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ABSTRACT

Some reddened quasars appear to be transitional objects in the paradigm of merger-induced black hole growth/
galaxy evolution, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the
surrounding cocoon of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing
the properties of circumnuclear obscuration. Here, we present NuSTAR and XMM-Newton/Chandra observations
of FIRST-2MASS-selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830
+3759 is moderately obscured (NH,Z= (2.1±0.2) ×1022 cm−2) and F2M 1227+3214 is mildly absorbed
(N 3.4 10H,Z 0.7

0.8 21= ´-
+ cm−2) along the line of sight, heavier global obscuration may be present in both sources,

with N 3.7 10H,S 2.6
4.1 23= ´-

+ cm−2 and <5.5×1023 cm−2 for F2M 0830+3759 and F2M 1227+3214,
respectively. F2M 0830+3759 also has an excess of soft X-ray emission below 1 keV, which is well
accommodated by a model where 7% of the intrinsic X-ray emission from the active galactic nucleus (AGN) is
scattered into the line of sight. While F2M 1227+3214 has a dust-to-gas ratio (E(B – V)/NH) consistent with the
Galactic value, the value of E(B – V)/NH for F2M 0830+3759 is lower than the Galactic standard, consistent with
the paradigm that the dust resides on galactic scales while the X-ray reprocessing gas originates within the dust
sublimation zone of the broad-line region. The X-ray and 6.1 μm luminosities of these red quasars are consistent
with the empirical relations derived for high-luminosity, unobscured quasars, extending the parameter space of
obscured AGNs previously observed by NuSTAR to higher luminosities.

Key words: galaxies: active – infrared: galaxies – quasars: individual (F2M 0380+3759, F2M 1227+3214) – X-
rays: individual (F2M 0830+3759, F2M 1227+3214)

1. INTRODUCTION

Supermassive black holes (SMBHs) reside at the center of
almost every massive galaxy. There, these objects can grow by
accretion and be observed as active galactic nuclei (AGNs). In
addition to being among the most energetic sources in the
universe, AGNs may also play a key role in the evolution of the
galaxies in which they live (e.g., Alexander & Hickox 2012;
Kormendy & Ho 2013; Heckman & Best 2014). SMBH mass
is correlated with galaxy mass (e.g., Ferrarese & Merritt 2000;
Gebhardt et al. 2000; Graham & Scott 2013), suggesting
common physical processes that link the life cycles of both
systems. Additionally, theoretical simulations invoke feedback
from thermal and/or kinetic energy associated with black hole

accretion to match observed galaxy properties (e.g., Scanna-
pieco et al. 2012). One mechanism that triggers SMBH fueling
and concurrent galaxy growth is major galaxy mergers, where
the nucleus is predicted to be enshrouded by large amounts of
dust and gas before powerful AGN winds expel this obscuring
material (e.g., Sanders et al. 1988; Hopkins et al. 2005),
unveiling the typical unobscured AGNs identified by optical
surveys such as the Sloan Digital Sky Survey (SDSS, York
et al. 2000; Schneider et al. 2002). However, the phase where
AGN feedback heats gas within the host galaxy, thereby
regulating star formation, is expected to be short-lived, of the
order of several hundred million years (e.g., Hopkins et al.
2008; Glikman et al. 2012), meaning that such objects are rare.
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Though these transitional AGNs occupy a low space density
in the universe (e.g., (1.2±0.1) ×10−3 deg−2 to a limit of
K= 14.5 mag (AB); Glikman et al. 2012), they provide a
unique opportunity to study SMBHs and galaxy co-evolution
in action. Among the best candidates for these systems are “red
quasars,” which are a class of obscured AGNs quite different
from the type described by the unification model (Anto-
nucci 1993; Urry & Padovani 1995; Netzer 2015). Unlike the
Type 2 AGNs explained by unification, which are identified by
having only narrow emission lines in their optical spectra, red
quasars, as defined by Glikman et al. (2004), have broad
emission lines akin to Type 1 to Type 1.9 AGNs. However,
they have large amounts of dust that attenuates optical emission
and reddens their spectra, making them difficult to identify
based on optical-only diagnostics. These AGNs are thus
discovered by their red optical to infrared colors (i.e., either
R−K> 4−5, B−K> 6.5, R−[3.6]>4, R−[4.5]>6.1,
or F(24 μm)/F(R)>1000; Glikman et al. 2004, 2007; Brusa
et al. 2005, 2010; Hickox et al. 2007; Fiore et al. 2008, 2009)
and/or red infrared colors (i.e., J−K> 1.7–2.5,
W1−W2>0.822; Glikman et al. 2004; Banerji et al. 2012;
Stern et al. 2012; Assef et al. 2013). WISE has also identified a
population of “hot, dust-obscured galaxies” (Hot DOGs),
which, with infrared luminosities exceeding 1013Le, may be
the most luminous AGNs in the universe (Assef et al. 2015;
Tsai et al. 2015).23

Additional multi-wavelength constraints, such as detections in
the radio (Glikman et al. 2004, 2007, 2012, 2013) and high
X-ray to optical fluxes (Brusa et al. 2010), are sometimes
invoked in identifying red quasar candidates to mitigate
contamination from dusty star-forming galaxies or stars. Such
multi-wavelength diagnostics have revealed sources that appear
to be in a transitional stage between galaxy coalescence and
evacuation. For instance, galactic-scale outflows have been
detected in red quasars initially discovered on the basis of their
X-ray, optical, and infrared properties (Brusa et al. 2007, 2015).
Radio observations of 2MASS-selected reddened quasars have
revealed young radio jets, suggesting that they are in the
early stages of black hole growth where the expansion of
radio lobes can impart feedback onto the host galaxy
(Georgakakis et al. 2012). Optical to far-infrared photometry
of a sample of reddened quasars shows evidence of outflows that
can inhibit host-galaxy star formation (Farrah et al. 2012).
Hubble imaging of red quasars presented by Glikman et al.
(2004), found by cross-correlating the FIRST and 2MASS
surveys, shows that they have “train-wreck” morphological traits
indicative of merger activity (Urrutia et al. 2008; Glikman et al.
2015). After correcting for extinction, these FIRST-2MASS red
quasars are among the most luminous AGNs at every redshift
(Glikman et al. 2012; Banerji et al. 2015), similar to the Hot
DOGs discovered by WISE (Assef et al. 2015; Tsai et al. 2015).

Though reddened AGNs have been identified in X-ray
surveys (e.g., Hickox et al. 2007; Fiore et al. 2008, 2009; Brusa
et al. 2010), there are few studies of targeted X-ray follow-up
of infrared-selected red quasar samples (e.g., Brusa et al. 2005).

While most of these targeted red quasars are detected in X-rays,
very few have an adequate number of observed photons to
enable characterization of their X-ray properties. For instance,
Wilkes et al. (2002) studied a sample of 26 2MASS-selected
reddened AGNs with Chandra, but due to the short exposure
times (1–4.5 ks), analysis of the X-ray obscuration was limited
to hardness ratios24 since insufficient counts were detected for a
proper spectral-fitting analysis. Wilkes et al. (2005) followed
up five of these AGNs with XMM-Newton, two of which were
narrow-lined objects and three of which were broad-lined
AGNs, and detected hundreds to over a thousand counts,
enabling spectral fitting that better reveals their X-ray proper-
ties. They found three objects to have moderate X-ray
absorption (NH∼1022 cm−2), as well as a “soft excess”
component below 2 keV in the three broad-lined AGNs, which
they attributed to emission from extended ionized gas.
Unlike the 2MASS-selected reddened AGNs, which tend to

