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ABSTRACT

We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova
in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst
signature. Photometry and spectroscopy follow the flux evolution from −13 to +272 days past the B-band maximum
of −17.4 ± 0.5 mag. The spectra are dominated by Fe ii, O i, and Ca ii absorption lines at ejecta velocities of v ≈
20,000 km s−1 that change slowly over time. Other spectral absorption lines are consistent with contributions
from photospheric He i, and hydrogen may also be present at higher velocities (v � 27,000 km s−1). We use
these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M�, a kinetic energy
of ∼1.0 × 1052 erg, and a 56Ni mass of 0.1–0.2 M�. Nebular spectra (t > 200 days) exhibit an asymmetric
double-peaked [O i] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior,
although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional
supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a
non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining
attributes of their progenitor systems may be related to notable observed properties including environmental
metallicities of Z � Z�, moderate to high levels of host galaxy extinction (E(B − V ) > 0.4 mag), detection of
high-velocity helium at early epochs, and a high relative flux ratio of [Ca ii]/[O i] > 1 at nebular epochs. These
events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

Key words: gamma-ray burst: general – supernovae: general – supernovae: individual (SN 2012ap)

1. INTRODUCTION

The spectral features of core–collapse supernovae (SNe)
provide a basis of classification that reflects properties of their
progenitor stars and explosion dynamics (Minkowski 1941;
Shklovskii 1960; Kirshner et al. 1973; Oke & Searle 1974). By
standard definition, Type Ib SNe lack conspicuous absorptions
attributable to hydrogen, and Type Ic SNe lack conspicuous
absorptions attributable to hydrogen and helium (Filippenko
1997; Matheson et al. 2001; Turatto 2003; Modjaz et al. 2014).
These two subgroups, however, may have many deviant cases
(e.g., Branch et al. 2006; Parrent et al. 2007; James & Baron
2010), and a possible continuum between them is sometimes
acknowledged by using the designation Type Ibc (hereafter
SN Ibc).

SN Ibc are thought to originate from stars that have been
largely stripped of their outer envelopes (Wheeler et al. 1987;
Clocchiatti et al. 1997), via radiative winds (Woosley et al.
1993) or various forms of binary interaction (Podsiadlowski
et al. 1992; Nomoto et al. 1995). No secure direct identification
has yet been made of a SN Ibc progenitor system (Van Dyk
et al. 2003; Smartt 2009; Eldridge et al. 2013), with the possible
exception of iPTF13bvn (Cao et al. 2013; Groh et al. 2013;
Bersten et al. 2014; Eldridge et al. 2014; Fremling et al. 2014).

Broad-lined Type Ic SNe (hereafter SN Ic-bl) are a subset
of SN Ibc that show exceptionally high expansion velocities in
their bulk ejecta reaching ∼0.1 c. Generally, SN Ic-bl are as-
sociated with large kinetic energies (several 1052 erg) approxi-
mately 10 times those of normal SN Ibc, and ejected masses of
several M�, of which ∼0.5 M� is 56Ni (Mazzali et al. 2008a).
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However, the handful of SN Ic-bl known are diverse and can
vary considerably in these explosion properties (Nomoto et al.
2007). This diversity has been underscored by recent examples
such as SN 2007bg (Young et al. 2010), SN 2007ru (Sahu et al.
2009), SN 2009nz (Berger et al. 2011), SN 2010ay (Sanders
et al. 2012b), PTF10qts (Walker et al. 2014), SN 2010ah (Corsi
et al. 2011; Mazzali et al. 2013), and PTF12gzk (Ben-Ami et al.
2012).

A crucial and revealing aspect of SN Ic-bl is that they can
accompany long-duration gamma-ray bursts (GRBs). The co-
incidence of nearby GRBs with SNe including GRB980425
with SN 1998bw (Galama et al. 1998) and GRB030329 with
SN 2003dh (Stanek et al. 2003; Matheson et al. 2003) has estab-
lished that all well-observed GRB-SN are SN Ic-bl. However,
as demonstrated by objects such as SN 2002ap (Mazzali et al.
2002; Berger et al. 2002), the converse is not true: namely, not
all SN Ic-bl are associated with GRBs.

It is an open question as to why some SN Ic-bl are associ-
ated with GRBs and others are not. Radio observations seem to
rule out the possibility that all SN Ic-bl without a GRB detec-
tion are off-axis GRBs (Soderberg et al. 2006b). Thus, certain
properties of the progenitor systems and explosion dynamics of
these SNe must dictate why some explosions are not sufficient
to generate a GRB. Notable properties include the following. (1)
SN Ic-bl not associated with GRBs tend to have smaller values
of ejecta mass, explosion energy, and luminosity as compared
to the GRB-SN (Nomoto et al. 2007)—although exceptions
do exist, such as the relatively subluminous SN 2010bh asso-
ciated with GRB 100316D (Chornock et al. 2010; Olivares E.
et al. 2012; Bufano et al. 2012). (2) The relative rates of GRB
and SN Ic-bl are comparable (10−6–10−5 yr−1 per galaxy) and
support the notion that they originate from the same popula-
tion (Podsiadlowski et al. 2004). (3) As with GRBs, SN Ic-bl
preferentially occur in regions of high star-formation rates
and/or very young stellar populations having subsolar metal-
licity environments when compared to normal SN Ibc (Kelly &
Kirshner 2012; Sanders et al. 2012a).

Discovery of SN 2009bb provided strong evidence of a
continuum between GRB-SN and SN Ic-bl. SN 2009bb was a
SN Ic-bl that exhibited radio properties consistent with a non-
negligible portion of its ejecta moving at relativistic speeds as
observed in GRBs, yet was subenergetic by a factor of ∼100
and did not have a GRB detection (Soderberg et al. 2010;
Pignata et al. 2011; Chakraborti & Ray 2011). Because the bulk
explosion parameters of SN 2009bb could not account for the
copious energy coupled to relativistic ejecta, it was concluded
that a central engine (e.g., black hole accretion or magnetar)
must have driven part of the explosion.

A second and more recent example of this type of event is
SN 2012ap. As in SN 2009bb, SN 2012ap was found to have
relativistic outflow but without an observed GRB (Chakraborti
et al. 2014). Moreover, neither object showed evidence for
luminous X-ray emission at late times (t > 10 days), which
sets them apart from subenergetic GRBs (Margutti et al. 2014).
These shared properties led Margutti et al. (2014) to conclude
that this distinct class of objects may represent the weakest
engine-driven explosions, where the central engine is unable to
power a successful jet breakout.

