while white dwarfs have both. Although their surface
gravity is much weaker than around AGNs and neutron stars,
many features can be controlled more precisely, thus providing
a “quieter” environment to search for the putative Higgs shift.

White dwarfs have been known since the 19th century and
in addition to their interest for astronomical and cosmologi-
cal problems including understanding the late stages of stellar
evolution, determining the galaxy’s age, and the nature of Ia
supernovae, they have had a prominent role in fundamental
physics since the early 20th century. Adams (1925) made the
first attempt to verify general relativity by measuring the grav-
itational redshift of Sirius B. Chandrasekhar (1935) studied the
consequences of Fermi–Dirac statistics for stars, introducing
his celebrated limit. Bounds on the distance dependence of the
Newtonian gravitational constant have been discussed compar-
ing observations and models for the white dwarf Sirius B (Hut
1981) and those in the Hyades (Wegner 1989). More recently
Berengut et al. (2013) proposed using white dwarfs to study
the dependence of the fine structure constant on gravity. Here
we show that white dwarfs can be used to obtain limits on the
coupling of the Higgs field to a specific curvature invariant,
by means of spectroscopic observations of a carbon-rich white
dwarf, BPM 27606, using the Southern African Large Tele-
scope (SALT). The analysis is complemented by considering
data taken from the Hubble Space Telescope (HST) archive on a
second white dwarf, Procyon B, in which Ca ii and Mg ii lines,
in addition to the C2 bands, are also present.

2. HIGGS-SHIFTS AND KRESCHMANN INVARIANT

The search for coupling between the Higgs (or any scalar
field permeating the whole Universe) and spacetime curvature
arises naturally within the framework of field theory in curved
spacetime (Birrell & Davies 1982). The Lagrangian density for
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an interacting scalar field in a generic spacetime characterized
by the metric tensor gμν is written as (Chernikov & Tagirov
1968):

L = √−g

[
1

2
gμν∂μφ∂νφ − 1

2
(μ2 + ξR)φ2 − λ

4
φ4

]
, (1)

where μ and λ are the mass parameter and the self-
coupling quartic coefficient of the Higgs field, respectively. In
Equation (1) we have also introduced the determinant of the
metric gμν as g, and ξ , the coupling constant between the Higgs
field φ and the Ricci scalar R. The coupling constant ξ is a free
parameter in any model so far imagined to describe scenarios of
scalar fields coupled to gravity, and it is therefore important to
extract this coefficient, or upper bounds, from phenomenologi-
cal analyses.

The Higgs field develops, under spontaneous symmetry
breaking, a vacuum expectation value v0 = (−μ2/λ)

1/2
in

flat spacetime, and the masses of the fundamental fermions are
proportional to v0 via the Yukawa coefficients of the fermion-
Higgs Lagrangian density term, mi = yiv0/

√
2. The effective

mass parameter of the Higgs field gets an extra-term due to the
scalar curvature as μ2 �→ μ2 + ξR, and the vacuum expectation
value of the Higgs field will become spacetime dependent
through the curvature scalar as:

v =
√

−μ2 + ξR

λ
� v0

(
1 +

ξR

2μ2

)
, (2)

where the approximation holds in a weak-curvature limit. This
implies that the mass mi of fundamental fermions, such as the
electron, will be simply changed proportionally to the Higgs
vacuum expectation value

δmi = yi√
2

(v − v0) � yiξRv0

23/2μ2
= ξR

2μ2
mi. (3)

In other words, the presence of coupling of the Higgs field
to space-time curvature adds to its inertial mass a contribution,
which acts as a “mass renormalization” due to curved space-time
(however, for an opposite interpretation of this mass shift see
Faraoni & Cooperstock 1998). This mass shift is not present for
protons and neutrons, due to the fact that their mass is primarily
due to the gluonic fields which, being massless, are unaffected
by the Higgs field. As discussed in more detail in Onofrio (2010),
this implies that all molecular transitions only depending on the
nuclei mass, such as vibrational and rotational spectra, should
be unaffected by the Higgs-curvature coupling at leading order.

Unfortunately, the Ricci scalar outside spherically symmetric
masses is zero, so we cannot use this coupling to infer possible
mass shifts for the electrons. The only non-zero curvature
scalar outside spherically symmetric masses is the Kreschmann
invariant, and we will assume in the following considerations
bounds to the Kreschmann coupling ξK to the Higgs field in a
Lagrangian of the form

L = √−g

[
1

2
gμν∂μφ∂νφ − 1

2

(
μ2 + ξKΛ2

PlK
)
φ2 − λ

4
φ4

]
,

(4)
where ΛPl = (Gh̄/c3)1/2 is the Planck length, whose value
is ΛPl � 10−35 m in conventional quantum gravity models,
or larger values such as the one corresponding to models
with early unifications of gravity to the other fundamental

interactions (Arkani-Hamed et al. 1998, 1999). In the latter case
the Planck length occurs at the TeV scale via extra-dimensions,
ΛPl � 10−19 m, and in the following we will consider both these
extreme situations.

