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Abstract

Perhaps the most intriguing result of Planck’s dust-polarization measurements is the observation that the power in
the E-mode polarization is twice that in the B mode, as opposed to pre-Planck expectations of roughly equal dust
powers in the Eand B modes. Here we show how the E- and B-mode powers depend on the detailed properties of
the fluctuations in the magnetized interstellar medium (ISM). These fluctuations can be decomposed into slow, fast,
and Alfvén magnetohydrodynamic (MHD) waves, which comprise a complete basis that can be used to describe
linear fluctuations of a magnetized fluid. They can alternatively be decomposed in terms of one longitudinal and
two transverse components of a fluid-displacement field. The intensity (T) and E- and B-mode amplitudes induced
by each of the three types of waves, in both decompositions, are then calculated. To illustrate how these tools can
be applied, we consider a toy model of the ISM in which dust traces a single component of plasma, and obtain the
EE/BB ratio and TE correlation for several ansatzes for the power in slow/fast/Alfvén waves and in longitudinal/
transverse waves. Although our model may be too simplistic to properly describe the nonlinear structure of
interstellar magnetic fields, we find that the observed EE/BB ratio (and its scale invariance) and positive TE
correlation—as well as the observed power-law index for the angular spectrum of these fluctuations—are not easily
accommodated in terms of simple MHD turbulence prescriptions for the expected powers in slow, fast, and Alfvén
waves. We speculate that the ∼0.1–30pc length scales probed by these dust-polarization measurements are not
described by MHD turbulence, but rather probe the large-scale physics that drives ISM turbulence. We find that a
slightly anisotropic spectrum of random fluid displacements produces EE BB 2 and a positive TE cross-
correlation. Furthermore, we find that large EE/BB and positive TE are due primarily to longitudinal, rather than
transverse, modes in the random-displacement field, providing, perhaps, some clue to the mechanism that stirs the
ISM. Future investigations involving the spatial dependence of the EE/BB ratio, TE correlation, and local
departures from statistical isotropy in dust-polarization maps, as well as further tests of some of the assumptions in
this analysis, are outlined. This work may also aid in the improvement of foreground-separation techniques for
studies of cosmic microwave background polarization.

Key words: ISM: general – cosmic background radiation

1. Introduction

The Planck satellite has provided an extraordinary trove of
detailed information on polarized emission from dust in the
interstellar medium (ISM) of the Milky Way (Ade et al. 2015a),
with precise power spectra measured over the multipole-moment
range  ℓ30 600 (Adam et al. 2016a). Since the polarization
of the dust emission arises from the alignment of spinning dust
grains with the magnetic field (Chandrasekhar & Fermi 1953;
Stein 1966; Dolginov 1972; Dolginov & Mytrophanov 1976;
Draine & Weingartner 1996, 1997; Finkbeiner et al. 2004;
Draine & Fraisse 2009; Andersson et al. 2015), the measure-
ments are particularly important for the magnetic field structure
of the ISM.

Perhaps the most surprising result from Planck is the
discovery that the E-mode power in the dust-polarization is
twice the B-mode power (Adam et al. 2016a). (Something
similar was noticed in WMAP, albeit with less significance,
with synchrotron polarization; Page et al. 2007). The linear-
polarization pattern can be decomposed geometrically into
two rotational invariants, the E (gradient) modes and B (curl)
modes (Kamionkowski et al. 1997b; Zaldarriaga & Seljak
1997). A randomly oriented polarization map should have
equal E- and B-mode powers. Likewise, if polarization
fluctuations arise as amplitude fluctuations with a fixed
orientation, then the E- and B-mode powers should be equal

(Zaldarriaga 2001; Kamionkowski & Kovetz 2014). The
state-of-the-art pre-Planck dust-polarization models (O’Dea
et al. 2012; Delabrouille et al. 2013) therefore all had equal E-
and B-mode powers. The observed EE BB 2 ratio thus
comes as quite a surprise. Planck also finds a cross-correlation
(of positive sign) between the temperature and the E-mode
component of polarization, an empirical fact that we will also
employ below.
Here we show how the observed EE BB 2 ratio depends

on the detailed properties of magnetized fluid fluctuations
in the ISM. Fluctuations in a magnetized plasma are des-
cribed most generally by the slow, fast, and Alfvén MHD
waves; there is one for each Fourier wavevector k. Models
of MHD turbulence predict the power spectra for these
different types of modes as a function of the magnitude and
orientation (with respect to the background magnetic field)
of the wavevector k (Cho et al. 2003; Elmegreen &
Scalo 2004; Schekochihin et al. 2009; Brandenburg &
Lazarian 2013). A vigorous effort, based on analytic
arguments and numerical simulations, is afoot to nail down
these predictions, with much of the effort tracing back to
classic work by Iroshnikov (1964) and Kraichnan (1965) and
later Shebalin et al. (1983), and more recently, for example,
Goldreich & Sridhar (1995); Lithwick & Goldreich (2001),
and Cho & Lazarian (2002).
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Another view of the anisotropy of MHD turbulence comes
via studies of the filamentary structures in the cold neutral
medium (CNM) of the ISM. Herschel has attracted attention to
the filamentary structure of dust (André et al. 2010; Miville-
Deschenes et al. 2010; Molinari et al. 2010). Other observa-
tions support this link between linear-polarization structures
and turbulent, anisotropic CNM (Kalberla & Kerp 2016). In
simulations, spherical clumps preferentially condense into
filaments along magnetic field lines; the strain in the magnetic
field is seen to play an essential role in creating filamentary
density structures aligned with the local field orientation
(Hennebelle 2013; Inoue & Inutsuka 2016).

The Planck Collaboration observed that correlations of
filamentary structures (Adam et al. 2016b; Ade et al. 2016)
with fluctuations in the magnetic field orientation could account
for the observed ratio. The Planck Collaboration made further
contact with MHD turbulence models for the ISM in Ade et al.
(2015b) and Aghanim et al. (2016) through measurement of
distributions of polarization magnitudes and orientation angles.
Planck (Adam et al. 2016b) uses the dust maps at 353 GHz to
show that polarization correlates with the orientation of
extended structures in the intensity. This is interpreted as
indicating that matter structures of the ISM are preferentially
aligned with the magnetic field line. Similarly, Clark et al.
(2015) find a correlation between the orientation angles of
structures in the Planck 353 GHz intensity map and maps of
diffuse neutral hydrogen. For example, MHD simulations
suggest that the alignment between dust filaments and magnetic
field lines arises from turbulent shear, which stretches both the
CNM and the magnetic field (Inoue & Inutsuka 2016). This
work does not, however, explain how the relevant density–
magnetic field correlations arise in terms of the fundamental
modes of fluctuations in the magnetized fluid. There is thus
room to make clearer contact with theoretical models for a
magnetized fluid.