Here we report on ultraviolet (UV), optical, and near-infrared
observations of SN 2012ap from −13 to +272 days past B-
band maximum. In Section 2 we discuss the discovery and
classification of SN 2012ap. Section 3 presents the data, a
portion of which have already been published by Milisavljevic

Figure 1. Images of SN 2012ap and its host galaxy NGC 1729. Left: pre-
explosion SDSS r ′-band image of NGC 1729 with the location of SN 2012ap
marked. Right: unfiltered image obtained with the 2.4 m Hiltner telescope using
the OSMOS instrument and MDM4k detector.

et al. (2014, hereafter M14). These data are then used in
Section 4 to examine the flux evolution of the SN, reconstruct
its bolometric light curve, and derive explosion parameters.
In Section 5 we discuss the implications our results and
analyses have for potential progenitor systems of SN 2009bb and
SN 2012ap. Section 6 concludes with a review of the properties
of relativistic SN Ic-bl without a GRB detection and speculates
on the extent to which jet activity at various energy scales may
be occurring in a wide range of SN.

2. DISCOVERY AND CLASSIFICATION

SN 2012ap was first detected by the Lick Observatory
Supernova Search (Filippenko et al. 2001) with the 0.76 m
Katzman Automatic Imaging Telescope (KAIT) at coordinates
α(J2000) = 05h00m13.s72 and δ(J2000) = −03◦20′51.′′2 in
NGC 1729 on February 10.23 (UT dates are used throughout this
paper; Jewett et al. 2012). In Figure 1, pre- and post-explosion
images are shown, highlighting the location of the SN with re-
spect to NGC 1729. The SN is located some 7.1 kpc in projection
from the nucleus of the host galaxy along the outer periphery of
a spiral arm.

Xu et al. (2012) obtained optical spectra of SN 2012ap on
February 11 and 12 with the Chinese Gao-Mei-Gu telescope
and classified it as a SN Ibc at early phases. They noted a close
similarity with the SN Ib 2008D two weeks before maximum
light. Milisavljevic et al. (2012) reported on spectra obtained
February 21.8 showing similarities with the broad-lined
SN 1998bw (Patat et al. 2001), SN 2002ap (Foley et al. 2003),
and the transitional SN 2004aw (Taubenberger et al. 2006) ap-
proximately one to two weeks after maximum light. These later
spectra were in general agreement with the earlier observations
reported by Xu et al., but they no longer showed a strong likeness
to SN 2008D.

3. OBSERVATIONS

3.1. Distance and Reddening

The distance to NGC 1729 estimated by Tully–Fisher mea-
surements is 43 Mpc, corresponding to a distance modulus of
μ = 33.17 ± 0.48 mag (Springob et al. 2009). Conspicuous
Na i D absorption at the rest wavelength of the host galaxy
in our spectra (see Section 3.3) and a low apparent bright-
ness at maximum light (Section 3.2) both suggest moderate
extinction toward the SN. The foreground Galactic extinction is
E(B−V )Galactic = 0.045 mag (Schlafly & Finkbeiner 2011). An
estimate of the host extinction was made using the equivalent
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Table 1
KAIT Photometry (mag) of SN 2012ap

MJD B V R I

55967.25 · · · 17.46 0.08 17.23 0.10 · · ·
55973.15 17.77 0.04 16.74 0.03 16.44 0.04 16.00 0.04
55974.19 17.65 0.03 16.77 0.02 16.36 0.02 16.00 0.02
55978.15 17.88 0.04 16.76 0.01 16.29 0.02 15.85 0.02
55980.13 18.15 0.06 16.78 0.03 16.35 0.02 15.76 0.02
55980.17 · · · · · · 16.36 0.04 · · ·
55981.15 18.32 0.08 16.90 0.03 16.35 0.03 15.75 0.04
55982.14 18.32 0.07 16.94 0.04 16.43 0.04 15.77 0.06
55983.14 18.39 0.07 16.98 0.03 16.44 0.02 15.78 0.02
55990.14 18.97 0.18 17.56 0.06 16.81 0.04 16.10 0.02
55990.18 · · · · · · 16.81 0.08 · · ·
55991.14 18.91 0.10 17.65 0.05 16.94 0.04 16.18 0.05
55992.16 19.12 0.28 17.63 0.07 16.96 0.04 16.27 0.04
55993.14 18.95 0.22 17.80 0.07 17.02 0.05 16.21 0.05
55994.15 19.16 0.29 17.89 0.13 17.14 0.08 16.29 0.05
55995.16 19.55 0.18 17.93 0.06 17.11 0.03 16.31 0.03
55996.15 19.51 0.13 17.92 0.05 17.20 0.03 16.41 0.03
55998.19 19.40 0.19 18.06 0.14 · · · 16.51 0.06

Table 2
Swift-UVOT Photometry (mag) of SN 2012ap

MJD w1 u b v

55969.26 19.30 0.23 18.30 0.14 17.81 0.08 17.05 0.08
55971.24 18.88 0.12 17.91 0.09 17.65 0.06 16.90 0.07
55973.41 19.06 0.13 17.92 0.09 17.52 0.06 16.77 0.06
55975.46 19.17 0.14 18.01 0.09 17.66 0.06 16.72 0.06
55977.05 19.13 0.21 18.21 0.15 17.73 0.09 16.66 0.09
55979.72 19.43 0.17 18.42 0.12 17.87 0.07 16.85 0.07
55983.60 19.69 0.20 18.77 0.14 18.16 0.08 16.86 0.07
55985.64 19.76 0.21 19.04 0.17 18.44 0.09 17.00 0.07
55987.62 20.27 0.72 19.43 0.52 18.27 0.18 17.13 0.18
55988.55 20.02 0.27 19.02 0.18 18.67 0.11 17.38 0.09

width (EW) of the Na i D line. Following Turatto et al. (2003),
EW (Na i) ≈ 1.2 Å yields estimates of E(B −V ) between 0.182
and 0.572 mag. Using the same measurement and following in-
stead Poznanski et al. (2012), the estimate is 0.36 ± 0.07 mag.
The mean of ∼0.4 mag has been used in this paper. Combining
the Galactic extinction with the inferred host extinction, a total
extinction of E(B − V )total = 0.45 mag has been adopted. All
extinction corrections made in this paper use E(B − V )total, in
combination with the standard reddening law of Cardelli et al.
(1989) assuming RV = 3.1.