be lower-luminosity sources at a median redshift of ∼0.23 and
include many Type 2 objects (Cutri et al. 2002), FIRST-
2MASS red quasars are Type 1 AGNs at much higher
luminosities (Glikman et al. 2004, 2007; Brusa et al. 2005;
Banerji et al. 2012, 2015), and there is mounting evidence that
their reddening is largely due to host-galaxy dust related to
merger activity (e.g., Urrutia et al. 2008; Glikman et al. 2015).
Urrutia et al. (2005) presented the first X-ray analysis of
FIRST-2MASS red quasars. Similar to the study from Wilkes
et al. (2002), 11 of the 12 objects targeted by Chandra were
detected, but only six had enough counts for a crude spectral fit.
One of these objects, F2M 0830+3759, was followed up with
XMM-Newton for ∼50 ks by Piconcelli et al. (2010), where
they obtained a significantly flatter spectral index than reported
by Urrutia et al. (2005) (Γ=1.51±0.06 versus
Γ=2.9±0.1), indicating that the properties derived from
the shorter X-ray exposures may reflect a limited signal-to-
noise ratio in the spectra rather than trace intrinsic physical
processes of the quasars. Interestingly, Piconcelli et al. (2010)
report a soft excess below 1 keV, similar to what is reported by
Wilkes et al. (2005) in their three broad-lined AGNs observed
by XMM-Newton.
Since these studies have been published, substantial

improvements in tools used for the X-ray modeling of obscured
AGNs have become available. In particular, the MYTorus
model of Murphy & Yaqoob (2009), the torus model of Ikeda
et al. (2009), the spherical and toroidal absorption models of
Brightman & Nandra (2011, BNTorus), and the clumpy torus
model of Liu & Li (2014) self-consisently account for the
transmitted, Compton-scattered, and Fe fluorescent line emis-
sion through an obscuring medium with column densities
ranging from moderate (NH=1022 cm−2) to extremely
Compton-thick (NH=1026 cm−2 for the BNTorus model,
and NH=1025 cm−2 for the remaining models). However,
only the BNTorus and MYTorus models are publicly available.
The latter model has the capability to emulate a patchy
obscuring medium, where the line of sight and global column
densities are independent parameters. This mode may be of
particular relevance to red quasars where presumably the
accretion disk is viewed directly (allowing broad lines in the
optical and/or infrared spectra to be observed), while large
amounts of obscuring gas may be present out of the line of

22 W1 andW2 refer to theWISE passbands at 3.4 μm and 4.6 μm, respectively.
We note that such color selections described above do not exlusively identify
broad-lined AGNs, but also select narrow-lined AGNs or those lacking any
emission lines.
23 WISE Hot DOGs are selected by having very red WISE colors, i.e., strong
detections in the W3 (12 μm) and W4 (22 μm) bands with faint or non-
detections in W1 and W2. These sources include both narrow-lined and broad-
lined AGNs.

24 HR ≡ (H−S)/(H+S), where H represents the number of counts in the
hard band and S is the number of counts in the soft band, which in Wilkes et al.
(2002) are the 2.5–8 keV and 0.5–2 keV bands, respectively.

2

The Astrophysical Journal, 820:70 (14pp), 2016 March 20 LaMassa et al.



sight (see Figure 2 in Yaqoob 2012). Such physically
motivated models allow a more reliable estimate of the gas
column density to be calculated, as well as the obscuring
geometry to be constrained, compared to the phenomenological
absorbed power-law models used in previous studies.

Here, we use NuSTAR (Harrison et al. 2013) and archival
Chandra and XMM-Newton observations to study the broad-
band X-ray properties of two FIRST-2MASS-selected red
quasars from the sample reported in Glikman et al. (2012):
F2M 0830+3759 and F2M 1227+3214. Of the 14 FIRST-
2MASS red quasars observed to date in X-rays (Urrutia et al.
2005; Evans et al. 2010), these two sources are the nearest and
have X-ray count rates that indicated they would be bright
enough to ensure detection of ;1000 counts in the NuSTAR
bandpass with a relatively short exposure time. We calculated
the αIX values25 for the FIRST-2MASS sources that have
existing X-ray information, assuming a power-law spectrum
where Γ=1.8 for all sources to derive the monochromatic
2 keV luminosity, and calculated reddening-corrected 12 μm
monochromatic luminosities from the optical and infrared
spectra. F2M 0830+3759 and F2M 1227+3214 have the
highest αIX values, indicating that they are stronger in X-rays
compared to the other FIRST-2MASS sources yet studied.

We modeled the X-ray spectra for F2M 0830+3759 and
F2M 1227+3214 over the energy range 0.5–79 keV, where the
high-energy coverage of NuSTAR is essential for obtaining the
best constraints on the X-ray obscuration, the intrinsic X-ray
continuum, and the geometry of the X-ray reprocessor. In
addition to assessing the X-ray obscuring medium and how it
relates to the optical reddening, we compare the observed
X-ray luminosities with the infrared 6.1 μm luminosities,
placing these objects in context with other obscured AGNs
studied by NuSTAR. Throughout, we adopt a cosmology of
H0= 70 km s−1 Mpc−1, ΩM=0.3, and ΩΛ=0.7, and use AB
magnitudes.

2. MULTI-WAVELENGTH OBSERVATIONS

2.1. Optical and Infrared Properties of F2M 0830+3759 and
F2M 1227+3214

F2M 0830+3759 and F2M 1227+3214 were selected by the
FIRST-2MASS survey, which required them to be detected
independently in the FIRST and 2MASS surveys, within a 2″
search radius, effectively restricting the sample to sources with
strong core radio emission. Objects also had to pass optical to
near-infrared color cuts of R−K> 4 and J−K> 1.7, where
J and K come from the 2MASS survey (Skrutskie et al. 2006)
while the R magnitude comes from the Guide Star Catalog II
(GSCII; Lasker et al. 2008) which is produced by digitizing the
second-generation Palomar Observatory and UK Schmidt sky
surveys (POSS-II; Reid et al. 1991). The resultant sample
contained 120 quasars with E(B−V)�0.1, reaching red-
denings as high as E(B−V)=1.5. The sample’s redshift
range extends from z= 0.14 to z= 3.05.

Both F2M 0830+3759 and F2M 1227+3214 appear in the
spectral atlas of Glikman et al. (2012) with optical spectra from
the Keck and Lick observatories, respectively, dating back to
2001 and 1998, respectively. Since then, F2M 1227+3214 had
been observed by SDSS with a spectrum that extends to longer

wavelength. We obtained a near-infrared spectrum of this
source on UT 2015 March 13 at the Apache Point Observatory
3.5 m telescope with the TripleSpec cross-dispersed near-
infrared spectrograph (Wilson et al. 2004). The quasar was
exposed for 16 minutes using an ABBA dither pattern along the
slit followed by an observation of an A0V telluric standard.
The data were reduced using the Spextool software following
the procedure described in Cushing et al. (2004) and Vacca
et al. (2003).
We plot the spectra of both sources in Figure 1, showing the

optical spectrum of F2M 0830+3759 in the top panel, and the
newly combined optical-through-near-infrared spectrum of
F2M 1227+3214 in the lower panel. We plot both spectra on
a log–log scale to enhance the appearance of features over the
broad wavelength and flux ranges apparent in these spectra.
Vertical dashed lines mark the location of prominent AGN
lines, namely Paα, Paβ, Paγ, Hα, [O III] 5007Å, Hβ and [O II]
3727Å. Both quasars also show strong emission from [Ne III] at
3869 and 3967Å.
To determine the reddening of these sources, we fit the

optical-to-near-infrared quasar template of Glikman et al.
(2006) attenuated by a Small Magellanic Cloud (SMC) dust
law following the procedure described in Section 5 of Glikman
et al. (2012). Figure 1 shows the best-fit reddened template
plotted atop the data (red line). We recover the same E
(B−V)=0.73 value for F2M 0830+3759 as reported in
Glikman et al. (2012), which appears well fit by this model.
However, the added near-infrared spectrum of F2M 1227
+3214 lowers our measured E(B – V) from the value of
Glikman et al. (2012) of 0.94 mag to 0.71 mag. The reddening
law produces a poorer fit to this system, especially at the
shortest wavelengths, suggesting that the new reddening value
may be an underestimate (see Glikman et al. 2012 for a

Figure 1. Top: Keck optical spectrum of F2M 0830+3759. Bottom: SDSS and
APO TripleSpec spectra of F2M 1227+3214. In both sets of spectra, prominent
AGN emission lines are marked and labeled. The red lines show the best-fit
reddened optical-to-near-infrared template of Glikman et al. (2006) applied to
the spectra. The poorer fit of the template to F2M 1227+3214 suggests that the
derived reddening value is a lower limit.