Below we calculate the E- and B-mode amplitudes induced
by slow, fast, and Alfvén waves, and also for longitudinal and
transverse waves, for different directions of the background
magnetic field with respect to the line of sight and for different
wavevectors k. This theoretical framework allows one to draw
a quantitative connection between MHD waves in the ISM and
the observed polarization pattern. Since the EE BB 2 ratio
seems to be relatively generic across the sky, it must arise after
averaging over all magnetic field orientations. We thus then
calculate the E and B power-spectrum amplitudes, as well as
the temperature-polarization cross-correlation, obtained after
averaging over all magnetic field and k orientations. We
provide results as a function of the ratio b º P Pg H of the gas
and magnetic field pressures, Pg and PH, respectively.
Although the true ISM is observed to be a multicomponent
medium (e.g., Heiles & Troland 2003) that is highly anisotropic
and characterized by filamentary structure, in this work we
consider a toy model in which dust traces a single component
of plasma. We also include a parameter λ that describes the
anisotropy of the slow, fast, and Alfvén waves resulting from
MHD turbulence. These calculations can then be used to assess
the validity of any particular model for MHD turbulence
specified by the power in the slow, fast, and Alfvén waves, and
the anisotropy of that power.

We caution that our framework fails (or could fail) to
describe a multi-phase medium in several ways. In particular, it
is true that all fluid displacements can be decomposed into the

three wave modes since they are a complete basis. However,
our framework is perturbative, so it should not be expected to
work quantitatively for highly dense structures. Considering
that the density contrast between the cold and warm gas phases
of the ISM varies by up to two orders of magnitude, we have
made a gross over-simplification in treating the ISM as a single,
linearly perturbative fluid. Consequently, the physical inter-
pretations of that single-fluid basis as wave modes are not
correct in a multi-phase medium. And finally, we have assumed
the dust, magnetic field, and gas are all perfectly tied to each
other.
Our results suggest that for b 1, the observed EE/BB ratio

and temperature-polarization cross-correlation can be explained
only if the power in fast waves greatly exceeds that in slow/
Alfvén waves, and moreover, only if those fast waves have a
nearly isotropic spectrum. The observations can also be
explained in a low-β (strong-field) plasma with an additional
contribution from an anisotropic spectrum of Alfvén waves, but
only if the slow waves are very anisotropic or somehow
suppressed. We thus infer that the observed EE/BB and TE are
in tension with expectations from MHD turbulence. The
apparent scale invariance of the EE/BB ratio over the range
 –ℓ 30 600 and the spectral index of the fluctuations—which

disagrees with that expected from turbulence and that seen in
electron-density fluctuations on smaller scales (Armstrong
et al. 1995)—are also not easily accommodated by current
MHD turbulence models.
In the context of our limited model, we thus speculate that

the ∼0.1–30pc length scales probed by Planck may overlap
the outer scale of turbulence, the largest distance scale on
which turbulence is driven. We then develop a simple
phenomenological model, based on random displacements of
a magnetized fluid, that accounts for EE BB 2 and >TE 0.
We further show that the TE correlation and large EE/BB are
primarily a consequence of the longitudinal, rather than
transverse, modes in the random-displacement field. We
surmise that this may indicate something about the physics—
perhaps stellar winds, protostellar outflows, supernovae
(Lacki 2013; Padoan et al. 2016), or Galactic spiral shocks
(Kim et al. 2006)—that drives small-scale turbulence in
the ISM.
Directions for future related research include improved

measurement of the Planck TE cross-correlation coefficient
calculated here; studies of the variation of EE/BB and TE
(that arise from variations in the background magnetic field
orientation) across the sky; searches for local departures from
statistical isotropy that arise for the same reason; and more
precise measurements of the ℓ dependence of the dust power
spectra. Moreover, as discussed below, we assume here that
the dust density traces the plasma density, a hypothesis that
we argue is reasonable, although one whose validity requires
further investigation. There are thus further studies that
should be done—including the frequency dependence of the
E/B/T maps, cross-correlation with synchrotron-polarization
maps, and perhaps cross-correlation with polarized-starlight
surveys—to further test this hypothesis. Finally, a better
understanding of the physics responsible for polarized dust
emission may also aid in the development of algorithms to
separate the CMB-polarization signal from polarized dust
emission (Dunkley et al. 2009) and thus help advance the
quest for inflationary gravitational waves (Kamionkowski

2

The Astrophysical Journal, 839:91 (12pp), 2017 April 20 Caldwell, Hirata, & Kamionkowski



et al. 1997a; Seljak & Zaldarriaga 1997; Kamionkowski &
Kovetz 2016).

Such developments must not necessarily await the next
flagship satellite mission: there are prospects for considerable
improvements in dust-polarization maps on small patches of sky
with suborbital experiments (Kovetz & Kamionkowski 2016)
such as BLASTPol (Fissel et al. 2010), BFORE (Niemack
et al. 2015), TOLTEC (G. Wilson 2016, private communica-
tion), or PILOT (Misawa et al. 2014). Measurements of Galactic
synchrotron and/or dust-polarization on larger angular scales
will be improved, for example, with CLASS (Essinger-Hileman
et al. 2014) or LiteBird (Matsumura et al. 2013). Analyses
similar to those that we discuss can also be applied to maps of
starlight polarization (Goodman et al. 1990; Heiles 1996;
Fosalba et al. 2002) or neutral-hydrogen filaments (Clark
et al. 2014, 2015), although the polarization strength is small,
and the sparse sampling and the range of distances to stars
complicates the E/B mode analysis. Moreover, similar analyses
may be employed to understand, with dust-polarization maps,
magnetic field structure in specific molecular clouds (Pelkonen
et al. 2007; Kataoka et al. 2012; Koch et al. 2013; Soler
et al. 2013).

This paper is organized as follows. In Section 2 we review
the E/B decomposition of a polarization map. We review the
relevant properties of MHD waves in Section 3. Section 4
calculates the E and B amplitudes that arise from slow, fast, and
Alfvén waves. Section 5 discusses calculation of the power
spectra. Section 6 presents the results of the calculations. In
Section 7 we provide some possible interpretations of the data
in terms of MHD turbulence models and also discuss the
tension with expectations from favored MHD turbulence
models. We therefore consider, in Section 8, a simple
phenomenological model of random displacements in a
magnetized fluid that results in EE BB 2 and >TE 0. We
then conclude and enumerate several possible research
directions in Section 9.