Conspicuous narrow absorption features associated with dif-
fuse interstellar bands (DIBs) at rest wavelengths of 4428 Å,
5780 Å, and 6283 Å are observed in the optical spectra of
SN 2012ap, and they change in EW strength between epochs
of observations (see M14 for details). In some settings, DIBs
have been used to infer the amount of foreground extinction
because their EW can be linearly proportional to the amount
of foreground reddening (Herbig 1995; Friedman et al. 2011).
However, the unusually strong DIB absorptions observed in
SN 2012ap are well outside the reliable limits of these relation-
ships and cannot be used to calibrate the extinction.

3.2. UV/Optical Photometry

Optical photometry was obtained with KAIT, and both optical
and UV photometry was taken with the Swift spacecraft (Gehrels
et al. 2004) using the UVOT instrument (Roming et al. 2005).
The observed magnitudes are presented in Tables 1 and 2,
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Figure 2. KAIT and Swift UV/optical photometry of SN 2012ap. Phase is with
respect to B-band maximum on February 18.2 UT.

respectively. KAIT photometry was calibrated using Sloan
Digital Sky Survey (SDSS) point sources in the field, and
photometric transformations were made from Jordi et al. (2006)
to put SDSS photometry into the BVRI system. We analyzed
the Swift-UVOT photometric data following the prescriptions
of Brown et al. (2009). A 3′′ aperture was used to maximize
the signal-to-noise ratio (S/N). Unreported are observations in
the uvw2 and uvm2 filters where the SN was not detected
with a significant S/N. Swift-UVOT photometry is based on
the photometric system described by Breeveld et al. (2011). In
this system, the Swift b and v filters are roughly equivalent
to the standard Johnson/Kron–Cousins B and V filters (see
Poole et al. 2008 for details), although the difference introduces
a small offset in reported magnitudes between the Swift and
KAIT photometry. Figure 2 shows the combined Swift-UVOT
and KAIT light curves.

3.3. Optical and Near-infrared Spectra

Fourteen epochs of long-slit optical spectra of SN 2012ap
were obtained from a variety of telescopes and instruments.
A single near-infrared spectrum was also obtained. Early-time
spectra are shown in Figures 3 (optical) and 4 (near-infrared),
and late-time spectra are shown in Figure 5. Table 3 lists the
details of the observations.

Many observations were made with the 10 m Southern
African Large Telescope (SALT) at South African Astronomical
Observatory using the Robert Stobie Spectrograph (RSS; Burgh
et al. 2003). Additional supporting observations came from the
9.2 m Hobby–Eberly Telescope (HET) using the Marcario Low-
Resolution Spectrograph (LRS; Hill et al. 1998), the 6.5 m MMT
telescope using the Blue Channel instrument (Schmidt et al.
1989), the 8.2 m Subaru Telescope using the Faint Object Cam-
era and Spectrograph (FOCAS; Kashikawa et al. 2002), the
6.5 m Magellan Baade telescope using the Inamori Magellan
Areal Camera and Spectrograph (IMACS; Bigelow et al. 1998),
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Figure 3. Optical spectra of SN 2012ap. The spectra have been corrected for a
redshift of 0.0121. The “⊕” symbol shows regions of the spectra that in some
cases are contaminated by night-sky O2 absorption bands.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
rest wavelength [microns]

1x10-16

1x10-15

1x10-14

lo
g 1

0 
[fl

ux
 in

 f
]

t = 14d

Figure 4. Near-infrared spectrum of SN 2012ap obtained on 2012 March 3 with
the FIRE spectrograph on the 6.5 m Magellan Baade Telescope.

the 10 m Keck Telescopes using the Low-Resolution Imaging
Spectrometer (LRIS; Oke et al. 1995) and the DEep Imaging
Multi-Object Spectrograph (DEIMOS; Faber et al. 2003), and
the Shane 3 m Telescope using the Kast double spectrograph
(Miller & Stone 1993). The single near-infrared observation
was obtained with the Magellan 6.5 m Baade Telescope using
the FoldedPort Infrared Echellette (FIRE; Simcoe et al. 2008).

Reduction of all optical spectra followed standard proce-
dures using the IRAF/PyRAF software. SALT data were first
processed by the PySALT18 pipeline (Crawford et al. 2010).
Wavelength calibrations were made with arc lamps and ver-
ified with the night-sky lines. Relative flux calibrations were
made with observations of spectrophotometric standard stars

18 http://pysalt.salt.ac.za/
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Table 3
Summary of Spectroscopic Observations

Date MJD Phasea Telescope/
(UT) (days) Instrument

2012 Feb 14.79 55971.79 −3.4 SALT/RSS
2012 Feb 16.78 55973.78 −1.4 SALT/RSS
2012 Feb 18.80 55975.80 +0.6 SALT/RSS
2012 Feb 20.83 55977.83 +2.6 SALT/RSS
2012 Feb 21.27 55978.27 +3.1 Keck/LRIS
2012 Feb 23.18 55980.18 +4.9 Lick/Kast
2012 Feb 26.10 55983.10 +7.9 HET/LRS
2012 Feb 27.11 55984.11 +8.9 MMT/Blue Channel
2012 Mar 03.03 55989.03 +13.9 Magellan/FIRE
2012 Mar 04.08 55990.08 +14.9 HET/LRS
2012 Mar 15.23 56001.23 +26.0 Keck/LRIS
2012 Sep 23.49 56193.49 +218.3 Keck/DEIMOS
2012 Oct 17.62 56217.62 +242.4 Keck/LRIS
2012 Oct 23.48 56223.48 +248.3 Subaru/FOCAS
2012 Nov 16.31 56247.31 +272.1 Magellan/IMACS

Note. a Phase is with respect to estimated B-band maximum on February 18.2
(MJD 55975.2).

from Oke (1990) and Hamuy et al. (1992, 1994). Gaps between
CCD chips have been interpolated in instances when dither-
ing between exposures was not possible, and cosmetic defects
have been cleaned manually. In cases when a spectrophoto-
metric standard star could be observed at the time of obser-
vation and at comparable airmass, telluric features have been
corrected. Near-infrared data were reduced following standard
procedures (Hsiao et al. 2013) using a custom-developed IDL
pipeline (FIREHOSE).