25 L L
IX

Log

Log

2 keV 12 m

2 keV 12 m

( )
( )

a =
n n

n n
m

m
, where νL2 keV and νL12 μm are the monochro-

matic luminosites (erg s−1 Hz−1) at 2 keV and 12 μm, respectively, in the rest
frame (e.g., Gandhi et al. 2009).
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discussion of different reddening laws applied to F2M red
quasars, where the SMC law returns the best fit for these
sources).

In addition to the optical and near-infrared (in the case of
F2M 1227+3214) spectroscopy, we also utilize photometric
data from the optical, via SDSS, through the near-infrared, via
2MASS, to the mid-infrared, via WISE (F2M 0830+3759 was
also observed with Spitzer and analyzed independently by
Urrutia et al. 2012). These data provide at least a dozen
photometric data points which we use to model the spectral
energy distribution (SED) using the Cigale SED fitting code
(Noll et al. 2009; Serra et al. 2011). Figure 2 shows the
resultant SED fits at rest-frame wavelengths with photometric
data overplotted. The SED model includes components for a
star formation history with a double decreasing exponential
function, the dust emission of Draine & Li (2007), and the
AGN-heated dust emission of Fritz et al. (2006).

To estimate the bolometric luminosities of these quasars, we
integrate under the model between 3500Å and 400 μm;

reddening attenuates the ultraviolet emission at lower wave-
lengths, which is then reprocessed into infrared emission that
we measure here. We find luminosities of Lbol=
8.5×1045 erg s−1 for F2M 0830+3759 and Lbol=2.3 ×
1045 erg s−1 for F2M 1227+3214. Since most of the energy is
attributed to the dust emission at wavelengths beyond∼20 μm,
where we do not have data to constrain the model, we also
compute a conservative lower limit to the luminosities of these
quasars by integrating only out to 24 μm. Our conservative
limits for the luminosities are Lbol=3.9×1045 erg s−1

for F2M 0830+3759 and Lbol=1.3×1045 erg s−1 for F2M
1227+ 3214. We summarize the reddening values and
bolometric luminosities calculated here, as well as the rest-
frame, non-absorption-corrected 6.1 μm luminosities (L6.1 μm)
derived from the SED modeling, in Table 1.

2.2. Radio Properties

Though these quasars were selected from the FIRST survey,
they are not necessarily radio-loud objects. Before calculating
radio loudness (Rm= log(Fradio/Foptical)), the optical emission
in the g-band is corrected for extinction using the measured E
(B – V) values. Following Ivezić et al. (2002), Glikman et al.
(2007) calculated radio loudness using

R g t0.4 , 1m corr( ) ( )= -

where gcorr is the extinction-corrected g-band magnitude and t is
the FIRST flux density (t= 2.5log(Fint/3631 Jy)). We find that
Rm= 1.14 and 0.7 for F2M 0830+3759 and F2M 1227+3214,
respectively. While the latter source is radio-quiet (Rm<1),
F2M 0830+3759 is considered radio-intermediate (1<Rm<2;
Miller et al. 2011). Miller et al. (2011) demonstrated that radio-
intermediate quasars often have an excess of X-ray emission
compared to radio-quiet quasars, with the amount of excess
ranging from slight to as high as a factor of several. This
enhanced X-ray brightness, putatively from jet-linked emission,
becomes more pronounced on average for the radio-loud quasar
population.
VLA data exist for F2M 0830+3759, which has a measured

radio spectral index (α1.4 GHz/8.3 GHz, Sν ∝ να) of −1.06
(Glikman et al. 2007). This is steeper than observed in flat-
spectrum objects, where α1.4 GHz/8.3 GHz>−0.5, which are
interpreted as having radio jets beamed in the direction along
the line of sight. We can therefore assume that any jet-
associated emission does not directly intersect our line of sight.
However, as F2M 0830+3759 and F2M 1227+3214 are
stronger in X-rays than the red quasars observed thus far, there
can be a boost to the X-ray emission from a jet-linked
contribution.

2.3. NuSTAR

NuSTAR, launched in 2012 June, is the first focusing hard
X-ray telescope above 10 keV in orbit, sensitive to energies
from 3 to 79 keV (Harrison et al. 2013). It consists of two co-
aligned mirror modules that focus hard X-rays onto two focal
plane modules, FPMA and FPMB. With a field of view (FOV)
of≈12′×12′, NuSTAR has an angular resolution of 18″
(FWHM). Due to its high-energy sensitivity, it is an ideal
instrument for studying obscured AGNs because it recovers
X-ray emission that is attenuated at lower energies.
The details of the X-ray observations for F2M 0830+3759

and F2M 1227+3214 are summarized in Table 2. F2M 0830

Figure 2. Rest-frame SEDs of (top) F2M 0830+3759 and (bottom) F2M 1227
+3214, which were fitted using CIGALE (Noll et al. 2009; Serra et al. 2011).
The model includes a star formation history with two decreasing exponential
functions, reprocessed dust emission from the model of Draine & Li (2007) ,
and AGN dust emission as parameterized by the model of Fritz et al. (2006).
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+3759 was observed with NuSTAR for 22 ks on UT 2014
September 19 (ObsID: 60001109002), while F2M 1227+3214
was observed for 23 ks on UT 2014 July 31 (ObsID:
60001108002). Data were reduced with nupipeline, which is
part of the NuSTAR Data Analysis Software NuSTARDAS
v.1.4.1, CALDB v.20140814.26 The spectra were extracted
from a circular region 40″ in radius around the source from
both the FPMA and FPMB detectors. This radius was chosen to
be large enough to encompass emission from the quasar while
being small enough to minimize background photons. The
background spectra were extracted from annuli with inner radii
of 90″ and outer radii of 240″, centered on the quasar; no
serendipitous sources are detected in these background regions.
These spectra were grouped by 20 counts per bin, with
1169±34 net counts detected in F2M 0830+3759 and
1082±33 net counts detected in F2M 1227+3214. We note
that as neither of these sources was detected by Swift BAT
(Baumgartner et al. 2013), these data represent the first
observations of these quasars above 10 keV.

2.4. XMM-Newton: F2M 0830+3759

XMM-Newton observed F2M 0830+3759 for 52 ks in 2008
November (PI: Piconcelli, ObsID: 0554540201; Piconcelli
et al. 2010). Though it was also observed with Chandra for
9 ks (Urrutia et al. 2005), we use only the XMM-Newton data
due to the superior signal-to-noise ratio from the longer
observation. The data were reduced with the XMM-Newton
Science Analysis System package using HEASOFT v.6.16 to
apply standard filtering to the events file and remove time
intervals with background flaring. We extracted spectra from a
35″ aperture radius centered on the source for all three XMM-
Newton detectors (PN, MOS1, and MOS2). For the MOS
observations, we extracted the background region from an
annulus around the source, free of serendipitous sources, with
an inner radius of 45″ and outer radius of 100″. Since the object
was close to the chip gap in the PN detector, the background
here was instead extracted from several source-free circular
regions near the quasar. About 7000 net counts were detected
by PN and ∼2700 counts by each of the MOS detectors. The
MOS spectra were grouped such that each bin contains at least

20 counts, while the superior sensitivity of PN allowed us to
group the data such that each bin contains at least 50 counts.

2.5. Chandra: F2M 1227+3214

F2M 1227+3214 was targeted with Chandra ACIS-I
(Garmire et al. 2003) on 2003 April 30 for 3.7 ks (PI:
Laurent-Muehleisen, ObsID: 4183), though this work repre-
sents the first time that results from these data are published
other than in the Chandra Source Catalog (Evans et al. 2010).
We processed the data with the CIAO v4.5, with CALDB
v4.5.5.1 (Fruscione et al. 2006), using the chandra_repro task
to produce a filtered events file, removing periods of
anomalously high background. Due to Chandraʼs superior
angular resolution, the source spectrum was extracted using a
5″ radius aperture around the object using the CIAO tool
specextract, with the background extracted from an annulus
around the quasar with inner radius 10″ and outer radius 30″.
The spectrum was grouped by a minimum of 15 counts per bin,
with a total of 834±29 net counts detected.