To avoid confusion with the E/B decomposition of
polarization maps, we use H to denote the magnetic field.
The c.g.s. system of units is used.

2. Review of the E/B Decomposition of a Polarization Map
and Projection Effects

Here we recall some basic properties of the decomposition of
a polarization map into E and B modes, and the way in which
three-dimensional emitting structures appear on the two-
dimensional sky. We consider a map of the linear polarization
on a patch of sky sufficiently small to be assumed flat, and of a
solid angle Ω. We assume the emission to be optically thin,
which is a good approximation at microwave frequencies.

The polarization is specified in terms of Stokes parameters
q( )Q and q( )U , measured with respect to some q̂x–q̂y axes in

the plane of the sky, which can then be written as a complex
polarization q q qP = +( ) ( ) ( )Q iU .4 The map is equivalently
represented by the Fourier transform

ò q qP = P q

W

-˜ ( ) ( ) ( )·ℓ d e . 1ℓi2

The density of Fourier modes in the two-dimensional ℓ-plane
is pW ( )2 2.

The Stokes parameters, and the complex polarization, are not
rotational invariants; under a rotation of the coordinate axes by
an angle α, the polarization transforms as P  P ae i2 . The
polarization field can be represented in terms of rotational
invariants E and B. In Fourier space these are

+ = + y-( ˜ ˜)( ) ( ˜ ˜ )( ) ( )ℓ ℓE iB Q iU e 2i2 ℓ

(Kamionkowski et al. 1997a, 1997b; Seljak & Zaldarriaga
1997; Seljak 1997; Zaldarriaga & Seljak 1997; Cabella &
Kamionkowski 2004; Kamionkowski & Kovetz 2016), where
yℓ is the angle that ℓ makes with q̂x, i.e., y = ℓ ℓtan ℓ y x. The

power spectra measured by Planck are then =Cℓ
EE á ñ W∣ ˜( )∣ℓE 2

and = á ñ W∣ ˜( )∣ℓC Bℓ
BB 2 , where the average is over all ℓof

magnitude ℓ.5

The observed polarization signal Π is typically measured in
units of mKCMB, and its angular power spectra Cℓ

EE BB have
units of mKCMB

2 . However, for optically thin emission, the
polarization is related to the polarized emissivity eP via

òq qeP =
¥

P( ) ( ˆ ( )) ( )nr dr, 3
0

where qˆ ( )n is the three-dimensional unit vector in the direction
corresponding to angular position q. The emissivity eP (and its
components, eQ and eU) have units of mKCMB pc−1, and its
three-dimensional power spectra e ( )kP EE, and e ( )kP BB, have
units of e ´[ ]P

2 [volume], or mKCMB
2 pc.

For small angles or ℓ 2, the relation of three-dimensional
and two-dimensional power spectra is usually obtained via the
Limber approximation. This begins with breaking the line of
sight integral, Equation (3), into a series of boxes along the line
of sight of width Dri. In each box, the emissivity can be
Fourier-transformed to eP˜ ( )k :

ò åe e e e= « =P P
-

P P˜ ( ) ( ) ( ) ˜ ( ) ( )· ·k x x x ke d e , 4k x

k

k x

V

i i3

where the Fourier wavevector k has (i) a transverse component
k̂ with a density of modes pW ( )r 22 2, and (ii) a line of sight
component p= Dk n r2 i with În . The volume of the box
is = WDV r ri

2 . These transformed quantities satisfy

*e e p d

d

á ¢ ñ = - ¢

= WD
e

e¢

˜ ( ) ˜ ( ) ( ) ( ) ( )
( ) ( )

k k k k k

k

P

r r P

2

. 5k k

E E EE

i EE

3 D
,

2
,

K
,

Only the transverse (n= 0 or =k 0) modes, i.e., those with k
in the plane of the sky, survive radial integration. They relate to
the projected polarization via

å eP = =P˜ ( ) ˜ ( ) ( )ℓ k ℓ
r

r
1

, 6
i

2

where the r1 2 comes from the transformation from qd2 to x̂d2

in the Fourier integral (see Equation (1)), and from Equation (5)

4 In the CMB literature this is often written q( )P , but here we write Π to
avoid confusion with the 3D power spectrum.

5 The factor of Ω arises from the density of Fourier modes; the “usual”
equation would read * p dá ¢ ñ = - ¢˜ ( ) ˜( ) ( ) ( )ℓ ℓ ℓ ℓE E C2 ℓ

EE2 D , where dD is the
Dirac δ-function. For a density of modes pW ( )2 2, we have
p d d- ¢  W ¢( ) ( )ℓ ℓ2 ℓ ℓ

2 D
,

K , where dK is the Kronecker δ-symbol.
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the two-dimensional power spectrum is

òå»
=

D »
=e e( ) ( )

( )

C
P k ℓ r

r
r

P k ℓ r

r
dr,

7

ℓ
EE

i

EE
i

r
EE,

2 0

,
2

max

where rmax is the maximum distance from which dust emission
is seen. Equation (7) is the Limber equation, as commonly used
in cosmology. The derivation contains two subtle assumptions:
(i) each box can be treated as a statistically homogeneous
medium; and (ii) when squaring Equation (6) and taking the
expected value, we can neglect correlations between different
boxes ¹i j.

In most of this paper, we will focus our attention on the
ratios of the power spectra, e e( ) ( )P k P kEE BB, , , or correlation
coefficients between the E-mode and temperature
= e e e( ) [ ( ) ( )]r P k P k P kTE TT EE, , ,

1 2. It is easily seen from
Equation (7) that the corresponding ratio in the power
spectrum, C Cℓ

BB
ℓ
EE , is a suitably weighted average of

e e( ) ( )P k P kEE BB, , along the line of sight. Therefore, in
attempting to explain the observed EE/BB ratio, we focus on
the three-dimensional power spectrum. When we consider the
scale dependence of the polarization power spectrum, we will
have to return to the full version of Equation (7).

3. Magnetohydrodynamic Waves

A compressible magnetized plasma can, in the MHD limit,
carry three different types of waves, linear combinations of the
two transverse-vector components of the magnetic field H
(since the requirement  =· H 0 removes the longitudinal-
vector degree of freedom) and the plasma-density degree of
freedom. Here we briefly reprise the properties, relevant for this
work, of these three MHD waves, which are classified into
Alfvén, slow, and fast modes.

We consider a magnetized plasma at rest with a homo-
geneous magnetic field H0 and then consider small perturba-
tions parametrized in terms of a magnetic field perturbation
d ( )H x t, and plasma velocity ( )v x t, . In the MHD limit, the
perturbation, velocity, and background field are related (in
Fourier space) by

wd = - ´ ´( ) ( )H k v H , 80

where here dH and v are taken to be the magnetic field and
velocity amplitudes of this particular Fourier mode.