Spectra have been corrected for a redshift of z = 0.0121
measured from narrow H ii region lines of [O iii] λλ4959, 5007,
Hα, and [N ii] λλ6548, 6583 observed near the location of the
SN. This value is in agreement with a previous measurement

4
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Table 4
SN 2012ap Epochs of Maximum Light and Peak Magnitude

Filter Peak Time Peak Time Peak Mag
(UT) MJD

B 2012 Feb 18.2 55975.2 ± 0.5 17.63 ± 0.07
V 2012 Feb 19.4 55976.4 ± 0.5 16.72 ± 0.05
R 2012 Feb 19.8 55976.8 ± 0.75 16.28 ± 0.07
I 2012 Feb 26.3 55983.3 ± 0.75 15.74 ± 0.06

reported by Theureau et al. (1998) using radio H i lines from the
host NGC 1729.

4. RESULTS

4.1. Properties of the UV/Optical Light Curves

Table 4 shows the properties of our light curves as determined
with low-order polynomial fits. The peak in the B band corre-
sponds to an absolute magnitude of MB = −17.4 ± 0.5. This
value is relatively faint compared to the majority of SN Ic-bl
(Drout et al. 2011; Bianco et al. 2014), being well below that
of SN 1998bw (MB = −18.8 mag; Patat et al. 2001) but above
that of SN 2002ap (MB = −16.3 mag; Foley et al. 2003).

A KAIT image of the region around SN 2012ap was taken
February 5.21 prior to detection with limiting R-band magnitude
of 18.7. This nondetection sets a constraint on the explosion
date, with some uncertainty caused by the steepness of the
unobserved light curve as it rises and a possible offset owing to
a dark phase in the early stages of the explosion (Nakar & Sari
2012). We used the light curve of SN 2009bb as a template and
scaled its peak and width to follow that of SN 2012ap. From
this we estimate the explosion date to be February 5, with an
uncertainty of ∼2 days, and derive a rise time to peak maximum
B-band light of 13 days based on the B-band maximum on
February 18.2.

The B−V color evolution of SN 2012ap is illustrated in
Figure 6. Also shown are the color evolutions of other SN Ic
and Ic-bl. Within the uncertainties of our photometry, the
color evolution of SN 2012ap is broadly consistent with those
observed in previous SN Ibc. We also find consistency in
the V−R colors of SN 2012ap with other SN Ibc at similar
epochs presented by Drout et al. (2011). The general agreement
demonstrates that the adopted E(B − V ) value is reasonable.

The extinction-corrected Swift-UVOT and KAIT photometry
was used to create a quasi-bolometric light curve (Lquasi

bol )
of SN 2012ap. The total UV+BVRI flux was determined by
summing the integrated fluxes of the different filters with
passbands defined in Breeveld et al. (2011) and Jordi et al.
(2006, and references therein). Low-order polynomials have
been used to interpolate values, and uncertainties have been
propagated following standard practice (see, e.g., Margutti et al.
2012; Milisavljevic et al. 2013).

The quasi-bolometric UV+BVRI light curve was transformed
into a bolometric light curve assuming L

quasi
bol ≈ 0.8 Lbol, and that

0.2 Lbol is emitted as unobserved near-infrared emission. These
assumptions follow from observed properties of SN 2009bb
(Pignata et al. 2011) and are in general agreement with those
observed in other SN Ic-bl (Valenti et al. 2008a). The bolometric
light curve is shown in Figure 7. It is worth noting that outside
of SN 2002ap, SN 2012ap is among the least luminous known
SN Ic-bl.

We modeled the bolometric light curve to derive the ejecta
mass (Mej), the nickel mass (MNi), and the kinetic energy of the
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Figure 6. Color evolution of SN 2012ap compared to that of various SN Ic and
Ic-bl. References for data on individual supernovae and adopted E(B−V ) values
are as follows: SN 1998bw (0.0645 mag; Clocchiatti et al. 2011), SN 2003jd
(0.14 mag; Valenti et al. 2008a), SN 2004aw (0.37 mag; Taubenberger et al.
2006), SN 2002ap (0.079 mag; Foley et al. 2003), SN 2009bb (0.58 mag; Pignata
et al. 2011), SN 2012ap (0.45 mag; this paper).

Figure 7. Bolometric light curve of SN 2012ap. Data for all other objects are
obtained from Olivares E. et al. (2012), except for SN 2003dh, which is from
Pian et al. (2006). Error bars shown for SN 2012ap are comparable to the symbol
size.

ejecta (Ek) following the procedures of Valenti et al. (2008a)
and Wheeler et al. (2014) that are based on the formalism
outlined by Arnett (1982). We assumed that the early-time
(Δtexp < 30 days) light curve corresponded with the photo-
spheric regime, and that the late-time (Δtexp > 30 days) light
curve corresponded with the nebular regime when the optical
depth of the ejecta decreases and the observed luminosity is
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powered by gamma rays arising from the 56Co decay, gamma
rays from electron–positron annihilation, and the kinetic en-
ergy of the positrons (Sutherland & Wheeler 1984; Cappellaro
et al. 1997). We also assumed that the rise time was 13 days.
Wheeler et al. (2014) present a detailed outline of all assump-
tions and caveats used in the Arnett (1982) model that we have
adopted.

Using a conservative estimate of the photospheric velocity
(PV) of 20,000 km s−1 (see Section 4.3), modeling of our
data yields the following values for the explosion parameters:
MNi = 0.12 ± 0.02 M�, Ek = (0.9 ± 0.3) × 1052 erg, and
Mej = 2.7 ± 0.5 M�. The quoted uncertainties come from
a range of optical opacities that were evaluated from kopt =
0.05–0.1 cm2 g−1.

4.2. Spectral Evolution

The early optical spectra of SN 2012ap (Figure 3) exhibit
broad features dominated by Fe ii, Ca ii, and O i with velocities
starting at about 20,000 km s−1 as measured from our earliest
observation on day −3.4. These ions and velocities are not
unlike those observed in many SN Ic-bl. In Figure 8, spectra of
SN 2012ap observed near the time of maximum light and around
day 30 are shown and compared to those of various SN Ic-bl.
Also shown is the Type Ic SN 2004aw, which was interpreted
as being transitional between SN Ic and SN Ic-bl (Taubenberger
et al. 2006).

