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ABSTRACT: Males and females share most of their genomes and
express many of the same traits, yet the sexes often have markedly
different selective optima for these shared traits. This sexually an-
tagonistic (SA) selection generates intralocus sexual conflict that is
thought to be resolved through the evolution of sexual dimorphism.
However, we currently know little about the prevalence of SA selec-
tion, the components of fitness that generate sexual antagonism, or
the relationship between sexual dimorphism and current SA selec-
tion. We reviewed published studies to address these questions, using
424 selection estimates representing 89 traits from 34 species. Males
and females often differed substantially in the direction and mag-
nitude of selection on shared traits, although statistically significant
SA selection was relatively uncommon. Sexual selection generated
stronger sexual antagonism than fecundity or viability selection, and
these individual components of fitness tended to reinforce one an-
other to generate even stronger sexual antagonism for net fitness.
Traits exhibiting strong sexual dimorphism exhibited greater SA se-
lection than did weakly dimorphic traits, although this pattern was
not significant after we controlled for the inclusion of multiple traits
nested within species. Our results suggest that intralocus sexual con-
flict often may persist despite the evolution of sexual dimorphism.

Keywords: intralocus sexual conflict, sexually antagonistic selection,
sexual dimorphism, selection differential, selection gradient.

Introduction

Males and females share an autosomal genome and express
many of the same phenotypic traits, yet the sexes often
have markedly different fitness optima for these shared
traits. This sexually antagonistic (SA) selection generates
intralocus sexual conflict, because genes that are beneficial
when expressed in males are often detrimental when ex-
pressed in females. When manifested across multiple loci,
this genomic tug-of-war can result in a gender load that
neutralizes sexual selection and maintains genetic variation
for fitness (Fedorka and Mousseau 2004; Pischedda and
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Chippindale 2006; Foerster et al. 2007). Despite its central
role in the evolution of sexual dimorphism and its poten-
tial generality across sexual mating systems (Badyaev 2002;
Bedhomme and Chippindale 2007), intralocus conflict has
received much less attention than interlocus conflict
(Chapman et al. 2003; Arnqvist and Rowe 2005; Tregenza
et al. 2006). In part, this may reflect a general perception
that the prevalence of sex linkage, sex-limited gene ex-
pression, and sexual dimorphism indicates that intralocus
sexual conflict is transient and easily resolved. However,
recent studies suggest that sexual dimorphism often fails
to resolve intralocus sexual conflict and that fitness costs
arising from genomewide conflict can have profound ef-
fects on evolutionary dynamics (Pischedda and Chippin-
dale 2006; Bedhomme and Chippindale 2007).

By definition, intralocus sexual conflict can occur only
when the selective optimum for a trait differs between the
sexes. In sexually dimorphic species, the fact that males
and females have achieved sex-specific phenotypic ex-
pression suggests that this conflict has perhaps been largely
resolved. This raises an intriguing paradox: is sexual di-
morphism an indication of prevailing intralocus sexual
conflict, or is it the very signature that past conflict has
been resolved?

One resolution to this paradox may lie in the relation-
ship between the observed phenotypic distributions and
the corresponding selective optima for sexually dimorphic
traits (Rice and Chippindale 2001; Bedhomme and Chip-
pindale 2007; Fairbairn 2007). Intralocus sexual conflict
will be absent whenever the sexes have identical fitness
optima for a monomorphic trait (fig. 1A) or when the
observed distributions of a dimorphic trait correspond to
the phenotypic optima in each sex (fig. 1D). The former
scenario describes sexual monomorphism due to the ab-
sence of SA selection, while the latter refers to adaptive
sexual dimorphism that resolves latent intralocus sexual
conflict. Intralocus conflict persists if males and females
remain monomorphic despite SA selection (fig. 1B) or if
the degree of sexual dimorphism is less than the sexual
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Figure 1: Potential relationships between sexual dimorphism and intralocus sexual conflict. Shaded areas indicate phenotypic distributions for a
hypothetical quantitative trait, and dashed lines signify fitness functions for that trait. Arrows indicate the discrepancy between the fitness optimum
and the phenotypic mean in each sex. The magnitude of this discrepancy corresponds to the strength of directional selection, and the magnitude
of sexually antagonistic directional selection defines the magnitude of unresolved sexual conflict. Adapted from figures in Rice and Chippindale
(2001), Day and Bonduriansky (2004), and Bedhomme and Chippindale (2007).