3. SPECTRAL ANALYSIS

We simultaneously fit the NuSTAR spectra (3–79 keV) and
the archival X-ray spectra (0.5–8 keV for Chandra, 0.5–10 keV
for XMM-Newton) using XSpec v12.8.2 (Arnaud 1996), where
the background is automatically subtracted. A constant factor
was included in the modeling to account for calibration
differences between NuSTAR and Chandra, and NuSTAR and
XMM-Newton. For F2M 0830+3759, we find that the ratio
between the FPMA (FPMB) normalization and the XMM-
Newton PN detector is 1.26±0.12 (1.34± 0.13), which is
higher than the 1.07±0.01 (1.11± 0.03) cross-calibration
difference reported in Madsen et al. (2015). The ratio between
the FPMA (FPMB) and Chandra normalizations for F2M 1227
+3214 is 0.90 0.15

0.18
-
+ (0.81 0.14

0.17
-
+ ), which is consistent within the

uncertainties with the values reported between NuSTAR and
Chandra grating spectroscopy in Madsen et al. (2015).27 The
larger differences in the relative normalizations between
detectors than those presented in Madsen et al. (2015) in
F2M 0830+3759 could be induced by uncertainties from the
lower signal-to-noise ratio in our spectra, compared with the

Table 1
Red Quasar Properties

Source R.A. Decl. z E(B – V) Log(L1.4 GHz) Log(νL6.1 μm) Log(Lbol)
a

(erg s−1 Hz−1) (erg s−1) (erg s−1)

F2M 0830+3759 08 30 11.12 +37 59 51.8 0.41 0.73 31.60 45.10 45.59
F2M 1227+3214 12 27 49.15 +32 14 59.0 0.14 0.71 30.53 44.60 45.12

Note.
a Bolometric luminosities are calculated by integrating the model SED fit between 3500 Å and 24 μm, i.e., corresponding to the conservative value quoted in the text.

Table 2
Summary of X-Ray Observations

Source NuSTAR Observations Archival Observations

ObsID Date Observatory ObsID Date

F2M 0830+3759 60001109002 2014 Sep XMM-Newton 0554540201 2008 Nov
F2M 1227+3214 60001108002 2014 Jul Chandra 4138 2003 Apr

26 http://heasarc.gsfc.nasa.gov/docs/nustar/analysis/nustar_swguide.pdf

27 Cross-calibration between NuSTAR and ACIS CCD spectroscopy is not
performed in Madsen et al. (2015).
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bright calibration sources studied in Madsen et al. (2015).
Indeed, past studies using joint spectral fitting of NuSTAR with
XMM-Newton show similar cross-calibrational uncertainties to
those we find here (e.g., Baloković et al. 2014). Additionally,
AGN variability can play a role in the cross-calibrational
differences. We tested this by including the 9 ks Chandra
spectrum in the joint fitting, finding the cross-calibration
constant for Chandra relative to XMM-Newton (1.48±0.09)
to be more consistent with that found between NuSTAR and
XMM-Newton, suggesting that the source varies over time and
was fainter during the epoch of the XMM-Newton observation,
perhaps due to the direct emission that is scattered into our line
of sight (see below for details). Errors on the spectral fit
parameters are quoted at the 90% confidence interval,
corresponding to a Δχ2 of 2.7 for one interesting parameter.

3.1. F2M 0830+3759

We initially fit the NuSTAR and XMM-Newton spectra with
an absorbed power-law model, with an absorption component
fixed to the Galactic value (NH,Gal= 4×1020 cm−2; Kalberla
et al. 2005) and an additional component at the redshift of the
quasar which was left free (NH,Z):

N E

N E A E

model const exp

exp , 2
H,Gal

H,Z

[ ( )]
[ ( )] ( )

s
s

= ´ -

´ - ´ ´ -G

where A is the normalization of the power-law, σ(E) is the
photoelectric cross section, and the constant factor accounts for
cross-calibration differences between XMM-Newton PN,
MOS1, and MOS2 detectors and the NuSTAR FPMA and
FPMB modules. Here, the absorption is modeled as a
foreground screen of extinction. We note that although we
write the equation in the rest frame, we used XSpec model
components zphabs and zpowerlaw here and below, where
applicable, to appropriately account for redshift dependences
when modeling the observed-frame spectra and calculat-
ing flux.

This simple phenomenological model indicates at least
moderate absorption (NH>1022 cm−2). Additionally, 6.4 keV
(rest-frame) Fe Kα emission is also clearly evident, which is a
signature of X-rays reflecting off either distant matter or the
accretion disk (e.g., Krolik & Kallman 1987; George &
Fabian 1991; Shu et al. 2011; Ricci et al. 2014). We therefore
fitted these spectra with physically motivated models that self-
consistently account for the effects of photoelectric absorption,
Compton scattering, and Fe Kα fluorescence emission in the
presence of moderate (NH∼1022 cm−2) to Compton-thick
(NH>1.25×1024 cm−2) column densities. We model the
intrinsic spectrum as a power law, which is then modified by
absorption and Compton scattering. Both the BNTorus model
of Brightman & Nandra (2011) and the MYTorus model of
Murphy & Yaqoob (2009) realize these physical processes
through a suite of Monte Carlo simulations, producing
predefined tables for input spectra with a range of physical
parameters that are imported into XSpec for spectral fitting;
such “look-up” tables allow the spectra to be fitted without
having to integrate Monte Carlo results while modeling the
spectra, which would result in impractical run times. MYTorus

restricts the opening angle to 60° and fixes the Fe abundance to
solar, while the BNTorus model allows the opening angle and
Fe abundances to be free parameters; in both models, the
inclination angle of the torus (θobs) can range from 0° (face-on)
to 90° (edge-on), with the boundary between a face-on and
edge-on geometry at 60° for MYTorus while this boundary
between edge- and face-on depends on the torus opening angle
in the BNTorus model.
We note that Liu & Li (2015) simulated X-ray torus

reprocessing for Compton-thick column densities (1024–
1025 cm−2) for the geometries assumed by MYTorus and
BNTorus in an attempt to reproduce the reported spectra of
these models. They found that the latter model overpredicted
the reflection component at low energies and overpredicted the
Fe Kα equivalent width for edge-on geometries relative to their
calculations, while their results were fully consistent with the
MYTorus model. However, Brightman et al. (2015) simulated
spectra in the energy range 3–79 keV with the BNTorus model
for various torus opening angles and values of Γ. As they find
that the MYTorus model fit to these simulated spectra recovers
the input parameters for the case where the BNTorus model
opening angle is 60°, we include this model in the analysis
below for completeness, freezing the opening angle to 60°.
Soft excess emission is present in F2M 0830+3759 below

1 keV, which we attribute to AGN emission that “leaks”
through the obscuring medium, either through the opening of
the torus or via holes in a clumpy obscuring medium, and either
directly enters our line of sight or is subsequently scattered off
a distant optically thin medium before traversing our line of
sight. If such emission resulted from photons scattered by the
torus itself, we would see signatures of this process in the
reflected or transmitted spectrum, but modeling the spectra with
just these processes fails to fit the soft emission. We therefore
include a scattered power law in our model to account for this
component, similar to partial covering models used in previous
works with phenomenological modeling (e.g., LaMassa et al.
2009, 2011; Turner & Miller 2009; Winter et al. 2009; Mayo &
Lawrence 2013).
The BNTorus model can be represented as

N E

N E

f A E

model const exp
BNTorus , , , ,

, 3

H,Gal

H tor obs

scatt

[ ( )]
[ ( )

( )] ( )

s
q q

= ´ -
´ G
+ ´ ´ -G

where the BNTorus component depends on the equatorial
column density (NH), the opening angle of the torus (θtor), the
inclination angle of the torus (θobs), and energy (E) since the
probability that a photon will undergo Compton scattering
depends on its incident energy. To preserve the self-
consistency of the model, the power-law slope (Γ) and
normalization (A) of the scattered emission are tied to the
BNTorus values, with a constant multiplicative factor left free
to measure the scattering fraction. The absorption due to the
Galaxy (NH,Gal= 4×1020 cm−2; Kalberla et al. 2005) is kept
frozen. The first contant factor accounts for cross-calibration
differences among the XMM-Newton PN, MOS1, and MOS2
detectors and the NuSTAR FPMA and FPMB detectors.
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The MYTorus model instead has separate components for the
transmitted, Compton-scattered, and fluorescent line emission:

N E

A E N E

A A N E

A A N E

f A E

model const exp

MYTorusZ , ,
MYTorusS , , , ,
MYTorusL , , , ,

, 4

H,Gal

H,Z obs

S H,S obs

L H,S obs

scatt

[ ( )]
[ ( )

( )
( )

( )] ( )

s
q
q
q

= ´ -

´ ´ ´
+ ´ G
+ ´ G

+ ´ ´

-G

-G

where

1. MYTorusZ is the component that modifies the trans-
mitted spectrum, where we used the MYTorus multi-
plicative table mytorus_Ezero_v00.fits,

2. MYTorusS describes the Compton-scattered emission,
where we have used the Monte Carlo realization with a
power-law termination energy of 200 keV (i.e., MYTorus
table mytorus_scatteredH200_v00.fits)28 and

3. MYTorusL (mytl_V000010nEp000H200_v00.fits)
accounts for fluorescent line emission.

All of these MYTorus components have a dependence on
column density, inclination angle, energy, and redshift. To
preserve the physical self-consistency, the power-law normal-
ization and slope are tied together among the MYTorus
components and scattering model during the fitting; θobs and
the column densities (NH,Z and NH,S) are also tied among the
MYTorus components. These constraints are required by the
definition of the MYTorus model and input tables. The relative
normalizations between the Compton-scattered emission (AS)
and the fluorescent line emission (AL) are tied to each other and
AS is allowed to be free (see e.g., Murphy & Yaqoob 2009;
Yaqoob 2012; LaMassa et al. 2014).

Both models provide a good global fit to the spectra
(Figure 3, left), though the MYTorus model does a much better
job of fitting the Fe Kα complex than the BNTorus model
(Figure 3, right). However, the fitted inclination angles suggest
that complexities exist in the X-ray reprocessor that are not
accounted for in the presumed geometry of the models. While
θobs is largely unconstrained in the BNTorus model fit (i.e.,
>62°.5), due to the column density being independent of
inclination angle in this model, it has a very narrow allowed
range in the MYTorus fit (60°.1<θobs< 60°.8), indicating a
grazing incidence angle between the AGN continuum and the
obscuring medium. This latter result indicates that the model is
attempting to reconcile the competing effects of a strong
reflection component, producing the Fe Kα line, and a weakly
absorbed transmitted continuum. These effects could result
from multiple absorption components at physically different
locations, suggesting that the X-ray reprocessor might not be a
homogenous medium, or that a gradient in column density
exists over the X-ray reprocessor such that the integrated
emission provides a significantly different column density than
that viewed along the line of sight.

We therefore fitted these spectra with MYTorus in
“decoupled” mode, where the line of sight and global column
densities are allowed to be distinct from each other and fit
independently, consistent with a patchy obscuring medium.
Here, a portion of the observed X-ray emission results from

X-ray reflection off the far side of the obscuring medium that
enters the line of sight without further interaction with the
absorber. In this case, the global column density (NH,S)
associated with this far-side reflection has an inclination angle
frozen at 0° since it emulates the physics of a face-on torus.
Conversely, θobs is fixed at 90° for the line-of-sight column
density (NH,Z) since this describes the absorption that
reprocesses the transmitted component. Unlike the coupled
mode, the column densities are fit independently, where NH,S is
tied together between the MYTorusS and MYTorusL compo-
nents. Again, the power-law parameters and relative normal-
izations (AS and AL) are tied together and AS is allowed to be
free. We note that the fixed covering factor assumed in the
MYTorus model does not greatly impact the derived column
density values for covering factors below ∼0.8: the reflection
spectrum for a face-on torus (i.e., the component associated
with a 0° inclination angle) remains constant until the
inclination angle intercepts the edge of the torus, or when the
opening angle of the torus becomes narrow. As the covering
factor approaches unity, the spectrum would be best described
by, e.g., the spherical absorption model of Brightman &
Nandra (2011).
The decoupled MYTorus fit to the observed spectrum, with a

close-up of the Fe Kα region, is shown in Figure 4. As
summarized in Table 3, the line-of-sight absorption is moderate
(NH,Z= (2.1±0.2) ×1022 cm−2) while the global column
density is much higher, though not Compton-thick within the
90% confidence level (N 3.7 10H,S 2.6

4.1 23= ´-
+ cm−2). We

illustrate this further in Figure 5, where we show contour plots
between the line-of-sight and global column densities. At the
68% and 90% confidence levels, the column densities are
different, though future observations would be needed to
improve the significance to the 99% confidence interval. We
found that the higher energy coverage of NuSTAR plays a
critical role in determining the global column density as the
upper limit on NH,S is unconstrained with only the XMM-
Newton data, as we discuss in more detail below. We note that
the NH,S global column density does not necessarily mean that
this obscuration is on galactic-sized scales. Rather, this
absorption represents gas near the black hole that plays a role
in reprocessing the AGN emission, but does not intersect the
direct view to the central engine.
Finally, we find that ∼7% of the intrinsic AGN continuum

“leaks” through the patchy obscuring medium and is subse-
quently scattered into our line of sight. When modeling this soft
excess emission with a thermal component (the apec model in
XSpec), which would be appropriate if this emission is due to
star formation, instead of a scattered power-law model, we find
that in order to find a good fit to the data (χ2= 472.2 for 431
dof), AS becomes largely unconstrained, with an unphysical
nominal value (5.6 3.6

8.5
-
+ ), suggesting that scattered AGN light is

the more likely source of this emission.
As noted above, there could be an enhancement of X-ray

emission due to putative jet-linked radiation that could
contribute to the light that we have interpreted as being due
to leakage of the intrinsic AGN continuum through the
circumnuclear medium or could dilute the Fe Kα line and
reflection component, thereby affecting the line-of-sight
column measurement. Our data, however, are not of high
enough quality to determine whether this possible contamina-
tion exists and could be disentangled from the remaining X-ray
emission.

28 As we work within an energy range far below the cut-off energy, the choice
of MYTorus termination energy, which can range from 100–500 keV, has a
small impact on our results.
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3.1.1. Comparison with Previous X-Ray Analysis

F2M 0830+3759 was first observed in X-rays with Chandra
with an exposure time of ∼9 ks (Urrutia et al. 2005). The Fe

Kα line was detected in this observation and was assumed to be
a Doppler-broadened line, where the authors find a line width
of 0.6±0.3 keV. They also obtain a photon index that is much

Figure 3. Left: X-ray spectra of F2M 0830+3759 (XMM-Newton PN—black, XMM-Newton MOS1—red, XMM-Newton MOS2—green, NuSTAR FPMA—dark blue,
FPMB—light blue) with the best-fit “coupled” toroidal models overplotted; χ2 residuals are plotted in the bottom panels. The BNTorus model fit is on top (χ2 = 473.4
for 433 degrees of freedom) while the MYTorus model is shown in the bottom row (χ2 = 444.4 for 432 degrees of freedom). Right: close-up of the Fe Kα region (rest
frame 6.4 keV) for both models. While the BNTorus model provides a good global fit, the Fe Kα emission is poorly accommodated (top) compared with the MYTorus
model (bottom). However, the fitted inclination angles of the torus suggest that the X-ray reprocessor is a more complex medium than described by these models,
which presume a homogeneous distribution of matter.

Figure 4. X-ray spectra of F2M 0830+3759 (color coding as in Figure 3) with the decoupled MYTorus fit overplotted, with a close-up of the Fe Kα region shown in
the right-hand panel. In this realization of the MYTorus model, the line-of-sight and global column densities are disentangled from each other and fit independently,
emulating a non-uniform and patchy obscuring medium.
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steeper (Γ=2.9±0.1) than we find here and steeper than
found by Piconcelli et al. (2010) in their reanalysis of the F2M
0830+3759 Chandra spectrum (Γ=1.65±0.25).