Around epochs near maximum light, the spectral features
of SN 2012ap straddle those observed in the SN 1998bw and
the SN 2004aw at the extremes. Specifically, the absorptions of
SN 2012ap are not as broad as those observed in SN 1998bw,
nor are they as narrow, numerous, or weak as those observed in
SN 2004aw. By day 30, the spectral features show less diversity
and the P-Cygni profile of the Ca ii near-infrared triplet is the
most conspicuous feature in all examples shown. Interestingly,
O i λ7774 is stronger in progression from SN 1998bw to
SN 2004aw, which parallels the approximate order of decreasing
kinetic energy.

4.3. Spectral Features

We utilized the fast and direct P-Cygni summation code
SYN++ to assess the atomic makeup of spectral features for
SN 2012ap and simultaneously extract projected Doppler veloc-
ities (see Thomas et al. 2011 for details of model parameters).
Most ions are associated with an exponential line optical depth
profile starting at the (assumed sharp) PV. Other species are then
“detached” above the photosphere at high or very high veloc-
ities (HV, VHV) when necessary (see Branch et al. 2006 and
Parrent et al. 2007). The excitation temperature, temp, has been
fixed to 7000 K, and we utilize the quadratic warping constant
a2 (in addition to a0 and a1) in order to reduce the param-
eter space associated with needing an overly effective source
of line-blanketing blueward of 5000 Å for a given blackbody
continuum level.

In Figure 9, we show a representative SYN++ best fit for a near-
maximum and post-maximum light spectrum of SN 2012ap.
From our analysis, both observed spectra are primarily con-
sistent with signatures of Ca ii and Fe ii between 19,000 and
14,000 km s−1. Fe i is not explicitly detected; however, its in-
troduction provides the necessary enhanced line-blanketing be-
tween 4000 and 5000 Å without conflicting elsewhere in the
fit (e.g., as in the case of Co i). Contribution from Mg i cannot
be ruled out. The small change in measured velocity implies
a shallow change in the PV in the 23 days that separate the
observations.

Near maximum light, a large absorption trough is observed at
7000–8500 Å. We find fair agreement with multiple components
of Ca ii, including detached components of HV and VHV Ca ii
at 35,000 and 42,000 km s−1, respectively. For these inferred
components of Ca-rich material, the fit is convincing so far as
the observed absorption features are not largely consistent with
photospheric O i and/or Mg ii. Similar to previous studies of
SN Ibc spectra, we find a degeneracy between PV He i and Na i
for the absorption feature at 5560 Å (see Valenti et al. 2011).

Our best fit for the absorption feature at 6050 Å near
maximum light is detached H i at 27,000 km s−1. As shown in
Figure 10, use of PV Si ii for the 6050 Å feature produces
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absorptions that are consistently too blue throughout post-
maximum epochs. Resolving the fit in favor of Si ii would
require a lower PV, while detaching all other species. This is
not a reasonable physical situation (Jeffery & Branch 1990;
Ketchum et al. 2008; James & Baron 2010). Introduction of PV
Si ii improves the overall fit, but it is not a dominant contributor
to any individual feature.

In order to test the consistency of our spectroscopic inter-
pretations between adjacent wavelength regions, in Figure 11
we extend our best optical SYN++ fit out to near-infrared wave-
lengths using the Magellan/FIRE spectrum obtained on day
+14. We find consistency with the inference of He i at optical
wavelengths and the large 1 μm absorption trough, although the
He i λ10830 cannot fully account for the breadth of the 1 μm
feature. Other ions such as Mg ii, S i, and C i are plausible con-
tributors to the 1 μm absorption, but each of these species can
be immediately ruled out as solely responsible given respective
conflicts at neighboring wavelengths. Reducing optical depths is
not enough to sufficiently hide these conflicting absorption sig-
natures without invoking non-local thermodynamic equilibrium
(LTE) effects.

An additional test for helium is the presence of the
He i λ20587 line (Taubenberger et al. 2006). There is evidence
of absorption in the 2 μm region of the near-infrared spectrum
of SN 2012ap, but the S/N is poor and the absorption, if present,
would be at a level where the relative flux ratio R = λ20587/
λ10830 	 1. Models favor that if the He i λ10830 line is present,
then the He i λ20587 line should also be visible at comparable
strength (R ≈ 1; Mazzali & Lucy 1998).

However, the strength of the He i lines is expected to increase
with time, as gamma rays penetrate further, since the excited lev-
els from which He i lines form are populated almost exclusively
by non-thermal processes (Mazzali & Lucy 1998). Indeed, the
strength of the He i λ20587 line has been seen to increase over
time (Marion et al. 2014). Since the only near-infrared spec-
trum of SN 2012ap has an epoch of 14 days after maximum, it
is possible that the He i λ10830 and λ20587 lines have not fully
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developed yet. The strength of the optical lines of He i should
be proportional to those in the near-infrared.

We consider the detection of helium-rich ejecta as reasonably
viable. That He i is unable to solely account for the 1 μm ab-
sorption does not rule it out from contributing to this compound
feature. It is reasonable to suspect that near-infrared wavelengths
are sampling more layers than accounted for by the simplified
LTE SYN++ model (Wheeler et al. 1998; Branch et al. 2002;
Dessart et al. 2011). Furthermore, non-LTE calculations with the
radiative transfer code PHOENIX (see, e.g., Hauschildt & Baron
1999, 2014) have demonstrated that permitted lines of Fe ii
may contribute absorption features blueward of 1 μm (Friesen
et al. 2014).

4.4. Analysis of Nebular Spectra

Optical spectra of SN 2012ap during the nebular phase (t >
200 days; Figure 5) exhibit conspicuous emissions associated
with [O i] λλ6300, 6364, [Ca ii] λλ7291, 7324, and the Ca ii
triplet around 8600 Å. These emissions originating from inner
metal-rich ejecta heated by radioactive 56Co are typical of
SN Ibc at late stages (Filippenko et al. 1990; Mazzali et al.
2001; Matheson et al. 2001; Taubenberger et al. 2009; Modjaz
et al. 2014). Other emission lines that are also often observed
at these epochs are weakly detected, including Mg i] λ4571,
Na i D, and additional emission around 5200 Å associated with
blends of [Fe ii].