3.1. Alfvén Waves

The Alfvén wave has a velocity perpendicular to both k and
H, and it has a dispersion relation w a= ak cos , where

pr= -( )a H 40
1 2 is the Alfvén speed (and ρ the plasma mass

density), and a = ˆ · ˆk Hcos 0. For this wave, d =  ( )H vH a0 .
The continuity equation, ¶ ¶ +  =( ) · ( )vn t n 0, provides a
relation, d w=( ) ·k vn n0 , between the fractional density
perturbation d( )n n0 and the velocity. Since ^k v in the
Alfvén wave, these waves have no associated density
perturbation. We thus write,

d = - ˆ ( )H a
vH

a
, 90

where aº ´ˆ ˆ ˆa k H sin is the unit vector perpendicular to k
and H.

3.2. Slow/Fast Waves

The slow and fast waves both have magnetic field
perturbations in a direction q a= - ´ ´ˆ ˆ ( ˆ ˆ )k k H sin
perpendicular to k̂ and â. The slow wave has a displacement
in the direction x a z aµ + ^

ˆ ˆ ˆH kcos sins s , where ^̂k is a unit
vector in the k–H plane perpendicular to Ĥ, and the fast wave
is in the orthogonal direction, x z a aµ + ^

ˆ ˆ ˆH kcos sinf f . Here,

z
b
b

a

z
b
b

a

=
- -
+ +

=
- +
+ -

( )

D

D

D

D

1 2

1 2
cot ,

1 2

1 2
tan , 10

s

f

2

2

where b b a= + -( )D 1 2 2 cos2 2 , and b = P Pg H is the
ratio of gas pressure to magnetic field pressure. In the strong-
field limit b  0, and b  ¥ in the weak field limit.
From Equation (8) it follows that for the slow wave,

qd
w

z a
a z a

=
+( )

ˆ ( )H
kvH sin

cos sin
, 11s

s

0
2 2 2 1 2

and for the fast wave,

qd
w

a
z a a

=
+( )

ˆ ( )H
kvH sin

cos sin
, 12

f

0
2 2 2 1 2

where v is the magnitude of the fluid velocity. For the Alfvén
wave, the relationship between the magnitudes of the magnetic
field and velocity perturbations is independent of the orienta-
tion of k (cf. Equation (9)). The same is not true, however, for
the slow/fast waves. In addition to the explicit α dependence in
Equations (11)–(12), there is also an α dependence in zs f, and
also in the dispersion relations,

w
b

b a
b

= +  -
+

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( )

( )
( )

k

a

2
1 2 1 1

2 cos

1 2
, 13

2 2 2

2

1 2

for the fast (plus sign) and slow (minus sign) waves.
The fractional density perturbation is then found from the

continuity equation to be, for the slow wave,

d
w

a z a
a z a

=
+

+

( )
( )

( )n

n

kv cos sin

cos sin
, 14s

s0

2 2

2 2 2 1 2

and for the fast wave,

d
w

z a a

z a a
=

+

+

( )
( )

( )n

n

kv cos sin

cos sin
. 15

f

f0

2 2

2 2 2 1 2

The final relations then are those between the magnetic field
perturbation and the density perturbation, and the magnetic
field perturbation and the velocity perturbation. They are, for
the slow wave,

d d
a z a z a

d
a= + º

∣ ∣ ( ) ( ) ∣ ∣ ( )

( )

H Hn

n H H
gcos sin sin ,

16

s s s
0 0

2 2

0

d
w

z a
a z a

a=
+

º
∣ ∣

( )
∣ ∣ ∣ ∣ ( ) ( )H
v v

H

k
h

sin

cos sin
, 17s

s

s
0

2 2 2 1 2

4

The Astrophysical Journal, 839:91 (12pp), 2017 April 20 Caldwell, Hirata, & Kamionkowski



and for the fast wave,

d d
z a a a

d
a= + º

∣ ∣ ( ) ∣ ∣ ( ) ( )H Hn

n H H
gcos sin sin , 18f f

0 0

2 2

0

d
w

a
z a a

a=
+

º
∣ ∣

( )
∣ ∣ ∣ ∣ ( ) ( )H
v v

H

k
h

sin

cos sin
. 19

f

f
0

2 2 2 1 2

In the case of the Alfvén wave, as seen in Equation (9), we
have d = º∣ ∣ ∣ ∣ ∣ ∣H v vH a ha0 . These relations allow us to
determine the E- and B-mode powers under different assump-
tions about the power spectra for the different MHD waves.

4. E and B Modes Induced by the Slow,
Fast, and Alfvén Waves

4.1. E and B Amplitudes from a Single Fourier Mode

Take the line of sight to be along the z axis and the
background field q q= ( )H H sin , 0, cos0 0 in the x–z plane at
an angle θ from the line of sight. Consider a perturbation of
wavevector y y= =ˆ ( )k kk k cos , sin , 0 in the x–y plane of
the sky (as the two-dimensional projections of other modes will
experience a Limber suppression) oriented at an angle ψ with
respect to the x axis. The angle α between k and H is then
given by a q y=cos sin cos , as illustrated in Figure 1.

We observe a two-dimensional projection of an emitting
volume, and the polarized emission is assumed to have the form

e e e= + = +g ( ) ( )i AnH H iH , 20P Q U x y
2

where γ is an exponent that is equal to −2 if the dust alignment
is independent of the magnetic field strength, n is proportional
to the dust density (and has a constant background value n0).
Here <A 0 is a constant; its value is taken to be negative so
that the polarization is perpendicular to the magnetic field
(Chandrasekhar & Fermi 1953). The sign of A will be
significant for the temperature-polarization cross-correlation

below. The polarization fluctuations are

de q
d d

g q
d

q
d

=
+

+ +

g+
⎡
⎣⎢

⎤
⎦⎥ ( )

An H
H i H

H

H

H

n

n

2 sin

sin sin , 21

P
x y

0 0
2

0

2

0

2

0

where here d qd qd= +H H Hsin cosx z. For a given Fourier
mode of wavevector k transverse to the line of sight in a box of
radial width Dr , the E and B modes will appear in wavevector
=ℓ kr , and will have the form:
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which can be decomposed into
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We now rewrite the magnetic field perturbations in terms of
the two transverse-vector modes, those in the â (the Alfvén
wave) and q̂ (the slow and fast waves) directions:

q

d d
a

d

y q y q y q
a

d

d d
a

d

q y q y y q
a

d

= =
´

=
- -

= = -
´ ´

=
-

( ˜ ) ˆ ˜ ˆ ˆ ˜

( ) ˜

( ˜ ) ˆ ˜ ˆ ( ˆ ˆ ) ˜

( ) ˜ ( )