Analogously to the case of the Ricci scalar, the mass pa-
rameter in the Higgs term then gets normalized as μ2 �→
μ2(1 + ξKΛ2

Plλ
2
μK), where we have introduced the Compton

wavelength corresponding to the Higgs mass, λμ = h̄/(μc),
equal to λμ � 1.6 × 10−18 m if we assume μ = 125 GeV.
Notice that, due to the subattometer scale values of λμ and ΛPl,
an extremely large value of ξK is necessary for having mass
shifts of order unity or lower to compensate for Kreschmann
invariants due to macroscopic curvature of any spacetime of
astrophysical interest. In fact, we get a relative mass shift, for
instance in the case of the electron, equal to

δme

me

� 1

2
ξKΛ2

Plλ
2
μK. (5)

In the case of the Schwarzschild metric the Kretschmann
invariant is K = 12 R2

s /r6, with Rs the Schwarzschild radius
Rs = 2 GM/c2, and r the distance from the center of the
mass M. As a benchmark, for a solar mass white dwarf,
M = 1 M� with an Earth radius R = RE � 9.1 × 10−3R�,
we get Rs � 3 × 103 m and K � 2 × 10−33 m−4. With
ΛPl � 10−35 m and the abovementioned value of λμ we obtain
δme/me � 2.5 × 10−139ξK in meter–kilogram–second–ampere
(MKSA) units. For atomic transitions due to relocations of the
electron in states with different principal quantum number, we
expect that the mass shift affects the spectroscopy with a scaling
of the transition wavelengths as δλ/λ � δme/me, and therefore
any evidence for a wavelength shift in the electronic transitions
not accompanied by the same shift for transitions determined
by the mass of the nuclei may be a distinctive signature of
Higgs-shifts. Therefore we need to detect emission or absorption
wavelengths of both electronic and nuclear nature from a strong-
gravity source, and make a comparison with either laboratory
spectra or spectra gathered from weak-gravity astrophysical
sources.

The spectrum of the C2 molecule has been the subject of ex-
tensive experimental and theoretical studies in molecular spec-
troscopy, and has been found in various astrophysical contexts
including white dwarfs. In the visible region, the most promi-
nent features of the C2 spectrum are the Swan bands, involving
vibronic transitions between the electronic states d3Πg–a3Πu

(Huber & Herzberg 1979; Brooke et al. 2013). For these transi-
tions, in the presence of a Higgs-shift the electronic energy lev-
els, proportional to the electron mass, should be shifted, while
the vibrational levels, proportional to the nucleon mass, should
stay constant. We therefore expect that the separation between
different terms of the same Swan band should stay constant,
the only effect of the Higgs shift being an overall shift of all
the wavelengths. In the following we therefore focus on these
specific spectra as gathered from two white dwarfs.

3. OBSERVATIONS AND DATA ANALYSIS ON BPM 27606

In the Bruce Proper Motion Survey, Luyten (1963) found
BPM 27606,4 which has a dMe common proper motion com-
panion. Eggen (1969) indicated that it is a white dwarf from
UBV photometry. Wegner (1973) discovered the strong C2 Swan

4 Other designations include: WD2154-512, GJ841B, L283-7, LDS765,
LTT8768.
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bands which establish its spectral class as DQ in the current
classification scheme, and discussed its kinematical properties
(Wegner 1981). More detailed descriptions of the spectrum were
given by Wickramasinghe & Bessel (1979) and Wegner (1984).
Atmospheric analyses (Koester et al. 1982; Wegner & Yackovich
1984) showed that BPM 27606 has a helium dominated atmo-
sphere (C:He ∼ 10−5) and effective temperature Teff ∼ 7300 K
and more recent studies of DQ atmospheres (e.g., Dufour et al.
2005) leave this essentially unchanged.

In recent years many new DQ white dwarfs have been found
(e.g., Kleinman et al. 2004) and several new properties about
them have been discovered. These include rapid variability of
some of the hot ones (Williams et al. 2013), rotation (Lawrie
et al. 2013), and strong magnetic fields (Williams et al. 2013).
An additional problem that remains unsolved is the physics
of the blueshifts in the Swan bands of the DQs. These were
already measured in the milder cases of BPM 27606 and
L 879-14 (Wegner 1984), but for cooler DQs this becomes more
extreme, such as for LHS1126 (Bergeron et al. 1994). Hall &
Maxwell (2008) and Kowalski (2010) have reviewed possible
mechanisms, but this subject is clearly hampered by the lack of
information on the behavior of the spectra of C i and C2 under
white dwarf conditions.