Figure 12 shows a representative late-time spectrum of
SN 2012ap compared to spectra of other SN Ic-bl. The Mg i]
λ4571 line is particularly weak in the day 272 spectrum,
although our observations do suffer from reduced sensitivity
in this wavelength region. The relative line flux ratio of [Ca ii]/
[O i] ≈ 1.2 is large in SN 2012ap compared to those observed
in SN 1998bw and SN 2002ap where it is ≈0.5. SN 2009bb
and SN 2007ru also show [Ca ii]/[O i] > 1. This line flux
ratio has been suggested to be a useful indicator of progenitor
core mass, with larger [Ca ii]/[O i] ratios indicative of a less
massive helium core at the time of explosion (Fransson &
Chevalier 1989).

Emission-line velocity plots comparing the lines in
SN 2012ap to those of other SN Ic-bl are shown in Figure 13.
The observed [O i] and [Ca ii] emissions exhibit line velocities
of ∼5500 km s−1 that are not unlike those observed in other

SN Ic-bl (Maurer et al. 2010). The [Ca ii] λλ7291, 7324 emis-
sion is noticeably broad, and its blueshifted velocities appear to
be greater than those of oxygen. However, emission blueward
of 7306 Å (which we assume to be the center of the distribution)
has likely contribution from the [Fe ii] λ7155 and λ7172 lines.
The single peak of the entire [Ca ii] distribution is blueshifted
by 1700 km s−1 and has a sharp dropoff on the redshifted side.

The [O i] emission line profile appears to be double-peaked.
The blueshifted and strongest peak in the distribution is centered
near −1700 km s−1, which is the same velocity as the peak
observed in the [Ca ii] distribution. The minimum between the
two peaks is near 6300 Å (≈0 km s−1). Between days 218
and 272, emission redward of 6300 Å increases in strength.
This evolution, illustrated in Figure 14, is discussed further in
Section 5.1.

We modeled the nebular spectrum using our SN nebular
spectrum code, assuming that the late-time emission is tied to
the deposition of gamma rays and positrons from 56Co decay.
Given an ejected mass, a characteristic boundary velocity (which
corresponds to the half width at half-maximum intensity of the
emission lines), and a composition, the code computes gamma-
ray deposition, follows the diffusions of the gamma rays and the
positrons with a Monte Carlo scheme, and computes the heating
of the gas. The state of the gas is then computed in non-LTE,
balancing heating and cooling via line emission. The code has
been used for a number of SN Ibc (e.g., Mazzali et al. 2001,
2007, 2010) and is the latest version described in some detail
by Mazzali et al. (2011).

The synthetic spectrum produced by our model for the day
218 optical spectrum is shown in Figure 15. For material inside
5500 km s−1 we derive a nickel mass of MNi = 0.20±0.05 M�.
This estimate of MNi is larger than that derived from modeling of
the bolometric light curve in Section 4.1 (0.12 ± 0.02 M�), but
not grossly inconsistent. Additionally, we estimate the oxygen
mass to be Moxygen ≈ 0.5 M� and the total ejecta mass to be
Mej ≈ 0.8 M�. The value of Mej calculated by our models
of the nebular spectra is less than that derived in Section 4.1
(∼2.7 M�). Some of the discrepancy is because this value is only
for mass inside 5500 km s−1. Also, as we show in Section 5.1,
there is a possibility of internal absorption. If the emission lines
are not optically thin, then the masses derived from them will
be underestimated.
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Figure 12. Nebular spectrum of SN 2012ap compared to that of other SN Ic-bl. Spectra have been downloaded from the SUSPECT and WISEREP databases and were
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5. DISCUSSION

Our UV, optical, and near-infrared observations of SN 2012ap
show it to be a member of the energetic SN Ic-bl class with ex-
plosion properties that fall in between normal SN Ibc events
and SNe-GRBs. SN 2012ap follows SN 2009bb as the second
example of a SN Ic-bl associated with ejecta moving at rela-
tivistic velocities (v � 0.6 c) but not associated with a GRB
detection. In the case of SN 2009bb, its relativistic ejecta con-
tinued to be in nearly free expansion for ∼1 yr, which is un-
like GRBs. SN 2012ap’s relativistic ejecta, however, did slow
down on timescales similar to those of GRBs (Chakraborti
et al. 2014).

A very small percentage of SN explosions (<1%) harbor
a central engine capable of powering an ultra-relativistic jet
detected as a GRB (Soderberg et al. 2006a). Thus, it is of
interest to compare and contrast the properties of SN 2009bb
and SN 2012ap to those of other SN Ibc and GRB-SN. Below
we discuss some of the more interesting observational properties
of these relativistic SNe without a GRB detection uncovered in
our analysis, and discuss their relevance to potential progenitor
systems and explosion mechanisms.

5.1. Hydrogen and Helium in SN Ic-bl

Our multi-epoch SYN++ fits of the optical and near-infrared
spectra of SN 2012ap strongly favor the identification of helium
in the ejecta. Detection begins from the first observation on
day −3.4 and PVs of 20,000 km s−1 are measured. In addition,
hydrogen is likely to be present and detached above the

photosphere traveling at ∼27,000 km s−1. Helium was also
detected in pre-maximum light spectra of SN 2009bb (Pignata
et al. 2011), though in that case it was not as conspicuous, and
hydrogen was not reported.

It is not unusual for helium to be detected in the spectra
of SN Ic and SN Ic-bl. Observations of sufficient quality and
temporal coverage in combination with spectral modeling have
shown that absorption features in a variety of SN Ibc spectra
can sometimes be best understood as arising from helium
(Filippenko 1988, 1992; Filippenko et al. 1995; Clocchiatti
et al. 1996; Patat et al. 2001; Mazzali et al. 2002; Elmhamdi
et al. 2006; Branch et al. 2006; Bufano et al. 2012). In some
of these instances, hydrogen traveling at velocities above the
photosphere has also been identified as a possible constituent of
the ejecta.