H a
k H

H
k k H

H H

H

H H

H

sin
sin cos , cos cos , sin sin

sin
,

sin
sin sin , sin sin cos , cos

sin
, 25

a a a

a

p p p

p

2

where dH̃a (“a” for Alfvén) and dH̃p (“p” for pseudo-Alfvén) are
the magnetic field amplitudes for the two modes. These then
translate to E and B modes,
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Figure 1. The coordinate axes and relevant vectors are shown. The locations of
H0 and k are shown by the orange and green lines, and a and q̂ are shown by
the dashed red and blue lines, respectively. The coordinates α and ϖ relative to
k are also indicated. Recall that the line of sight is along the z direction.
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For Alfvén waves, which have no associated density
perturbation, we are already done. However, the fast and slow
waves both have a density perturbation. The final step is thus to
rewrite the p and n modes in terms of slow (“s”) and fast (“f”)
modes using Equations (16) and (18). We then obtain
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The intermediate lines define the angular functions
q y( )f ,i

E B, which relate the polarization pattern to the magnetic
field fluctuations, and the conversion into velocity fluctuations
follows from Equations (17)–(19).

4.2. Temperature Fluctuations

The brightness temperature of the dust (synchrotron)
emission is also provided, as a function of position on the
sky, by Planck (Ade et al. 2015c; Adam et al. 2016a; WMAP,
Page et al. 2007). Since the brightness temperature of dust
emission is proportional to the dust density, temperature
fluctuations arise from fluctuations dn in the dust density.
The fractional intensity or temperature perturbation is thus,



d d

=
¯

( )c
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n
, 30T

T 0

and projected through a box of width Dr we have

 d
=
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r

r
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n
. 31T 2

0

We expect c=1 for thermal dust emission since the physical
temperature of the dust grains does not depend on the gas

density (it is set by radiative equilibrium). Other dust emission
mechanisms, e.g., spinning dust, may depend in a complicated
way on the local gas density (e.g., Draine & Lazarian 1998;
Ali-Haimoud et al. 2009) and hence for these we may have
¹c 1. Note, however, that our focus is on the TE cross-

correlation coefficient, where c cancels out.
Written in terms of the wave modes, we find
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Note that the Alfvén modes do not yield any density
perturbations, and hence do not contribute to T̃ .

5. Calculations of Power Spectra

We now calculate the power in E and B modes contributed
by the three different types of waves. Strictly speaking, we
calculate the contribution to the E- and B-mode powers at a
given 3D wavenumber k. The observed 2D E- and B-mode
powers, as a function of multipole ℓ, are then obtained from
the Limber equation, which sums the contributions of
wavenumbers =k ℓ r , from a range of distances r, to a
given ℓ. If, however, the EE/BB ratio is scale-independent (as
we assume here and as is consistent with the measurements),
then the EE/BB ratio we calculate will also be that in the
observed 2D power spectrum. Similar remarks apply to the TE
correlation.

5.1. Parametrization of Power Anisotropies in the MHD Waves

Since the background magnetic field H0 provides a preferred
direction, the power spectra for the three types of MHD waves
are not expected to be isotropic, but should, rather, have some

acos dependence (Shebalin et al. 1983; Goldreich &
Sridhar 1995). Here we parametrize the anisotropy as

a
d

a aº = l( ) ( )[ ( )] ( ) ( )H
P k

H
P k h F, cos cos , 33
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i

i i
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2
2
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
m

m l
m l
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l
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⎧⎨⎩( )
( )
( )

( )F
, if 0,

1 , if 0.
34

2

2

We work with power spectra for the magnetic field amplitudes,
but have then defined, by virtue of the a( )hs f, in Equation (33),
the anisotropy ml ( )F relative to the velocity perturbation
amplitude. We do so to make contact with the MHD literature,
wherein wave amplitudes are usually specified in terms of the
velocity. With our parametrization, for l = 0 the velocity
power is isotropic; for l > 0 it is weighted in modes of
wavevector k parallel to H ;0 and for l < 0, the velocity power
is weighted in modes perpendicular to H0.

5.2. The EE/BB Ratio

Given that the EE/BB ratio seems to be roughly 2
everywhere on the sky, any MHD explanation of the EE/BB
ratio must provide this ratio after averaging over all magnetic
field orientations, rather than rely on a specific orientation.
There is also evidence that the angular average is warranted
even along an individual line of sight: if the field direction were
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exactly constant along a given line of sight, then we would
expect the fractional polarization for synchrotron radiation to
be ∼75% (Rybicki & Lightman 1979). Planck obtains
significantly lower values (see, e.g., Figure 22 in Ade
et al. 2015d), suggesting a large dispersion in field direction
even on a single line of sight.

We therefore calculate the ratios R of the angle-averaged
E-mode and B-mode powers, induced by Alfvén, slow, and fast
waves as a function of β and the anisotropy parameter λ. The
desired ratio is obtained from

ò
ò

b l
q y a a

q y a a
=

W

W

l

l
( )

[ ( ) ( )] ( )

[ ( ) ( )] ( )
( )R

d f h F

d f h F
,

, cos

, cos
35i

i
E

i

i
B

i

2

2

for = { }i a s f, , . Evaluation of the angular averages can be
simplified by transforming to new angular coordinates α and
ϖ, through q a v=cos sin cos , q y a v=sin sin sin sin , and

q y a=sin cos cos . These then are polar coordinates for the
location of H0 about the k axis, rather than the z axis, as seen in
Figure 1. We then integrate over a a vW =d d dsin .

5.3. The Temperature-polarization Cross-correlation

Temperature fluctuations will arise from fluctuations in the
density field, in accordance with Equation (32). The Alfvén
modes do not contribute to temperature fluctuations. The slow

and fast modes, however, should set up a correlation between
the temperature and E-mode polarization. (The TB and EB
cross-correlations vanish after averaging over angles.) The
relative amplitudes of the polarization and temperature
fluctuations depend on a polarization fraction and the constant
c, so we work instead with a cross-correlation coefficient,

which corresponds to the ratio ( )( )TE TT EE .