BPM 27606 is a particularly good star for studying these
effects because it is in the common proper motion system
with CD-510 13128. This allows its true velocity to be known
within fairly restrictive limits and the pair has a known distance
from the trigonometric parallax. In addition, the shifts in the
lines are relatively small (∼4 Å) and its magnetic field is not
large. Vornanen et al. (2010) have reported a magnetic field
measurement of 1.3 ± 0.5 MG from circular polarization of the
CH bands near λ4300. However the magnetic field may not be
this high. From our new spectra this seems inconsistent with the
lack of splitting of the λ4771 C i line and Hα, which indicates a
magnetic field B � 2 × 105 G. Although variability is possible,
the line is single on all of our spectra as it was in the 1978
spectra of Wegner (1984).

The observations were made with the Robert Stobie Spec-
trograph (RSS) attached to the SALT, which is described by
Buckley et al. (2006). The RSS (Burgh et al. 2003; Kobulnicky
et al. 2003) employs Volume Space Holographic transmission
gratings and three E2V44-82 2048 × 4096 CCDs with 15 μm
pixels separated by gaps of 1.5 mm width, or about 10–15 Å at
the dispersions used here.

All of the observations of BPM 27606 were obtained using
a 1.0 arcsec × 8 arcmin slit rotated by 71◦ so that both
the white dwarf and its bright companion could be observed
simultaneously. A 2 × 2 pixel binning with a gain of 1.0
e − ADU−1 gives a readout noise of 3.3 e − pixel−1. The Hα
region (λλ6085–6925) which also covers the C2(0, 2) bandhead
was observed 2013 May 2 with the pg2300 grating and a
pc04600 filter. Three 900 s exposures were obtained along with
Ar comparison spectra. The FWHM measured from comparison
lines is 1.3 Å. An identical set of exposures were secured 2014
May 12 to improve the signal-to-noise ratio. The λλ4700–5380
wavelength region which covers the 5135 Å bandhead was
observed 2013 May 19 (two exposures) and 2013 May 21 (four
exposures). All exposure times were 812 s with the pg3000
grating, no filter, and CuAr comparisons were used, giving an
FWHM of comparison lines of 1.0 Å. The 4737 Å and 4382 Å
bandheads (λλ4326–5004) were observed 2013 May 5 and three
1042 s exposures using the pg3000 grating and no filter with a
CuAr wavelength comparison. The resulting comparison lines

(2,0)

(3,1)

(4,2) 

Figure 1. Portion of SALT spectra of BPM 27606 showing the Swan band with
Δv = 2 of C2 near 4370 Å.

have an FWHM = 1.1 Å. In 2014, two additional spectral regions
were observed. Three 900 s exposures were secured 2014 May
13 of λλ3540–4323 with the pg3000 grating, no filter and a
ThAr comparison producing a FWHM resolution of 1.3 Å from
companion lines. Three 663 s exposures covering λλ5050–6010
were made 2014 May 22 using the pg2300 grating with an Ar
comparison giving an FWHM of 1.7 Å for the comparison lines.

Starting from the bias subtracted and flattened images pro-
vided by the SALT pipeline (Crawford et al. 2010), the spectra
were wavelength calibrated using the longslit menu in IRAF.5

Fifth order polynomials were used for the wavelength calibra-
tions in two dimensions, background subtraction, and the spec-
tra were extracted using apsum. Special care was taken to use
portions of the frames adjacent to the spectra, to minimize the ef-
fects of the curved lines in the RSS. The final individual spectra
were summed using imcombine and the ccdsum option to re-
move cosmic rays. Examples of the resulting spectra are shown
in Figures 1–5.

The heliocentric velocity of the M2Ve companion, mea-
sured from our spectra using the Hα, β, γ emission lines,
was −9.0 ± 5.1 km s−1, which we adopt here. This can be
compared with −9 ± 1 km s−1 (Wegner 1981) and −8.1 ±
1.7 km s−1 (Karatas et al. 2004).