However, the extent of H and He in SN Ibc, and especially
SN Ic-bl, remains debated (Matheson et al. 2001; Branch et al.
2002, 2006; Hachinger et al. 2012; Milisavljevic et al. 2013;
Modjaz et al. 2014; Piro & Morozova 2014). It is particularly
difficult to derive masses of He because of the high excitation
potentials of He that exceed the energy of thermal photons and
electrons, and require detailed non-LTE spectral modeling. The
presence or lack of He i lines in SN Ibc may indicate a genuine
helium deficiency, or, alternatively, the result of inadequate
excitation (Harkness et al. 1987; Dessart et al. 2011; Li et al.
2012). Only a small amount of helium (�0.1 M�) needs to be
present to be observable (Hachinger et al. 2012), but asymmetric
mixing or weak mixing may prevent sizable amounts of He
from being excited by Co (Dessart et al. 2012). With time,
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SN expansion will thin the ejecta and should eventually expose
any He-rich material to radioactive decay (Swartz et al. 1993).

Determining the amount of H and He in SN ejecta is an
important constraint on the evolutionary state of the progenitor
star at the time of explosion. There is ample reason to believe
that sizable quantities of these elements should remain, as no
completely hydrogen-free low-mass helium stars are known
(Eldridge et al. 2013), and stellar models have difficulties
explaining strong loss of He (Georgy et al. 2009; Yoon et al.
2010). Recent stellar evolution calculations predict that the mass
of He can reach upward of 0.5 M� in SN Ibc progenitors.

5.2. Asymmetric [O i] Emission

Conspicuous asymmetry in the [O i] λλ6300, 6364 profile of
SN 2012ap is suggestive of two peaks (Figure 14). Examinations
of late-time spectra of many SN Ibc (�40) have demonstrated
that double-peaked line profiles in [O i] emission seem to be
a relatively common phenomenon occurring in 30%–40% of
objects (Maeda et al. 2008; Modjaz et al. 2008; Taubenberger
et al. 2009; Milisavljevic et al. 2010). Such double-peaked
emission-line profiles deviate from the single-peaked profile
expected from a spherically symmetric source, and this has been
interpreted as evidence for aspheric debris having a toroidal or
disk-like geometry (Maeda et al. 2002). Mazzali et al. (2005)
observed a double-peaked [O i] profile in the SN Ic-bl 2003jd
and interpreted it as emission originating from a torus of O-rich
debris perpendicular to a high-velocity jet in a GRB model.
In this framework, nondetections of GRBs from SN Ic-bl are
the consequence of viewing jet-driven explosions along the
equatorial expansion plane perpendicular to the jet axis.

The double-peaked [O i] profile observed in SN 2012ap could
be produced by a toroidal ejecta geometry similar to the model
of Mazzali et al. (2005). If so, the distribution of O-rich material
in SN 2012ap was not as aspheric as in SN 2003jd because the
peaks observed in SN 2012ap are neither as pronounced nor
as widely separated (see Figure 13). Notably, SN 2009bb does
not exhibit considerable asymmetry in its [O i] distribution,
although Pignata et al. (2011) report that the signature of
aspheric explosion dynamics might have been seen in earlier
nebular data.

Alternatively, the observed [O i] profile of SN 2012ap could
be the result of absorption in the SN interior. The evolution in the
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relative strength of the two peaks of [O i] emission is consistent
with this scenario. The two peaks are divided by a steep dropoff
in emission near zero velocity, and the strength of emission
redward of zero velocity increases over time (Figure 14). The
fact that [Ca ii] is asymmetric and preferentially blueshifted
with a distribution similar to that observed in [O i] is also
consistent with a significant portion of interior ejecta being
opaque (Figure 13).

Possible contributors to this opacity are high densities or dust
in the ejecta. Optically thick inner ejecta could prevent light
from the rear side of the SN from penetrating, creating a flux
deficit in the redshifted part of emission lines (Taubenberger
et al. 2009; Milisavljevic et al. 2010), as observed in the
late-time emission profiles of SN 2012ap (Figure 13). Internal
absorption associated with high densities is generally not
anticipated at these late epochs (t � 300 days) because SN
expansion should lead to low densities with associated low
optical opacities (Maeda et al. 2008). However, deviations from
spherical symmetry and clumping make it possible for portions
of the ejecta to remain optically thick (Spyromilio et al. 1990;
Li & McCray 1992; Chugai 1994).

Dust formation is not directly supported by our observations.
There is no change in the blueshifted position of the peaks
toward smaller wavelengths (Lucy et al. 1989), and no late-
time infrared observations are available to detect potential flux
excess at wavelengths that would be associated with heated
dust emission (see, e.g., Dwek et al. 1983; Kozasa et al. 1991;
Gerardy et al. 2002; Fox et al. 2009).

5.3. Host Environment and Progenitor System

Several properties of SN 2012ap and SN 2009bb distinguish
them from most SN Ic-bl and may have implications for the
progenitor systems of relativistic SNe lacking a GRB detection.
One such property is their host environment metallicities. The
oxygen abundance of the explosion site of SN 2012ap using the
N2 scale of Pettini & Pagel (2004) is log(O/H) + 12 = 8.79
(M14), which is slightly above solar (Z� ≡ log(O/H)� + 12 =
8.69; Asplund et al. 2005). The host metallicity of SN 2009bb
was estimated to be 1.7–3.5 Z� (Levesque et al. 2010). These
metallicities are at the high end of environments of the majority
of SN Ic-bl discovered by targeted surveys, and substantially
higher than those of SNe discovered in untargeted surveys
where the mean metallicity is ∼ Z�/2 (Anderson et al. 2010;
Modjaz et al. 2011; Kelly & Kirshner 2012; Sanders et al.
2012a). SN 2009bb and SN 2012ap were both discovered by
targeted surveys.

It is worth noting that both SNe were located in the outer
regions of their host galaxies along the edges of spiral arms.
This peripheral location is unlike the majority of SN Ic that
are much more likely to occur in the brightest regions of their
host galaxies (Kelly et al. 2008, 2014). The outer location also
stands in contrast with the fact that the environmental metallicity
of spiral galaxies typically decreases as a function of radial
distance from the core (Zaritsky et al. 1994), although this trend
is known to have important exceptions (Zurita & Bresolin 2012).

Wolf–Rayet (WR) stars have long been a suspected progenitor
system of SN Ibc (Gaskell et al. 1986; Gal-Yam et al. 2014, and
references therein). However, it is now thought that WR stars
are unlikely to be the dominant progenitor channel. Luminosity
limits derived from nondetections of progenitor stars in high-
resolution pre-explosion images (Van Dyk et al. 2003; Smartt
2009), have ruled out a large population of WR stars as
originators of SN Ibc. Instead, relatively low-mass helium stars

in binary systems may represent a large fraction of SN Ibc
(Eldridge et al. 2008, 2013; Smith et al. 2011).