6. Results

The EE/BB ratio and cross-correlation coefficients are shown
in Figure 2 for a strong magnetic field (b = 0.1), equipartition
(b = 2), and weak field (b  1). The two observational
constraints, EE BB 2 and >TE 0, can be satisfied by a
nearly isotropic fast mode, for a wide range of β, or by a
strongly anisotropic slow mode, with b 2. More specifically,
for a fast wave with b = 0.1, an isotropic spectrum (l = 0)
gives EE BB 2 and cross-correlation coefficient r 0.8.
For a slow wave with b = 0.1, too, a strongly anisotropic
spectrum withl ~ -5 gives EE BB 2 and cross-correlation
coefficient r 0.7. The constraints cannot be satisfied by a
pure Alfvén wave, since this incompressible mode creates no
intensity fluctuation and therefore no cross-correlation.
All the results illustrated assume g = -2. However, we have

also examined cases in which the polarization amplitude is
correlated with the magnetic field, g > -2, as well as the

Figure 2. The EE/BB ratio and cross-correlation coefficient are shown as a function of the velocity power spectrum anisotropy index λ for b = 0.1, 2, and b  1. The
solid (black), long dashed (red), and dotted–dashed (blue) curves are for Alfvén, fast, and slow magnetosonic waves, respectively. The observed EE/BB ratio is
indicated by the thin dashed (black) line in the upper panels. The positive cross-correlation TE is indicated by the thin dotted (black) line in the lower panels.
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inverse case, g < -2. We find that our results for the EE/BB
ratio and TE cross-correlation are not strongly sensitive to the
dust alignment index in the range g- < < -5 2 3 2.

7. Interpretations

In this section we try to make sense of the observations
within the context of models for the ISM. We first consider
MHD turbulence models and conclude that they are unlikely to
provide the whole story. We then speculate that the Planck
dust-polarization data may alternatively reflect the physics
driving turbulence and/or involve new physics beyond that
included in the MHD turbulence models we consider here.

7.1. MHD Turbulence?

7.1.1. EE/BB Ratio and TE Correlation

There are some important qualitative conclusions about
MHD turbulence models that can be inferred from the
observations EE BB 2 and >TE 0. (Strictly speaking, the
cross-correlation coefficient we calculate here has not yet been
provided by Planck. We estimate it by comparing Figures 2
and B1 in Adam et al. (2016a) with Figure D1 in Ade et al.
(2015c). There are uncertainties here: the cuts and assumptions
that went into the latter figure are not necessarily those that
went into the first two. Even so, we infer that the cross-
correlation coefficient is reasonably large, and, more impor-
tantly, positive.) The models generally predict (Cho &
Lazarian 2002) that: (a) slow/Alfvén waves should have
similar power spectra; (b) the slow/Alfvén waves should
preferentially populate modes perpendicular to the magnetic
field (l < 0 in our parlance); (c) the fast modes should be
largely uncoupled from the slow/Alfvén modes; and (d) the
fast modes should be nearly isotropic (l  0).

We also need to consider the total E- and B-mode
polarization powers contributed, for fixed angle-averaged
velocity perturbation power, by each of the different types of
MHD waves. These are plotted in Figure 3 for b = 0.1 and
b = 2 (the results for b  1 are similar to those for b = 2).
For b 1, the polarization powers contributed by all three
types of waves are roughly similar. However, the polarization
power in slow modes scales inversely with β as b  0.
Physically, this occurs because w ( )k 0 in this limit,
indicating a vanishing restoring force. The fluid displacements,
and thus density perturbations, become large. Thus, the EE/BB
ratio and TE correlation will receive disproportionately large
contributions from slow modes in a low-β plasma.

Looking at Figure 2, along with Figure 3, we see that the
combination of the two constraints ( EE BB 2 and >TE 0)
very seriously restricts the range of allowable models. There
seem to be two possibilities: (1) a nearly isotropic spectrum of
fast waves provides positive cross-correlation and EE BB 2
for any β. A combination of slow/Alfvén waves is disallowed,
on the other hand for b 1. Thus, the observations can be
explained if b 1 and Alfvén/slow waves are somehow
suppressed. (2) For b  1, Alfvén waves can produce

EE BB 2 if sufficiently anisotropic, but they contribute
nothing to TE. Slow modes can, if sufficiently anisotropic, also
contribute EE BB 2 and a positive TE. Given the theoretical
expectation that the velocity power in slow and Alfvén waves
is comparable, the slow waves will dominate at low β, and thus
the anisotropy must be even greater to account for the
observations.
The fettle of either of these MHD turbulence interpretations

is damaged by the relative uniformity—as best can be
determined—of the EE/BB ratio and TE correlation across the
sky. The ISM is a complicated system that is likely to display
considerable variation in the parameters β and λ and the
relative contributions of strong/fast/Alfvén waves. While there
are indeed pockets of the MHD turbulence parameter space that
can account for the observed EE/BB and TE, these predictions
will not be robust if there is considerable variation of β, λ, or
the mix of slow/fast/Alfvén waves within the ISM.

7.1.2. Scale-dependent Anisotropy?

The observed power-law indexes for the ℓ dependences of
the EE and BB power spectra agree to roughly a percent and are
also very similar to those for the TT and TE power spectra
(Adam et al. 2016a). As the figures indicate, the EE/BB ratios
can depend quite a bit on the anistropy parameter λ. Thus, if
the power anisotropy is scale-dependent, as expected in MHD
turbulence (Goldreich & Sridhar 1995; Cho & Lazarian 2002),
then one might expect to see different power-law indexes for E
modes and B modes. Some caution should be used in drawing
this conclusion since a given multipole-moment ℓ receives
contributions from emission at a variety of line of sight
distances r, and thus a variety of wavenumbers ~k ℓ r . Still,
we infer that there is no dramatic variation of the MHD power
anisotropy over the ∼0.1–30 pc length scales probed by
Planck.

Figure 3. The power EE and BB, normalized to the power in velocity fluctuations, are shown for each of the velocity modes, for the representative cases b = 2 (thick
lines) and b = 0.1 (thin lines). As labeled in the figures, solid (green) lines are EE and dashed (red) lines are BB.
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7.1.3. The Wavenumber Scaling

There is also a disparity between the spectral index n  2.4
measured for the TE/EE/BB/TT power spectra, µ n-C ℓℓ , and
the k  3.67, in the three-dimensional power spectrum,

µ k-( )P k k expected in MHD turbulence. The two exponents
are related through the Limber equation, Equation (7). If the
three-dimensional power spectrum is well-approximated by a
single power law over the relevant distance scales, then the
two-dimensional power spectrum Cℓ will also be a power law,
and moreover, with the same spectral index, n k= . Given that
the maximum distance from which we see dust emission (at
least at high Galactic latitudes) is  –r 100 200max pc, the range
of physical length scales probed by Planck measurements over
 –ℓ 30 600 is roughly ~ –L 0.1 30 pc, where p=L k2 .