The observed wavelengths of the major bandheads of C2 are
shown in Table 1 where they are compared with the wavelengths
given by Pearce & Gaydon (1976). These wavelengths refer to
the minimum intensity at each bandhead from our spectra, and
have been corrected to heliocentric values. We have analyzed
the distance between two consecutive lines corresponding to the
same Δv = v′ − v′′, for the observed wavelengths Δλobs(Δv) =
λobs(v′)−λobs(v′′) and for the laboratory measured wavelengths
Δλlab(Δv) = λlab(v′) − λlab(v′′), evaluated both the overall
average separation as 〈δλ〉 = N−1 ∑

[Δλobs(Δv) − Δλlab(Δv)]
and its dispersion as δλ2 = N−1 ∑

[Δλobs(Δv) − Δλlab(Δv)]2,

5 IRAF is distributed by the National Optical Astronomy Observatories which
are operated by the Association of Universities for Research in Astronomy,
Inc. under cooperative agreement with the National Science Foundation.
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C I

(1,0)(2,1)(3,2)(5,4)

(6,5)

Figure 2. Portion of SALT spectra of BPM 27606 showing the main Swan band
with Δv = 1 of C2 and the C i line near 4700 Å.

Table 1
Observed Heliocentric Wavelengths of the Swan Bands from BPM 27606 for

v′, v′′ Transitions, and Comparison to the Laboratory Wavelengths, all
Expressed in Å Units

v′, v′′ λobs λlab λobs − λlab

0, 2 6179.90 6191.2 −11.3
1,3 6114.74 6122.1 −7.4
0, 1 5630.35 5635.5 −5.15
1, 2 5580.07 5585.5 5.4
2, 3 5536.00 5540.7 −4.7
3, 4 5495.64 5501.9 −6.3
4, 5 5467.73 5470.3 −2.6
0, 0 5159.97 5165.2 −5.2
1, 1 5125.64 5129.3 −3.7
2, 2 5094.45 5097.7 −3.3
1, 0 4733.05 4737.1 4.0
2, 1 4712.04 4715.2 −3.2
3, 2 4694.74 4697.6 2.9
4, 3 4682.06 4684.8 −2.7
5, 4 4675.53 4678.6 −3.4
6, 5 4679.89 4680.2 −0.3
2, 0 4378.86 4382.5 −3.6
3, 1 4368.07 4371.4 −3.3
4, 2 4362.24 4365.2 −3.0

obtaining the values of 〈δλ〉 = −0.71 Å and (δλ2)1/2 = 3.39 Å.
The fact that 〈δλ〉  (δλ2)1/2 shows that, within the instrumental
error, the spacing of the vibrational transitions is the same for
the laboratory and the observed wavelengths. This provides a
reliable anchor to study possible shifts in the bandheads due
to the electron mass shift induced by the Higgs field. The
stability of the vibrational transitions is further assured by their
insensitivity to pressure-induced shifts since these are expected
to be the same, in a linear approximation suitable for low
pressures, for different vibronic bands (Lin 1973).

3.1. Assessment of Temperature and Surface Gravity

Due to the lack of recent detailed spectral scans of BPM
27606, its effective temperature is estimated from photometry.

Figure 3. Enlarged portion of the spectrum of BPM 27606 showing the neutral
carbon line near 4770 Å.

Koester et al. (1982) used intermediate band Strömgren by data
from Wegner (1981) and log g = 8 models which yield an
effective temperature Teff ∼ 7600 K and log(He/C) ∼ 4.6.
Using models of Galdikas (1985) these colours give Teff ∼
7200 and log(He/C) ∼ 4.9. Giammichele et al. (2012) found
Teff = (7193 ± 92) K, M = (0.60 ± 0.07)M�, and log g =
(8.03 ± 0.04) in line, within few standard deviations, with our
findings. Broadband UBV photometry, 2MASS near infrared
colours (Carollo et al. 2003) and an atmosphere model by
Wegner (1984) bracket these values, so for the present estimates
we adopt Teff = 7500 K and log(He/C) ∼ 4.75.

To estimate the mass, we first determine the white dwarf
radius using the relationship log R/R0 = 0.2(V0 − V ) −
log π + 4.914 with V0 = −25.60 from Koester et al. (1982).
The visual magnitude V = 14.71 is the mean of Eggen
(1969) and Bergeron et al. (1994). For the parallax we adopt
π = 0.068 ± 0.003, the mean of three parallax measure-
ments: from Hipparcos (van Leeuwen 2007), the Yale par-
allax catalog (van Altena et al. 1995), and the photomet-
ric parallax using the color magnitude diagrams of Reid
(http://www.stsci.edu/∼inr/cmd.html) for the dM companion.
This gives R = 0.0105 R� which implies a mass M �
0.78 M� according to the Hamada and Salpeter carbon or Chan-
drashekhar μe = 2 mass–radius relations. These values give
a surface gravity of log g = 8.3 or g = 1.9 × 108cm s−2.
The corresponding gravitational redshift would be VRS =
0.635(M/M�)/(R/R�) = +47 km s−1.