difference in optimal trait expression (fig. 1C). Therefore,
the strength of SA selection reflects the inherent potential
for intralocus sexual conflict, while the observed degree
of sexual dimorphism describes the extent to which this
conflict has been successfully resolved by sex-limited trait
expression. These issues bear on the fundamental yet un-
answered question of whether intersexual genetic corre-
lations present a minor obstacle or a major constraint for
the evolution of sexual dimorphism (Lande 1980; Fair-
bairn and Roff 2006; Bedhomme and Chippindale 2007;
Fairbairn 2007). In this study, we use a data set generated
by an extensive literature review to address four outstand-
ing questions about SA selection and intralocus sexual
conflict.

Is SA Selection Prevalent in Wild Populations?

Although a handful of studies have measured sex-specific
fitness surfaces and interpreted their results in the context
of sexual-conflict theory (Badyaev and Martin 2000; Bad-
yaev et al. 2000; Preziosi and Fairbairn 2000; Fairbairn
2007), the extent to which intralocus sexual conflict per-
sists in natural populations is generally unknown. Previous
literature reviews have generated insight into the strength
and form of selection in wild populations (Endler 1986;
Hoekstra et al. 2001; Kingsolver et al. 2001; Hereford et

al. 2004), but no comparable analyses exist for SA selection
per se.

Is SA Selection Stronger for Reproductive Selection
than for Viability Selection?

It is widely thought that sexual dimorphism evolves pri-
marily in response to sexual selection and/or natural se-
lection arising from sex differences in reproductive roles
(Darwin 1871; Andersson 1994). For example, sexual se-
lection acting on males and fecundity selection acting on
females are two of the primary evolutionary forces thought
to underlie the evolution of sexual dimorphism in body
size (Cox et al. 2003; Fairbairn et al. 2007). Moreover,
quantitative reviews of published selection analyses indi-
cate that the strength of sexual and/or fecundity selection
typically exceeds that of viability selection in wild popu-
lations (Hoekstra et al. 2001; Kingsolver et al. 2001;
Blanckenhorn 2007). This suggests that SA selection aris-
ing from differential mating success and/or fecundity may
generally be stronger than SA selection arising from dif-
ferential viability. However, given that the evolution of
sexual dimorphism may also reflect niche divergence re-
sulting from selection for different ecological roles in males
and females (e.g., Butler et al. 2000, 2007) and that dif-
ferences in the reproductive roles of males and females
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may naturally predispose them to different mortality risks,
it is conceivable that viability selection also generates
strong sexual antagonism.

Does the Strength of SA Selection Increase
as Ontogeny Progresses?

Males and females typically diverge in reproductive roles
as ontogeny progresses. Thus, although sexual conflict may
occur during juvenile stages (Prasad et al. 2007), the overall
strength of SA selection should generally increase through
ontogeny (Rice and Chippindale 2001; Badyaev 2002; Si-
nervo and Calsbeek 2003). In fruit flies (Drosophila me-
lanogaster), genomic haplotypes that yield high fitness in
juvenile males also yield high fitness in juvenile females.
However, SA selection on adult phenotypes reverses this
pattern, such that genomes yielding high fitness in adult
females impose low fitness on adult males and vice versa
(Chippindale et al. 2001; Rice and Chippindale 2001).

Is Sexual Dimorphism Maintained
by Current SA Selection?

The magnitude of intralocus sexual conflict depends in
part on the extent to which sexual dimorphism is subject
to ongoing SA selection (fig. 1). However, it is difficult to
make general predictions about the expected relationships
between the degree of sexual dimorphism and the strength
of SA selection across traits and taxa. If sexual dimorphism
generally resolves sexual conflict, then we might predict
that large dimorphisms exhibit little current SA selection.
Instead, we would expect dimorphic traits to be main-
tained at their respective optima by sex-specific stabilizing
selection (Fairbairn 2007). If sexual conflict persists despite
the evolution of sexual dimorphism, then dimorphic traits
should be subject to current SA selection (Badyaev and
Martin 2000; Badyaev et al. 2000).