7.2. An Outer Scale?

Turbulence is expected, however, to be described by a power
law only below some outer distance scale L, or for wavenumber
 p~ -k k L2c

1. Suppose, for example, that the power is
=( )P k 0 for <k kc and µ k-( )P k k for >k kc (and with
=( )q r constant). In this case, we expect µ -C ℓℓ

1 for
ºℓ ℓ k rc c max and µ k-C ℓℓ for ℓ ℓc. It is conceivable

that the apparent power-law index n = 2.42 approximates the
scaling if the = –ℓ 30 600 range over which the measurements
are done contains the characteristic multipole ℓc that separates
the µ -C ℓℓ

1 low-ℓbehavior to the µ ~k- -C ℓ ℓℓ
3.67 behavior

at higher ℓ. If so, then the outer scale is (taking ℓ 100c and
~r 100max pc) ~L 10 pc, a reasonable value and a value that

is not too different from the ∼pc outer scale inferred from
Faraday rotation and depolarization of extragalactic radio
sources (Haverkorn et al. 2008). If the = –ℓ 30 600 range does
indeed correspond to the outer scale of turbulence, then
guidance from MHD turbulence modeling about the power in
slow/fast/Alfvén waves may be inappropriate. The observa-
tions may then have more to do with the large-scale physics—
for example, stellar winds, protostellar outflows, supernovae
(Lacki 2013; Padoan et al. 2016), or Galactic spiral shocks
(Kim et al. 2006)—driving the turbulence, rather than the
turbulence itself. In this case, the power-law behavior in Cℓ
should be only an approximation, and it should be found, with
improved measurement, to be shallower at lower ℓ and steeper
at higher ℓ.

If this interpretation is correct, then extrapolations of
foreground power based on measurements at  ℓ30 600
to lower ℓ may be overestimating the low-ℓ CMB foregrounds.
If so, this will be good news (Kamionkowski & Kovetz 2016)
for experiments, such as CLASS (Essinger-Hileman
et al. 2014) and LiteBird (Matsumura et al. 2013), that go to
low ℓ to seek this signal.

7.3. Warm/Neutral Transition

Another possibility is that the ISM is not described by the
conventional MHD turbulence models. For example, it is well
known that the ISM is a multi-phase medium. If there is some
instability that allows transitions, for example, between a warm
neutral phase and a cold neutral phase, then the ISM equation
of state may be more complicated than that assumed in the
standard MHD analysis (Norman & Ferrara 1996; Kritsuk &
Norman 2002). If so, then the normal modes of the system may
not necessarily correspond to the standard slow/fast/Alfvén

waves—for any value of β—but rather consist of some other
linear combinations of them.

7.4. Does Dust Trace Plasma?

The MHD approximation assumed here requires the
magnetic field lines to be tied to the plasma, and the relations
(Equations (16) and (18)) derived above are between the
magnetic field and plasma-density perturbations. Strictly
speaking, though, the quantity dn is the perturbation to the
dust density. In deriving Equations (16) and (18), we have
assumed that the dust and plasma are distributed in the same
way. Although there are reasons to suspect that this assumption
is largely valid, there are also indeed reasons to suspect that
there may be dust-plasma relative motions of a magnitude large
enough to affect our results, as we now discuss.
In a turbulent ISM, one generically expects that—at least on

the large scales considered in this paper—dust should be well-
mixed (see, e.g., Lazarian & Yan 2002). On small scales,
however, the dust grains may not necessarily be well coupled to
the gas. From a theoretical perspective, two major sources of
coupling should be considered: collisional coupling with the
atoms in the gas, and the gyromotion of charged grains in a
magnetic field (Voelk et al. 1980; Draine 1985). The product of
mean atomic velocity and the collisional drag time in a (mostly)
neutral medium is

r
= = -

-¯ ( )v t
a

m n
a n5 pc, 37H drag

g

H H
5 H

1

where we have used a grain density of r = 2.6g gcm−3, and

written the grain radius in units of =-
-a 105

5 cm, and the
hydrogen density in units of cm−3. If magnetic fields were
neglected, we would expect the dust to trace the gas for sound
waves of (reduced) wavelength = - k 1 larger than this scale.
It is easily seen that for typical ISM distances ~r 100 pc, the
condition of dust–gas coupling through collisions should be
violated at = -

-ℓ kr a n20 5
1

H, i.e., well within the range of
interest for the Planck dust-polarization maps. On the other
hand, the gyromotion of charged grains in magnetic fields
restricts the motion of dust grains in directions perpendicular to
the magnetic field on a length scale of

p
=

F
= ´ -

-
- ( )v t

m c

a m n
a n

4
7 10 pc, 38A L

g

H H

5
5

2
H

1 2

for grains with a potential F ~ =V10 0.03 statvolt generated
by the photoelectric effect. Therefore, for Alfvén waves of
(reduced) wavelength = - k 1 larger than this scale, we expect
the dust to trace the plasma. Factors of β and trigonometric
factors may appear in the coupling to the slow and fast MHD
waves, but only for extreme values would we expect the
Larmor coupling to fail.
A possible exception to the above argument is that

gyromotion couples the dust to the magnetic field in the
perpendicular direction, but not in the parallel direction. To
take an extreme case, slow waves in a low-β plasma (which
have displacements mostly along the field) with  less than
Equation (37) might primarily displace the gas, while the dust
fails to participate. If the small-scale field is itself turbulent,
however, grains may undergo changes in pitch angle and be
forced to move with the gas (Lazarian et al. 2004).

9

The Astrophysical Journal, 839:91 (12pp), 2017 April 20 Caldwell, Hirata, & Kamionkowski



From an empirical perspective, the similarity of the power
laws for the dust-intensity and dust-polarization power spectra;
the difference between the E-mode and B-mode powers (Adam
et al. 2016a, 2016b; Ade et al. 2016); the evidence for a similar
EE/BB ratio in synchrotron radiation (Page et al. 2007); and the
striking agreement of H I 21 cm and far-infrared dust maps
(Schlegel et al. 1998) all suggest that the dust and plasma
density are not grotesquely mismatched. If there is indeed some
random component dn, not correlated with the magnetic field
perturbation, then that should drive EE/BB toward unity, given
the equality of the angular averages of the ycos 2 and ysin 2
factors that multiply dn in Equations (26) and (27). The
observations thus suggest some correlation of the dust with the
magnetic field. Moreover, when considering the results below,
we should be looking not only for parameter combinations that

provide EE BB 2, but perhaps also for those that provide a
larger ratio.
We thus proceed here under the assumption that the dust

density traces the plasma density, but note that the validity of
this assumption—and the consequences of its violation—
warrant further investigation. Possibilities for testing the
hypothesis include the frequency dependence of the dust-
polarization signal (since dust segregation may depend on the
grain size), cross-correlation with synchrotron polarization
(which is emitted by the plasma, rather than the dust), and
cross-correlation with polarized-starlight surveys.