3.2. Systematic Effects

The leading source of systematic effects in the C2 bands
is pressure shifts in the dominant He background atmosphere,
and in this section we estimate their order of magnitude. We
interpolate in the DQ models of Galdikas (1984, 1985) for
the atmospheric parameters at Rosseland mean optical depth
τ̄ = 0.1 for Teff = 7500 K and log(C/He) = −4.75 for the
order of magnitude of conditions in the line forming region. This
is T0.1 = 6500 K and Pg = 1.8×109 dyne cm−2. As the models
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(0,0)(1,1)(2,2)

Figure 4. Portion of SALT spectra of BPM 27606 showing the Swan band with
Δv = 0 of C2 near 5100 Å.

use g = 108 cm s−2, and for BPM 27606 g = 1.9 × 108 cm s−2,
the number density is scaled to be N0.1 = 3.8 × 1021 cm−3.

Hammond (1990) measured pressure shifts for the five C2
bandheads observed here in He under conditions close to those
in BPM 27606 (T = 4200 K and N = 3×1021 cm−3). Although
these measurements cannot explain the large blueshifts Δλ ∼
–200 Å in the cooler peculiar DQ stars (Kowalski 2010; Hall
& Maxwell 2008), the shifts in BPM 27606 are much smaller
than this and the laboratory measurements are of similar size,
so it seems reasonable that for this star they can be used to
estimate the pressure shifts. If the line broadening in the Swan
bands resembles van der Waals broadening, the pressure shifts
measured by Hammond (1990), ΔλHam, would scale as

Δλpress =
(

T0.1

4200

)0.3 (
N0.1

3 × 1021

)
ΔλHam, (6)

with T0.1 expressed in K and N0.1 in cm−3. For the estimated
conditions at τ̄ = 0.1, Δλpress = 1.44ΔλHam, which is used to
correct the measured wavelengths of the C2 bandheads given in
Table 2 as Δλfin = Δλmeas − Δλpress − ΔλGR, where ΔλGR is the
gravitational redshift. The major source of systematic error in
Equation (6) is the choice of τ̄ = 0.1 for the model atmosphere.
This turns out to be relatively insensitive, as increasing the
Rosseland optical depth to τ̄ = 0.2 would multiply Δλpress in
Tables 2 and 3 by a factor 1.2.

We also detect a weak feature at λ = 6563.33 Å. If this is the
Hα line, λ = 6562.82 Å, no pressure shifts are expected, and
this gives a gravitational redshift VRS = +52 km s−1. We do not
detect the Hβ line in our spectra. The CH(0,0) band at 4314.2 Å
appears to be present as a weak feature at λ4299 and helps to
confirm the presence of hydrogen.

A weak C i line can be seen in Figure 2 (see also Figure 3
for details). The measured heliocentric wavelength neglecting
pressure shifts is 4771.1 Å. The laboratory wavelength of the
strongest component of the 3s1P 0–4p3P multiplet is 4771.75 Å
(Moore 1993). There are currently no data on pressure shifts of
C i lines. The magnetic field on the surface of BPM 27606 is

Figure 5. Portion of SALT spectra of BPM 27606 showing the Swan band with
Δv = −1 of C2 near 5550 Å.

Table 2
Data Processing for the Extraction of the Wavelength Shift on BPM 27606,

with All Wavelengths Expressed in Å Units

Line ΔλHam Δλpress Δλmeas −Δλcomp ΔλGR Δλfin

(1) (2) (3) (4) (5) (6) (7)

C2(0, 2) −8.4 ± 0.3 −12.1 −11.3 +0.18 −1.0 0.0
C2(0, 1) −3.2 ± 0.5 −4.6 −5.15 +0.17 −0.9 −1.3
C2(0, 0) −3.2 ± 0.5 −4.6 −5.2 +0.16 −0.8 +0.0
C2(1, 0) −3.8 ± 1.0 −5.5 −4.0 +0.14 −0.7 +0.9
C2(2, 0) −3.1 ± 1.0 −4.5 −3.6 +0.13 −0.7 +0.3
C i(λ4771) – – −0.65 +0.15 −0.75 −1.2
Hα – – +0.5 +0.20 −1.0 −0.3

Notes. Column 1 is the name of the line. Column 2 are Hammond’s (1990)
pressure shifts measurement for the C2 bands and their errors. Column 3 are
the estimated pressure shifts in BPM 27606 using 2 and scaled as described
in Section 3.2. Column 4 is the difference between the measured heliocentric
wavelength from SALT spectra and laboratory wavelengths. Column 5 is the
correction for the system’s motion based on the companion’s radial velocity
Vr = −9.1 km s−1. Column 6 is the correction for a gravitational redshift of
47 km s−1. Column 7 is the final difference between the processed white dwarf
and laboratory wavelengths.