Piconcelli et al. (2010) reported the ∼50 ks XMM-Newton
observation of F2M 0830+3759, which resulted in a much
higher quality spectrum than previously available. They fitted
the soft excess below 1 keV in a similar way as reported here,
albeit with phenomenological modeling instead of the physi-
cally motivated BNTorus (Brightman & Nandra 2011) and
MYTorus (Murphy & Yaqoob 2009) models since they were
unavailable at the time. To accommodate the soft excess, they
included an additional power-law component with the same
photon index as the intrinsic continuum, finding a best fit Γ of
1.51±0.06 and fscatt= 0.13±0.02. Though they find a good
statistical fit to the spectrum with this model, they note that a
marginally better fit is obtained when fitting a photoionized
absorber model with XSTAR29 (Kallman & Bautista 2001). In
both cases, this absorption is along the line of sight and the soft
excess likely results from distant scattering of the intrinsic
AGN continuum that leaks through openings in the absorbing
medium. Piconcelli et al. (2010) do not interpret the Fe Kα line
to be Doppler-broadened. They calculate a rest-frame Fe Kα
equivalent width of 168±60 eV, which is similar to the value

we obtain (∼169 eV). Here, we are able to extend the analysis
of Piconcelli et al. (2010) further, inferring both the line-of-
sight and global column densities, and relaxing the inherent
assumption of infinite column density in the pexrav reflection
model they used.

3.2. F2M 1227+3214

We fitted the Chandra and NuSTAR data for this source
using an absorbed power-law model as parameterized in
Equation (2). Here, the Galactic absorption is NH,

Gal=1.7×1020 cm−2 (Kalberla et al. 2005). As shown in
Figure 6, this simple model provides a good fit to the data, and
is typical of a Type 1 AGN spectrum, with Γ= 1.99 0.11

0.12
-
+ (e.g.,

Mainieri et al. 2002; Lanzuisi et al. 2013) and a mild absorption
along the line of sight of NH,Z=3.4 100.7

0.8 21´-
+ cm−2.

To test whether there may be higher global obscuration out
of the line of sight, we fit the spectra of F2M 1227+3214 with
MYTorus in decoupled mode. Here, we replaced the
MYTorusZ component, which modifies the zeroth-order
transmitted continuum, with zphabs× zpowerlaw since the
line-of-sight column density is lower than that capable of being
modeled with MYTorus (NH,Z,min=1022 cm−2). This replace-
ment is justified since Compton scattering has a negligible
impact on the shape of the transmitted spectrum for line-of-
sight column densities below 1022 cm−2. Fitting the spectra
with MYTorusZ causes the model to underpredict the observed

Table 3
Summary of the NuSTAR and Chandra/XMM-Newton Decoupled MYTorus Fit

Source Γ NH,z
a AS NH,S fscatt χ2 (dof)

(1022 cm−2) (1024 cm−2)

F2M 0830+3759 1.66 0.06
0.07

-
+ 2.1±0.2 2.1 0.8

3.2
-
+ 0.37 0.26

0.41
-
+ 0.07 0.06

0.09
-
+ 445.6 (432)

F2M 1227+3214 1.99 0.11
0.12

-
+ 0.34 0.07

0.08
-
+ 1b <0.55 K 92.3 (95)

Notes.
a NH,z represents the line-of-sight obscuration, while NH,S denotes the global column density.
b The AS normalization was frozen at unity during the fitting since it was unconstrained when left free.

Figure 5. χ2 contour plots of the line-of-sight column density (NH,Z) vs. the
global column density (NH,S) for F2M 0830+3759, where the black, red, and
green curves show the 68%, 90%, and 99% confidence intervals respectively.
While NH,Z is constrained to be moderate (1.7×1022cm−2

<NH,Z<2.5×1022 cm−2), the global obscuration is much heavier
(NH,S>1023 cm−2) at the 90% confidence interval.

Figure 6. Spectra and absorbed power-law model fit for F2M 1227+3214 with
χ2 residuals in the bottom panel (χ2 = 92.8 for 96 degrees of freedom); the
Chandra spectrum is black and the NuSTAR spectra are dark blue (FPMA) and
light blue (FPMB). This spectrum is typical for a mildly absorbed Type 1
AGN. However, when fitting the spectrum with MYTorus in decoupled mode,
which fits the data equally well (χ2 = 92.3 for 95 degrees of freedom), we find
an upper limit on the global column density (out of the line of sight) of
5.5×1023 cm−2.

29 In this model, the absorption is dependent on the ionization parameter,
which is defined by L/nr2, where L is the luminosity of the ionizing source, n is
the plasma density, and r is the radial distance between the source and the
absorber.

9

The Astrophysical Journal, 820:70 (14pp), 2016 March 20 LaMassa et al.



emission at energies <2 keV due to the minimum attenuation
for the model being too high compared with the observed
spectrum. Similar to the decoupled mode MYTorus set-up, the
inclination angle of the MYTorusS and MYTorusL compo-
nents is frozen at 0°. From this fitting, we derive an upper limit
on the global column density at 90% confidence level of
<5.5×1023 cm−2. The fit parameters from this modeling are
summarized in Table 3.

3.2.1. Effects of Variability

As the NuSTAR observations are non-contemporaneous with
the archival XMM-Newton and Chandra observations, varia-
bility could affect our spectral modeling and the values for
derived column density and absorption-corrected luminosity.
Here we explore the extent of such possible effects by fitting
the spectra from the lower energy and higher energy
observations independently to determine whether the results
are inconsistent with those found from joint fitting.

When we apply the coupled MYTorus model to the XMM-
Newton spectra of F2M 0830+3759, we find similar results
from the joint fitting, where the inclination of the reprocessor is
constrained to be at a grazing incidence angle. Conversely, the
fit to the NuSTAR-only spectra results in an inclination angle
that is completely unconstrained. We then fit these spectra
independently with the MYTorus model in decoupled mode
and find that the global column density is unconstrained in both
cases. The measured line-of-sight column density is
(2.0±0.2) ×1022 cm−2 when modeling the XMM-Newton-
only spectra while it has a much larger allowed range when
fitting just the NuSTAR spectra (N 14 10H,Z 12

15 22= ´-
+ cm−2).

Though there is a wide range of allowed column density
values, the results from this independent modeling do not
contradict the values we derive when fitting the spectra jointly.

For F2M 1227+3214, we applied the modified MYTorus
decoupled model discussed above, where the MYTorusZ
component was replaced with an absorbed power-law model
to attenuate the transmitted emission, since the MYTorus
models have a lower column density limit of 1022 cm−2, which
is higher than the line-of-sight column density for this source.
When fitting the Chandra and NuSTAR data independently, we
find that the global column density is completely uncon-
strained. While we are able to measure the line-of-sight column
density when fitting the Chandra spectrum, finding it in
agreement with the value derived from the joint fit
(N 0.19 10H,Z 0.08

0.09 22= ´-
+ cm−2), it is consistent with zero

when modeling just the NuSTAR data; this latter result is
expected since the line-of-sight obscuration is too weak to
impact the harder X-ray emission, so it has no measurable
effect on the spectrum.

The results of these exercises indicate that any variability
present between observational epochs is within the allowed
parameter space that would be inferred from any given epoch.
The broad-band 0.5–79 keV coverage allow us to place much
tighter constraints on the physical properties of the X-ray
reprocessor than we would be able to obtain with coverage in
only one band. However, as the allowed values, especially for
the global column densities, span a wide range, it is possible
that the more precise values we obtain from the joint fitting do
not reflect a constant column density between epochs since we
are unable to rule out variation within the permitted ranges.

Indeed, even contemporaneous lower and higher energy
coverage could be limited in its utility to determine whether

obscuration changes occurred. As pointed out by Marinucci
et al. (2016), who studied the XMM-Newton and NuSTAR
spectra of nearby Compton-thick AGN NGC 1068, the
<10 keV spectra can exhibit no changes over time, yet the
spectrum above 10 keV can vary. During a monitoring
campaign where NGC 1068 was observed jointly with XMM-
Newton and NuSTAR, they found that the XMM-Newton spectra
remained constant, but that the NuSTAR spectrum varied
between 2012 (reported in Bauer et al. 2015) and 2014, after
which the source returned to the previous state in 2015.
Assuming the circumnuclear obscuring medium takes the form
of a patchy distribution, they attribute the excess emission
above 10 keV observed in 2014 to be due to a cloud moving
out of the line of sight, changing the effective column density
by more than 2.5×1024 cm−2 and unveiling the central engine
at higher energies. As we do not have observations above
10 keV at earlier times for the FIRST-2MASS red quasars, we
are unable to test for such an effect in our data. However,
unlike NGC 1068, the normalization of the spectrum for F2M
0830+3759 at energies below 10 keV did vary between the
Chandra and XMM-Newton observations, though the spectral
shape, through which the column density is determined, stayed
constant. In this case, even in the presence of flux variability,
the measured column density affecting the lower energy
spectrum shows no evidence of significantly changing.