Methods
Data Collection

We reviewed published selection gradient analyses from
wild animal populations and compiled a database on the
strength and form of SA selection acting on a variety of
morphological traits. Although SA selection and sexual
dimorphism occur in plants (Bond and Maze 1999; Ash-
man 2003, 2005; Delph et al. 2004, 2005; Maad and Al-
exandersson 2004; McDaniel 2005; Delph 2007), we re-
stricted our review to studies of animals for ease of
comparison. We based this decision in part on the fact
that sexual conflict in plants often reflects SA selection on
male and female structures that are shared by the same

hermaphroditic individual (Ashman 2003, 2005; Maad and
Alexandersson 2004), which differs from the pattern of
separate sexes that characterizes our data set for animals.
We relied on the extensive compilation of Kingsolver et
al. (2001 and http://hdl.handle.net/10255/dryad.167) for
data published before 1997. We then searched subsequent
issues of American Naturalist, Evolution, and the Journal
of Evolutionary Biology for selection analyses conducted in
wild populations. We supplemented these targeted reviews
with an online search of a broader set of journals, using
appropriate keywords (sexual conflict, sexually antagonis-
tic selection, selection differential, and selection gradient).
Our review was not intended to be exhaustive but rather
to generate a large data set containing a variety of traits
and taxa.

In our data set, we included only those studies that
simultaneously measured selection on shared traits in both
sexes in the wild. For each study, we recorded (1) study
organism, (2) episode of selection (juvenile viability, adult
viability, fecundity, mating success, net selection integrat-
ing multiple selective episodes), (3) traits under selection,
(4) mean value of the traits in each sex before selection,
and (5) standardized linear selection differentials and gra-
dients in each sex. Whenever possible, we recorded sample
sizes and standard errors for selection estimates in each
sex. When multiple selective episodes were measured in
the same study, we calculated net selection across these
episodes by assuming that individual selection differentials
and gradients were additive (Arnold and Wade 1984). Al-
though this additive partitioning is subject to assumptions
about the constancy of phenotypic variance across selective
episodes (Wade and Kalisz 1989), it nonetheless provides
a useful approximation of overall SA selection arising from
multiple fitness components (Badyaev and Martin 2000;
Badyaev et al. 2000; Ward 1988).

We also used mean trait values in each sex to calculate
an index of sexual dimorphism (SD):

D mean trait value in the larger sex .
mean trait value in the smaller sex

This index is based on that of Lovich and Gibbons (1992),
the preferred measure of SD in size and other morpho-
logical traits (Smith 1999; Cox et al. 2003; Fairbairn et al.
2007). Data are available in appendixes A and B in the
online edition of the American Naturalist.

Measuring SA Selection

Linear selection differentials and gradients measure the
strength of directional selection acting on the mean phe-
notype, standardized to a mean of 0 in units of standard
deviations and estimated separately within each sex. Se-



lection differentials are regression coefficients derived from
univariate regressions of fitness against a single trait. As
such, they cannot distinguish between direct selection act-
ing on the trait of interest and indirect selection acting
through correlated traits (Lande and Arnold 1983; Fair-
bairn and Reeve 2001). Selection gradients are partial-
regression coefficients estimated from multivariate regres-
sions; they quantify the intensity of selection acting on a
trait while holding constant the variation due to pheno-
typic correlations with other traits included in the analysis.
Negative values of either gradients or differentials indicate
selection favoring a decrease in mean trait value, whereas
positive values indicate selection for an increase in mean
trait value. Since trait values are independently standard-
ized to units of standard deviation within each sex, there
is no inherent tendency for selection differentials and gra-
dients to differ between sexes, assuming equal variance
between sexes. Given that our analyses focus on traits that
are often highly dimorphic between sexes, standardizing
to unit variance is more appropriate than standardizing
to trait means within each sex, as has been recommended
for other purposes (Hereford et al. 2004).

Previous studies have shown that the strength and di-
rection of differentials and gradients are typically highly
congruent across traits and taxa (Hoekstra et al. 2001;
Kingsolver et al. 2001). For each question about SA se-
lection, we initially performed separate analyses, using ei-
ther univariate selection differentials or multivariate se-
lection gradients. We always obtained qualitatively
identical results with both approaches, so we report only
the results of pooled analyses that include both differentials
and gradients. When both were available for a given trait,
we included only the multivariate selection gradients in
our pooled analyses. Combining differentials and gradients
yielded a larger sample of estimates across a greater di-
versity of traits and taxa.