estimated looking at the resolution of the C i line. The classi-
cal Zeeman effect yields the relationship Δλ = 4.7 × 10−5λ2B
(in cgs units). The fact that only a single line with FWHM �
Δλ = 2.0 Å is visible (although with a low signal-to-noise
ratio), yields an upper bound on the magnetic field of B �
2 × 105 G, which makes negligible any correction to the es-
timates above. Using detailed calculations by Williams et al.
(2013) of the magnetic splitting of this line also suggest such a
low magnetic field.

The orbital motion is estimated considering the presence of
the common proper motion companion to BPM 27606 with
V = 10.49, of spectral type M2Ve (M = 0.4 M�) at a projected
separation of 28.45 arcsec, which at 15 pc yields a separation of
4.1 × 102 AU. With a white dwarf mass of 0.8 M� and taking
this to be the semimajor axis of a circular orbit, the orbital period
would be P ∼ 7.6 × 103 yr and the projected orbital velocity

5
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Figure 6. Portion of spectra of Procyon B showing the C2 Swan band around
4700 Å.

Table 3
Data Processing for the Extraction of the Wavelength Shift on Procyon B, with

all Wavelengths Expressed in Å Units

Line λlab λobs Δλorbit Δλpress ΔλGR λcorr Δλfin

(1) (2) (3) (4) (5) (6) (7) (8)

C2(0, 0) 5165.2 5161.8 −0.15 +4.2 −0.53 5165.3 +0.1
C2(1, 1) 5129.3 5126.5 −0.15
C2(1, 0) 4737.1 4733.1 −0.14 +4.9 −0.49 4737.4 +0.3
C2(2, 1) 4715.2 4714.5 −0.14 −0.49
C2(3, 2) 4697.6 4696.1 −0.14 −0.48
Ca ii H 3968.47 3969.84 −0.12 −1.4 −0.41 3967.9 −0.6
Ca ii K 3933.66 3935.18 −0.11 −0.4 −0.41 3934.3 +0.7
Mg ii 2802.70 2803.10 −0.08 −0.5 −0.29 2802.2 −0.5
Mg ii 2795.53 2796.85 −0.08 −0.6 −0.29 2795.9 +0.4

Notes. Column 1 is the name of the line. Column 2 is the laboratory wavelength.
Column 3 is the measured heliocentric wavelength using the HST reduction.
Column 4 is the wavelength correction due to the orbital motion of Procyon
B. Column 5 gives pressure shift corrections described in Section 4. Column 6
is the correction for the gravitational redshift assuming that it is + 31 km s−1.
Column 7 is the corrected wavelength of the observed line. Column 8 is the final
difference between Procyon B and laboratory wavelengths, Δλfin = λcorr −λlab.

would be ±0.5 km s−1, which is the order of magnitude of
an additional source of uncertainty in the gravitational redshift
determination.

For BPM 27606 we conclude that an upper bound to the
wavelength difference between the molecular C2 bands and the
Hα and C i atomic lines is 1.3 Å. This is obtained by summing
up the variance of the estimated pressure shifts (the square of
the error in the second column of Table 2, corrected by the 1.44
Hammond scaling factor) and the square of the final difference
between the processed and the laboratory wavelength (last
column in Table 2), all other systematic errors being negligible
with respect to these sources. If we disqualify the troubling C i
line, it is 0.7 Å. Although the corrections for pressure shifts in the
C2 bands seems satisfactory, one must consider the uncertainties
in their measurements which dominate the error budget in our
estimate of the difference and is of the order of ±2 Å.

Figure 7. Portion of spectra of Procyon B showing the Ca ii H and K lines.

4. OBSERVATIONS AND DATA ANALYSIS
ON PROCYON B

Procyon B is another white dwarf that has both atomic and
molecular features in its spectrum and is in a well known binary.
Its orbit and mass have been long studied (e.g. Schaeberle 1896;
Spencer Jones 1928; Strand 1951). Girard et al. (2000) obtained
masses of mA = 1.495 M� and mB = 0.602 M� for the two
components. Although Procyon B was long known to be a white
dwarf, its spectrum could not be studied due to its proximity to its
bright (V = +0.34) primary (separation �5 arcsec). Provencal
et al. (2002) secured spectra using the STIS instrument on
the HST in 1998 February (Proposal 7398; PI: H. L. Shipman)
where the observations and data reductions are detailed. Here we
adopt the atmospheric analysis in Provencal et al. (2002) which
gives Teff = (7740 ± 150) K, R/R� = 0.0124 ± 0.00032 and
log C/He = −5.5. These parameters show that Procyon B lies
close to the carbon white dwarf mass–radius relation and predict
a surface gravity of g = 1.1 × 108 cm s−2 and a gravitational
redshift of VRS = +31 km s−1.