In the case of SN 2012ap, there is in fact circumstantial
evidence in support of a WR progenitor system association.
M14 report that the unusually strong DIBs in the optical spectra
exhibit changes in EW over short (�30 days) timescales in a
manner consistent with the SN interacting with a nearby source
of the DIBs. The only other reported cases of time-varying DIB
features have been in families of WR and luminous blue variable
(LBV) stars (Le Bertre & Lequeux 1993; Heydari-Malayeri
et al. 1993).

Interestingly, SN 2009bb was also found to be associated with
strong DIB absorptions in its moderately extinguished optical
spectra, as was SN 2008D, which exhibited broad-lined features
similar to SN 2012ap before maximum light but then evolved
into a SN Ib. Although chance alignments between DIB carrier-
rich molecular clouds and these SNe are possible, it may be
that the SN progenitor systems are related to the sources of
the DIBs, and that the source could be related to mass loss
from the progenitor star. LBV and WR stars exhibit varying
degrees of asymmetric mass loss (Nota et al. 1995); thus, an
observer’s line of sight with respect to a circumstellar disk could
be an important factor in explaining why strong DIB detections
are rare.

6. CONCLUSIONS

We have presented ultraviolet, optical, and near-infrared
observations of the broad-lined Type Ic SN 2012ap, which is
the second known example of a SN from a stripped-envelope
progenitor capable of accelerating a non-negligible portion of its
ejecta to relativistic velocities (v > 0.6 c) but not associated with
a GRB detection. The only known counterpart is SN 2009bb.

Notable properties of these two relativistic SN Ic-bl may
reflect key aspects of their progenitor systems and explosion
dynamics. In particular, both SN 2012ap and SN 2009bb share
the following characteristics.

1. Strong radio emission consistent with ejecta being acceler-
ated to relativistic velocities but no GRB counterpart.

2. Weak X-ray emission at late times (t > 10 days).
3. Evidence for helium in early-time optical spectra with

photospheric velocities of �20,000 km s−1.
4. Relatively large emission-line flux ratio of [Ca ii]/[O i] > 1

in nebular spectra.
5. High levels of internal host extinction (E(B − V ) >

0.4 mag).
6. Environments of solar to super-solar metallicity, and loca-

tions along the outer spiral arms of their host galaxies.

Margutti et al. (2014) propose that SN 2009bb and SN 2012ap
represent the weakest of central-engine-driven explosions, and
conclude that these events lack an associated GRB detection
because engine activity stops before the jet is able to pierce
through the stellar envelope. Though “choked,” the jet is still
able to accelerate a small fraction of ejecta to relativistic
velocities. Engines of short durations or progenitors of large
stellar envelopes may inhibit the jet from completely piercing
the surface of the star.

Indeed, SN 2009bb and SN 2012ap may be among the weak-
est explosions for which we are able to detect the presence of
jet activity. The continuum of explosions extending from GRB-
SN to more ordinary SN Ibc suggests that a wider variety of jet
activity may potentially be occurring at energies that are obser-
vationally “hidden.” Detection at weaker scales is challenging
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since such explosions do not produce electromagnetic signa-
tures as easily recognizable as GRBs. SNe of this variety can
be dynamically indistinguishable from ordinary core–collapse
SN (Tan et al. 2001; Matzner 2003; Lazzati et al. 2012),
and/or their high-energy emissions may be below the threshold
of the current generation of gamma-ray instruments (Pignata
et al. 2011).

Some hints in support of jets at smaller energy scales come
from SN remnants. Cassiopeia A, known to be the result
of an asymmetric Type IIb explosion (Krause et al. 2008;
Rest et al. 2011), exhibits exceptionally high velocity Si- and
S-rich material in a jet/counter-jet arrangement (Fesen 2001;
Hines et al. 2004; Hwang et al. 2004; Fesen et al. 2006).
The known extent of this jet region contains fragmented knots
of debris traveling ∼15,000 km s−1, which is three times the
velocity of the bulk of the O- and S-rich main shell. Though
the large opening half-angle of this high-velocity ejecta is
inconsistent with a highly collimated flow (Milisavljevic &
Fesen 2013), some jet-like mechanism carved a path allowing
interior material from the Si–S–Ar–Ca region near the core out
past the mantle and H- and He-rich photosphere. This process,
potentially related to a protoneutron star wind that follows
the SN outburst (Burrows 2005), would be observationally
indistinguishable from non-jet explosion models at extragalactic
distances.

Rotation is believed to be a key variable driving the outcome
of these explosions. If the jet is associated with the protoneutron
star or magnetar wind that follows the SN, rapid rotation will
naturally amplify magnetic fields and make magnetohydrody-
namic power influential (Akiyama et al. 2003). GRBs may only
come from the most rapidly rotating and most massive stars
(Woosley & Bloom 2006; Burrows et al. 2007).

Progenitor composition and structure is another important
consideration in SN explosions (Arnett & Meakin 2011; Ugliano
et al. 2012). He and/or H layers that can vary in thickness along
different viewing angles (Maund et al. 2009), have the potential
to quench relativistic jets (e.g., SN 2008D; Mazzali et al. 2008b),
and can lead to expansion asymmetries that can be potentially
detected by spectropolarimetry (Maund et al. 2007; Wang &
Wheeler 2008; Tanaka et al. 2008, 2012). The inferred presence
of helium in the optical spectra of SN 2012ap and SN 2009bb is
consistent with the quenched jet scenario.

With only two events identified so far, it is possible that
the exceptional properties of SN 2012ap and 2009bb discussed
here are biased by transient surveys targeting metal-rich sys-
tems. Additional examples of relativistic SN Ic-bl are needed to
test whether the properties maintain and to further understand
these events in the entire context of SN Ibc. Given their complex
origins, e.g., line-of-sight influences of potentially asymmetric
explosions inside progenitors of varying structure and compo-
sitions, varying core-rotation speeds, and asymmetric circum-
burst mediums of differing metallicities, real progress requires
an in-depth and multi-wavelength (radio through gamma-rays)
approach studying a large sample (N > 30) of local SN Ic-bl.
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