4. DISCUSSION

From the fits to the X-ray spectra we derive the observed
X-ray fluxes (Table 4) and rest-frame intrinsic (i.e., corrected
for absorption and reflection) luminosities (Table 5). The
reported errors reflect the statistical error of the fit (i.e., the
uncertainty of the power-law normalization at the 90%
confidence level), which is lower than the systematic errors
due to absolute calibration of the detectors. Both objects have
intrinsic X-ray luminosities consistent with quasars (i.e.,
Lx>1044 erg s−1). However, the X-ray spectral properties
are quite different between the two sources. While F2M 1227
+3214 has a simple X-ray spectrum well characterized by a
single absorbed power-law model with mild absorption,
applying the MYTorus decoupled mode to this source indicates
that the global column density may be up to two orders of
magnitude higher. Though the spectrum of F2M 1227+3214
has hints that the global column density may be much higher
than that along the line of sight, the spectrum of F2M 0830
+3759 requires that this be the case.
Such a significant difference in column densities globally

versus along the line of sight, where the former is much higher
than the latter, is consistent with the expecations of the red
quasar paradigm: these sources may be in the midst of
expelling their cocoons of obscuring gas, making the view to
the central engine relatively unobscured and broad-emission-
line gas visible, while large gas column densities out of the line
of sight are still present and play a role in reprocessing the
observed X-ray emission. Indeed, the fact that the global
column density is shown by our X-ray observations to be
below the Compton-thick regime is consistent with the picture
presented in Glikman et al. (2012), where the red quasars are
observed in a phase after the Compton-thick gas is evacuated,
as in themodel of Hopkins et al. (2005). Additionally, if these
systems were viewed from another angle, namely through the
heavier global columns of gas, they may possibly be viewed as
Type 2 (narrow-line) quasars, analagous to those discovered in
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SDSS (Zakamska et al. 2003; Reyes et al. 2008; Jia et al. 2013;
Lansbury et al. 2014, 2015). Since the soft excess is well
accommodated by a model in which the AGN continuum is
scattered, this suggests that this emission arises from physical
processes associated with black hole fueling rather than other
activity within the host galaxy.

Below, we relate the X-ray properties to the optical and
infrared characteristics of these sources.

4.1. Optical Reddening Versus X-Ray Obscuration

Here, we compare the optical reddening in these quasars, as
quantified by their E(B – V) values derived above, with their
X-ray obscuration determined by their fitted NH values. Maiolino
et al. (2001) reported that the E(B – V)/NH values for nearby
AGNs are significantly different from the Milky Way value
(1.7×10−22 mag cm2; Bohlin et al. 1978), and that there are
systematic differences depending on intrinsic 2–10 keV lumin-
osity: more luminous AGNs with L2–10 keV>1042 erg s−1 have
systematically lower E(B – V)/NH values relative to the Galactic
standard by factors of several to a hundred, while low-luminosity
AGNs (L2–10 keV<1042 erg s−1) have higher values than
observed in the Milky Way (albeit with only three objects
in their sample in the latter group). In Figure 7, we compare
the E(B – V)/NH values for the red quasars with the
L2–10 keV>1042 erg s−1 sample from Maiolino et al. (2001).
In that work, Maiolino et al. (2001) compare E(B – V) to the line-
of-sight column density when the spectra require multiple
absorption components to be fitted with a partial covering model.
To be consistent with this practice, E(B – V)/NH is calculated
using the line-of-sight column density for the FIRST-2MASS
quasars presented here.

F2M 1227+3214 has an E(B – V)/NH value roughly
consistent with the Galactic standard, while F2M 0830+3759
is lower, though at the higher end of the sample presented in
Maiolino et al. (2001). For this latter source, the discrepancy
between the measured and Galactic E(B – V)/NH values could
be due to physically disparate scales between the dust
attenuating the optical emission and the gas obscuring and

reprocessing the X-ray emission. Indeed, though we have a
direct view of the broad-line region in F2M 0830+3759,
Hubble images show that it resides in the remnant of a merger
(Urrutia et al. 2008), where dust tends to be distributed on
galactic, rather than circumnuclear, scales. Within the dust
sublimation zone of the broad-line region, gas can attenuate
and reprocess the X-ray emission (e.g., Risaliti et al. 2009,
2010, 2011; Maiolino et al. 2010).

4.2. The LX–L6 μm Plane

A significant fraction of the mid-infrared emission in AGNs
arises from circumnuclear dust heated by the central engine,
making such reprocessed emission a tracer of the intrinsic AGN
power (e.g., Spinoglio & Malkan 1989; LaMassa et al. 2010).
Relationships between the observed X-ray emission and the
mid-infrared luminosity can then give a sense of the AGN
obscuration (e.g., Alexander et al. 2008; Gandhi et al. 2009;
LaMassa et al. 2009, 2011; Goulding et al. 2011; Lansbury
et al. 2014, 2015; Stern et al. 2014). However, as pointed out
by Yaqoob & Murphy (2011), the ratio of the X-ray to mid-
infrared luminosity is also strongly affected by the steepness of
the AGN X-ray continuum and global covering fraction of the
obscuring medium, so we caution that this ratio is not a clean
diagnostic of X-ray obscuration. Lutz et al. (2004) presented a

Table 4
Net Countsa and Observed X-Ray Fluxesb (10−12 erg cm−2 s−1)

Source Counts Counts F2–10 keV F10–40 keV F2–40 keV

Chandra/XMM-Newton NuSTAR

F2M 0830+3759 12433±112 1169±34 0.95 0.12
0.13

-
+ 1.78 0.23

0.25
-
+ 2.90 0.38

0.40
-
+

F2M 1227+3214 834±29 1082±33 1.30 0.17
0.19

-
+ 1.10 0.14

0.16
-
+ 2.33 0.30

0.35
-
+

Notes.
a The net counts for F2M 0830+3759 as detected by XMM-Newton correspond to the energy range 0.5–10 keV, added among the PN, MOS1, and MOS2 detectors,
and to the 0.5–8 keV band for F2M 1227+3214, as observed by Chandra. For both sources, the NuSTAR net counts are reported in the range 3–79 keV and are
summed between the FPMA and FPMB detectors.
b The errors refer to the statistical errors from the modeling, which are lower than the systematic errors on the absolute flux, which depend on the accuracy of the
instruments and cross-calibration uncertainties.

Table 5
Intrinsic, Rest-frame X-Ray Luminositiesa (erg s−1)

Source L2–10 keV L10–40 keV L2–40 keV

F2M 0830+3759 44.84±0.06 45.11±0.06 45.35±0.06
F2M 1227+3214 43.85±0.06 43.79±0.06 44.12±0.06

Note.
a The luminosities are reported in log space.

Figure 7. Distribution of inferred dust-to-gas ratios (parameterized by
E B V NH,Z( )- ) for the FIRST-2MASS quasars analyzed in this study (red)
and the L2–10 keV>1042 erg s−1 sample presented in Maiolino et al. (2001),
shown in black; the Galactic standard is shown by the dashed line. While F2M
1227+3214 has an E(B – V)/NH value consistent with Galactic, F2M 0830
+3759 is below this value, though at the high end of the sample considered in
Maiolino et al. (2001).
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relationship between absorption-corrected 2–10 keV luminos-
ities and 6 μm luminosities for Type 1 and Type 2 Seyfert
galaxies (gray shaded region in Figure 8, left). However, this
relation appears to flatten at higher luminosities when samples
of more distant and more luminous unobscured AGNs from
COSMOS (dashed line in Figure 8; Fiore et al. 2009) and
SDSS (dotted–dashed line in Figure 8; Stern 2015) are
considered.