From the HST archives we used images 04g802010,
04g802020, 04g8020j0, and 04g802090 which have suitable
signal to noise ratio. We measured the wavelengths for C2
bands, Mg ii and Ca ii lines. Figure 6 shows the C2 bands near
4737 Å and Figure 7 shows the Ca ii lines. The remainder of
the spectrum is shown in Provencal et al. (2002). The orbital
velocity from Irwin (1992) for the radial motion of Procyon B
in 1998 is −8.8 km s−1. The models of Galdikas (1985) using
the Teff and g above indicate at τ̄ = 0.1, T0.1 = 6750 K, and
N0.1 = 3.5 × 1021 cm−3.

The C2 pressure shifts of Hammond (1990) discussed in
Section 3.2 are thus multiplied by 1.3. The pressure shifts of
the observed Ca ii and Mg lines produced by He are available
and in both cases are redshifts. For Ca ii, theoretical values
(Monteiro et al. 1986) and laboratory measurements (Hammond
1989) agree relatively well. Monteiro et al. (1986) calculated
pressure shifts for Mg ii and these were scaled to the above
atmospheric parameters assuming van der Waals broadening.
Table 3 summarizes the laboratory and measured wavelengths

6
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Table 4
Summary of the Upper Bounds on Kretschmann–Higgs Couplings ξK (in Natural Units) from the Analysis of the Two White Dwarfs (First Two Rows) and

Comparison to Limits Inferred from Tabletop Experiments on the Validity of the Superposition Principle for Gravitational Interactions as Discussed in Onofrio
(2012) (Last Row)

System R/R� M/M� δλest (Å) ξk(ΛPl = 10−35 m) ξk(ΛPl = 10−19 m)

BPM 27606 0.0105 0.78 1.3 5 × 1050 5 × 1018

Procyon B 0.0124 0.602 0.5 9 × 1050 9 × 1018

Table-top Experiments 2.5 × 1060 2.5 × 1028

Notes. Upper bounds to the Higgs–Kreschmann coupling constant ξK have been evaluated for two different values of the Planck length as in the last two
columns, the standard one and one assuming unification of gravity with the gauge interactions at the Fermi scale, respectively. The better wavelength resolution
estimated for Procyon B is partly offset by the smaller value of its mass and the larger value of its radius with respect to BPM 27606, which affect significantly
the bound due to the strong dependence of the Kreschmann invariant on mass and radius.

of features in the spectrum of Procyon B along with the
corrections due to the orbital motion, Δλorbit, the estimated
pressure shifts Δλpress, and the gravitational redshift, ΔλGR.
The resulting corrected wavelength of each line, λcorr, and the
residual Δλfin = λlab − λcorr are given. These are consistent
with the results for BPM 27606. By repeating the analysis as
for the latter, and using the Hammond scaling factor of 1.3, the
difference between atomic and molecular lines is formally 0.5 Å,
with the same uncertainties due to pressure shifts as before.

5. UPPER BOUNDS TO THE HIGGS-CURVATURE
COUPLING

Based on the absence of relative shifts between the electronic
and the vibrational transitions of the Swan bands, we are able to
assess upper bounds on the Higgs–Kreschmann coupling. The
expected wavelength shift is

δλ

λ
� 1

2
ξKΛ2

Plλ
2
μK, (7)

where the Kreschmann invariant is, for the estimated values
of the mass and radius of BPM 27606, K = 12 R2

s /R
6 �

4.2 × 10−34 m−4. By assuming ΛPl = 10−35 m, and the value
of λμ quoted in Section 2, we obtain δλ/λ � 5.4 × 10−140ξK ,
which may be inverted yielding an upper bound, for an average
wavelength of λ = 5000 Å

ξK � 3.6 × 10135

(
δλest

1 Å

)
, (8)

where δλest (in Å) is the estimated wavelength resolution.
If instead we use ΛPl = 10−19 m as in models with extra
dimension and quantum gravity at the Fermi scale (Arkani-
Hamed et al. 1998, 1999), the bounds are a bit more constraining,
as ξK � 3.6 × 10103 at δλest = 1 Å.