8. Model of Random Displacements
of the Magnetized Fluid

In the previous section we questioned whether the Planck
dust-polarization data could be explained in terms of MHD
turbulence and speculated that they might have more to do with
the large-scale turbulence-driving physics. Here we propose a
simple phenomenological model of fluctuations of the ISM
that, as we will see, can easily produce the observed EE/BB
ratio and TE correlation.
Instead of decomposing perturbations into slow/fast/Alfvén

MHD waves, we here simply suppose that the magnetized fluid
experiences a random displacement,

D = D D D( ) ( ) ( )x , , . 391 2 3

The continuity equation then provides the associated density
perturbation,

d
y yD= - = - D + D· ( ) ( )k

n

n
i ik cos sin , 40

0
1 2

and from the MHD equation, d D= ´ ´( )H k Hi 0 , the
associated magnetic field perturbations are,

d
y
d

q y= - = - D ( )H

H

H

H
iktan sin sin 41x y

0 0
2

d
q q y

q y y

= D

- D - D

(

) ( )

H

H
ik sin cos cos

cos cos sin . 42
0

3

1
2

2

These are then inserted into Equations (23)–(24) to determine
the E- and B-mode polarizations. To calculate the power,
we assume the displacement field has equal power in all three
components, dáD D ñ = lFi j ij , where λ now represents the
anisotropy in the displacement power.
The results for the EE/BB ratio, TE cross-correlation

coefficient, and individual powers are shown in Figure 4. This
model easily explains the =EE BB 2 ratio and positive TE
correlation with a moderately anisotropic power index
of l - 1.
To gain better insight into the physical mechanisms that

could generate a spectrum of displacements, we decomposeD
in the basis spanned by k̂, â, and q̂. We define longitudinal
displacements asD D= ( · ˆ) ˆk k and transverse displacements
Da and Dq. We immediately notice that the density
perturbation is entirely due to longitudinal displacements,

d
= - D ∣ ( )n

n
ik . 43

0

Figure 4. The EE/BB ratio (top), TE cross-correlation coefficient (middle), and
E- and B-mode powers normalized to the displacement power spectrum
(bottom) are shown for the model of fluid displacements (black), as well as the
individual contributions by the longitudinal (red) and transverse (blue)
displacements of the MHD fluid.
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Hence, the observed, strong TE cross-correlation implies that
the longitudinal modes play a significant role in the structure of
the ISM on these scales. The magnetic field fluctuations are

d
y
d

y a v

a v v

=- = - D

+ D - Dq

(

( )) ( )

H

H

H

H
iktan sin sin sin

cos cos sin 44

x y

a

0 0

d
a a a= - D - Dq( ) ( )H

H
ik sin sin cos . 45

0

2

Using the above results, we can assess the relative contribu-
tions of longitudinal- and transverse-displacement power to the
E- and B-mode powers. A similar procedure as above is carried
out to evaluate the EE/BB ratio, shown in Figure 4. The power
in transverse displacements, indicated in the figure as D̂ ,
consists of the sum ofDa andDq modes. In the context of this
model, the observations suggest a slightly anisotropic spectrum
of longitudinal displacements. Although there is some depend-
ence of the EE/BB ratio on λ, the dependence is rela-
tively weak.

In addition to being fairly simple, this random-displacement
model is also fairly robust. There is variation in EE/BB and TE
with the anisotropy parameter λ. However, the TE correlation is
generically positive and the variation of EE/BB with λ is fairly
slow. Clearly, this model falls far short of a theory. Still, it has
strengths as a working model that may help guide a more
robust astrophysical explanation for the observations.

9. Conclusions

We have demonstrated that the EE, BB, and TE power
spectra for polarized dust (and synchrotron) emission provide a
new, unique, and powerful probe of the state of the magnetized
ISM. Using a toy model of the ISM to illustrate the application
of these new tools, we calculated the contributions to E- and B-
mode powers and the TE cross-correlation from the slow, fast,
and Alfvén waves MHD waves and and provided results for
different ratios β of magnetic field to gas pressures and
different power anisotropies. We argued that the observations
—of EE/BB/TE power and the spectral index for fluctuations—
greatly reduce the available parameter space of MHD
turbulence models for the Planck dust-polarization data. We
then speculated that a full explanation of the observations may
involve the effects of the large-scale physics and developed a
simple phenomenological model, based on random displace-
ments of a magnetized fluid, that can account for the
observations.

This toy model is limited in several important ways. It
assumes a single-component ISM, in which dust traces the
plasma. The model also does not explicitly account for the
filamentary structure of the ISM. Future work will have to
address these issues. It may turn out that a more realistic model
that accounts for multicomponents and anisotropic structures
will populate the basis of MHD waves in such a way to explain
the EE/BB ratio.

Our work motivates a vast suite of additional investiga-
tions. First of all, we have used here only the fact that the TE
cross-correlation coefficient is positive. Planck has published
results for TE power, and for the TT and EE powers, but those
are separate analyses that use different cuts and assumptions
about systematic effects. It will be valuable to measure more
carefully the cross-correlation coefficient we have calculated

here. Second, we have presented results for EE/BB ratios and
the TE cross-correlation after averaging over all magnetic
field orientations because the observed EE BB 2 ratio
seems to be quite generic across the sky. Still, the
background-field orientation may differ from one small patch
of sky to another, so the EE/BB ratio and TE correlations
should also vary. If the background field has a fixed
orientation in some small patch of sky, then there should
also be a local departure from statistical isotropy within that
patch. There is also potentially interesting information in the
ℓ dependence of the Cℓ. Is it really a power law? Or does it
steepen at higher ℓ? Are the ℓ dependences of the EE, BB, TE,
and TT power spectra all the same? Or are there subtle
variations that may reflect scale-dependent anisotropies or
perhaps some other physics not accounted for here? We also
suggest further investigation of the frequency dependence of
dust-polarization maps and cross-correlation with synchro-
tron-polarization maps and starlight polarization surveys to
test the hypothesis that the dust density traces the plasma
density assumed here. Finally, although we have focused
here on Planck dust-polarization maps, similar techniques
can also be applied to dust-polarization data from specific
molecular clouds.
Fortunately, there is not only far more along these lines that

can be done with existing Planck data, but also prospects for
rich new data sets to build upon Planck’s findings.
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