In Figure 8 we compare the rest-frame X-ray luminosities
with the rest-frame mid-infrared 6 μm luminosities of the
FIRST-2MASS quasars, the SDSS Type 2 quasar candidates
studied in Lansbury et al. (2014, 2015), and the Compton-thick
source, ID 330, discovered in the NuSTAR COSMOS survey
(Civano et al. 2015).30 The 6 μm luminosities for the SDSS
Type 2 quasars represent emission from the AGN-heated dust,
estimated by fitting the SEDs of these sources (Lansbury
et al. 2014, 2015), while the 6 μm luminosities for the
Compton-thick COSMOS AGN and the FIRST-2MASS
quasars are the total mid-infrared emission, including that
from the host galaxy.31 The open symbols represent the non-
absorption-corrected X-ray luminosities while the filled
symbols are intrinsic X-ray luminosities, if data exist to
calculate this quantity; dashed lines connect the absorbed and
intrinsic X-ray luminosities for the same source. We note,
however, that the absorption-corrected X-ray luminosity is
based on the column densities measured from the joint fitting of
spectra obtained during different epochs, and the column
density could have varied between the epochs and/or between
the infrared and X-ray observations.

While the SDSS Type 2 quasars and the Compton-thick
COSMOS AGN tend to have absorbed 2–10 keV X-ray
luminosities below that predicted by their mid-infrared

luminosities, several of these objects have 10–40 keV emission
more consistent with the empirical relations derived by Lutz
et al. (2004), Fiore et al. (2009), and Stern (2015). This result is
consistent with the paradigm that obscuration is suppressing the
lower energy X-ray emission while higher energy X-rays pierce
through the high columns of gas, suffering much less
attenuation. Indeed, where data are available to correct the
X-ray luminosities for absorption, the SDSS Type 2 quasars
have intrinsic X-ray luminosities similar to the FIRST-2MASS
quasars. Both of the red quasars, however, have 2–10 keV
luminosities consistent with the L6 μm–L2–10 keV relations
derived for luminous quasars by Fiore et al. (2009) and Stern
(2015). Unlike the SDSS Type 2 quasars and the Compton-
thick source from COSMOS, the difference between the
intrinsic and absorbed X-ray luminosities is not extreme since
the line-of-sight obscuration is mild to moderate.

5. CONCLUSIONS

We have presented the X-ray analysis, including NuSTAR
data, of two red quasars, F2M 0830+3759 and F2M 1227
+3214, representing the first detection of these sources at
energies above 10 keV. Such red quasars, selected from the
FIRST and 2MASS surveys, are hypothesized to be a
transitional link between heavily enshrouded SMBH growth
caused by major galaxy mergers and the traditional Type 1
quasars efficiently discovered in optical surveys (Brusa et al.
2005, 2007; Glikman et al. 2007, 2012, 2013; Banerji et al.
2012, 2015). Indeed, Hubble imaging of F2M 0830+3759
reveals a train-wreck host galaxy, evidence of a past major
merger (Urrutia et al. 2008). Additionally, after correcting for
reddening, these quasars are among the most luminous AGNs
at every redshift (Glikman et al. 2012; Banerji et al. 2015),
though less extreme than the WISE-discovered Hot DOGs
(Assef et al. 2015; Tsai et al. 2015). We summarize the main
results below, where both the broad-band X-ray coverage
(0.5–79 keV) from Chandra/XMM-Newton and NuSTAR and
physically motivated X-ray models are crucial for providing

Figure 8. Rest-frame 6 μm luminosity vs. rest-frame, non-absorption-corrected (open symbols) and intrinsic (filled symbols) (left) 2–10 keV and (right) 10–40 keV
luminosities for the FIRST-2MASS red quasars (red circles), SDSS Type 2 quasars (black diamonds) from Lansbury et al. (2014, 2015), and a Compton-thick source
from the NuSTAR COSMOS survey, ID 330 (Civano et al. 2015). The mid-infrared luminosities of the SDSS Type 2 quasars are estimates of the AGN-heated dust
from SED modeling while L6 μm is the total 6 μm emission for the red quasars and the Compton-thick source from COSMOS. The gray shaded region shows the
empirical relationship between mid-infrared and X-ray luminosity for Seyfert galaxies from Lutz et al. (2004) while the dashed line and dotted–dashed line show a
flatter relationship, which is derived from observations of luminous Type 1 quasars (Fiore et al. 2009; Stern 2015, respectively). While the SDSS Type 2 quasars are
observed to be underluminous in 2–10 keV X-rays compared with their mid-infrared emission, likely due to heavy levels of obscuration, the FIRST-2MASS red
quasars are much more X-ray luminous since they have milder obscuration along the line of sight. The COSMOS Compton-thick AGN is underluminous in X-rays
compared with the SDSS Type 2 and FIRST-2MASS quasars.

30 The relations of Lutz et al. (2004), Fiore et al. (2009), and Stern (2015) in
the right-hand panel of Figure 8 are estimated by assuming an X-ray power-law
continuum with Γ = 1.8.
31 Such host-galaxy mid-infrared emission is likely negligible for the FIRST-
2MASS sources (see Stern 2015).
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clear insight into the physical processes at play in these
luminous obscured AGNs.

1. Both F2M 0830+3759 and F2M 1227+3214 have mild
to moderate absorption along the line of sight (NH,Z=
(2.1±0.2) ×1022 cm−2 and 3.4 100.07

0.08 21´-
+ cm−2,

respectively). When fitting the spectra of these objects
with MYTorus in decoupled mode, we find global
column densities (NH,S) of 3.7 102.6

4.1 23´-
+ cm−2 and

<5.5×1023 cm−2 for F2M 0830+3759 and F2M 1227
+3214, respectively. Though this global gas obscuration
is physically distinct from the gas that attenuates the
emission along the line of sight to the central engine, it
plays a role in reprocessing the observed X-ray spectrum.
This obscuration geometry is consistent with the red
quasar paradigm: while a direct view of the central engine
is not completely blocked (i.e., broad emission lines are
visible in the infrared spectrum), gas with large column
densities is present near the black hole.

2. F2M 0830+3759, as originally pointed out by Piconcelli
et al. (2010), has soft excess X-ray emission below 1 keV,
which is well accommodated by a model where 7% of the
intrinsic AGN continuum leaks through holes in a patchy
obscuring medium and is then scattered into or directly
enters our line of sight.

3. While F2M 1227+3214 has a measured E(B – V)/NH

value largely consistent with that of our Galaxy, the dust-
to-gas ratio in F2M 0830+3759 is lower than the Galactic
standard, though at the upper end of the distribution
reported in the sample of Maiolino et al. (2001)
(Figure 7). Since F2M 0830+3759 lives in a host galaxy
with a morphology indicative of a recent major merger
(Urrutia et al. 2008), the dust that reddens the optical
quasar emission can be distributed on galaxy-wide scales,
while the X-ray obscuring gas is likely circumnuclear,
and perhaps within the dust sublimation zone of the
broad-line region (e.g., Risaliti et al. 2009, 2010, 2011;
Maiolino et al. 2010). Hence the disagreement between
the observed and Galactic dust-to-gas ratios is perhaps to
be expected.

4. F2M 0830+3759 and F2M 1227+3214 have observed
X-ray to 6 μm luminosities consistent with the empirical
relations derived for local Seyfert galaxies (Lutz
et al. 2004) and unobscured quasars (Fiore et al. 2009;
Stern 2015), unlike the Type 2 SDSS quasars (Lansbury
et al. 2014, 2015) and the Compton-thick AGN
discovered in the NuSTAR survey of COSMOS (Civano
et al. 2015), where the observed X-ray luminosities are
heavily diminished. Thus, X-ray observations of lumi-
nous obscured quasars, such as the two sources presented
here, present a unique opportunity to test the X-ray to
mid-infrared relationship in a new regime.

Red quasars similar to the sources discussed here may
represent a short-lived, yet critical, phase in the growth of black
holes and subsequent evolution of their host galaxies. NuSTAR
data combined with recent advances in X-ray modeling provide
an unprecedented opportunity to peer through the obscuration
and unravel the physical complexities of these systems. In
particular, X-ray models that are capable of estimating a patchy
distribution, where the line-of-sight column density is inde-
pendently disentangled from the global column density, are of
particular relevance for accurately understanding this

population of AGNs. Currently, two X-ray models have this
capability: the clumpy torus model from Liu & Li (2014) and
the decoupled mode of the MYTorus model, and only the latter
one is publicly available. Future observations of more red
quasars will be essential for determining whether many have
larger column densities than indicated purely by line-of-sight
obscuration, and how this three-dimensional information may
be related to larger-scale host-galaxy obscuration.
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