Both examples of upper bounds are expressed in MKSA units
of the Systeme International (SI), and it is worth converting them
into natural units (NUs) for the benefit of a comparison to the
bounds already estimated from the observation of the Higgs
particle at LHC (Atkins & Calmet 2013; Xianyu et al. 2013).
The action term for the Higgs field including its coupling to
spacetime, taking into account explicitly h̄ and c, is expressed
in SI units in terms of, for instance, the mass term as S ∝∫

d3xd(ct)(m2c2/h̄2)φ2. Then the scalar field has dimensions
[φ] = M1/2T −1/2, and the Higgs-curvature term satisfying S ∝∫

d3xd(ct)ξSIφ
2R implies that ξ is dimensionless. If the analysis

is repeated for the action term expressed in NU, with h̄ = 1, c =
1, the dimensions of the scalar field change accordingly, and
from the mass term it is simple to infer that φ2

NU = (c/h̄)2φ2,

implying the following relationship between the ξ parameter
evaluated in the two units systems, ξNU = (h̄/c)2ξSI = 1.23 ×
10−85ξSI. Analogous considerations may be repeated for the
Higgs–Kreschmann coupling in which the curvature term has
the same dimensions since R is replaced by Λ2

PlK . This implies
that in NUs the bounds on the Higgs–Kreschmann coupling
become respectively, for the two extreme choices of ΛPl,
ξK � 4.4 × 1050 (for ΛPl = 10−35 m) and ξK � 4.4 × 1018 (for
ΛPl = 10−19 m). This second bound on the Higgs–Kreschmann
coupling is quantitatively comparable to the ones assessed on
the Higgs–Ricci coupling through measurements at the LHC as
reported in Atkins & Calmet (2013) and Xianyu et al. (2013),
although in their analyses the usual ΛPl = 10−35 m is assumed.
With respect to bounds from table-top experiments based on
tests of the superposition principle for gravitational interactions
as discussed in Onofrio (2012), the bounds derived in this paper
represent an improvement by ten orders of magnitude, as shown
in Table 4.

6. CONCLUSIONS

We have shown that observations in a somewhat controlled
environment like the one provided by carbon-rich white dwarfs
may be used to give upper bounds on the coupling between
the Higgs field and a specific invariant of the curvature of the
spacetime, such as the Kreschmann invariant. The existence
of nonminimal couplings between the Higgs and spacetime
curvature is crucial to various proposals in which the Higgs also
plays the role of the inflation (Bezrukov & Shaposhnikov 2008;
Bezrukov et al. 2009), and as a mechanism to suppress the dark
energy contribution of quantum fields to the level compatible
with the astrophysical observations based on SN Ia (Shapiro &
Solà 2000).

This methodology is complementary to the upper bounds re-
cently discussed arising from the LHC experiments and their
degree of agreement with the standard model of elementary
particle physics (Atkins & Calmet 2013; Xianyu et al. 2013),
and can be adopted also to search for couplings between generic
scalar fields, not necessarily directly related to the Higgs vac-
uum, and space-time curvature, which may be competitive with
bounds arising from the analysis of the cosmic background ra-
diation as reported in Hwang (1998), Komatsu & Futamase
(1998), and Komatsu & Futamase (1999). Scalar fields, even if
not directly interacting among themselves at level of their clas-
sical Lagrangian, will have a crosstalk once quantum radiative
corrections are considered—the very origin of the hierarchy
problem in Grand Unified Theories—so any scalar field will
be then coupled with the Higgs field and will indirectly af-
fect the mass of elementary particles. Bounds based on this

7
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analysis could be even more stringent as many of the pro-
posed candidates, for instance scalar fields invoked to accom-
modate the acceleration of the universe (Peebles & Ratra 1988;
Ratra & Peebles 1988; Wetterich 1988; Ostriker & Steinhardt
1995; Caldwell et al. 1998; Carroll 1998; Bahcall et al. 1999;
Wang et al. 2000) have a Compton wavelength greatly exceed-
ing the one associated to the Higgs field, provided that compact
astrophysical sources with non-zero Ricci scalar may be found.

The spectroscopic analysis presented here could be improved
in a number of ways in the near future. Measurements and
calculations of the pressure shifts of C i lines and the C2 Swan
bands under white dwarf conditions are needed. Observations
of the ultraviolet carbon and other metal lines which are from
lower energy levels would help disentangle the pressure shifts
from the gravitational redshift measurement. A detailed scan of
the white dwarf’s spectral energy distribution combined with
an updated atmosphere model would help understanding the
details of the molecular and atomic carbon features. Additional
objects of this type that are in binary pairs would help in the
assessment of the local gravity, further diversifying the sample
to counterbalance peculiar systematic effects.
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the Canadian Astronomy Data Centre (CADC/NRC/CSA).
This work was also partially funded by the National Science
Foundation through a grant for the Institute for Theoretical
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