The definition and measurement of SA selection are
subject to debate, so we used several different methods to
estimate SA selection, with the explicit goal of describing
the potential for intralocus sexual conflict. To quantify
overall sexual asymmetries in selection, we calculated the
difference between male and female selection differentials
or gradients. Thus, if directional selection were signifi-
cantly positive (e.g., +0.2) for males and negative (—0.2)
for females, the resultant difference (0.4) would presum-
ably indicate strong SA selection and high potential for
intralocus conflict. However, consider a situation where
directional selection on males is strong (+0.4), yet direc-
tional selection on females is absent (0). An identical es-
timate of SA selection (0.4) would be more difficult to
interpret with respect to intralocus sexual conflict, since
the absence of selection on females would presumably al-
low the genomes of both sexes to evolve in parallel in
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response to selection acting solely on males (Lande 1980).
Of course, this would not be the case if females were
subject to strong stabilizing (i.e., negative quadratic) se-
lection in addition to the absence of directional selection.
Moreover, the absence of selection on females could still
generate intralocus sexual conflict by sheltering alleles that
subsequently incur a fitness cost when expressed in sons
(Day and Bonduriansky 2004). Finally, we could imagine
a situation in which selection occurs in the same direction
and is strong in both males (+0.6) and females (+0.2),
again resulting in an estimate of 0.4 for SA selection. How-
ever, this estimate may be misleading in its implication of
intralocus sexual conflict, given that selection is acting
similarly in each sex. For this reason, we repeated all of
our analyses using a modified data set in which we assigned
a value of 0 to all estimates for which the direction of
selection was the same in each sex, such that any resultant
patterns would be driven by purely antagonistic directional
selection. In addition to our quantitative measures
(above), we qualitatively assessed the presence or absence
of SA selection using several criteria: situations in which
males and females differed in (1) the sign (direction) of
selection differentials or gradients, (2) the direction of
selection when the magnitude of selection was at least 0.1
in each sex (an arbitrary benchmark of strong selection),
and (3) the direction of selection when differentials or
gradients were statistically significant.

Statistical Analyses

Many of the studies that we reviewed contributed several
estimates of selection involving multiple traits, replicates,
and selection episodes, such that individual data points
were clearly not independent in our analyses. When mul-
tiple temporal or spatial replicates were reported for a
given trait or species (e.g., selection measured in multiple
years or across several populations), we calculated the
overall mean intensity of selection in each sex by weighting
each selection differential by sample size and averaging
across replicates. To correct for nonindependence arising
from multiple estimates of selection in the same study (e.g.,
multiple traits within species), we used linear mixed mod-
els with species and trait (nested within species) as random
effects and predictor variables (e.g., selective episode, on-
togenetic stage, and dimorphism category) as fixed effects.
Distributions of quantitative SA selection estimates were
right-skewed, so we log,,-transformed them before linear
mixed model analysis. We supplemented these analyses
with nonparametric tests for differences in median SA se-
lection intensity among the same categorical predictor var-
iables. Finally, we used likelihood ratio tests to compare
the frequency of SA selection (classified categorically as
present or absent on the basis of the first two criteria
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discussed above) across these categories. Note that neither
our nonparametric tests nor our categorical analyses ac-
count for statistical nonindependence due to multiple
traits or selective episodes within species.

Large sample sizes are often required for reliable mea-
surement of selection in the wild, and previous reviews
have suggested that publication bias and measurement er-
ror may result in bias toward larger estimates of selection
at low sample sizes (Kingsolver et al. 2001). We did not
find any overall trend for the magnitude of SA selection
to decrease with sample size (r*<0.01, P = .14, n =
416; data log,, transformed). Likewise, the strength of SA
selection was unrelated to sample size for sexual selection
(r<0.01, P=.98, n=90) and fecundity selection
(r* = 0.03, P = .084, n = 103). However, SA selection
decreased as a function of sample size when only estimates
of viability selection were considered (r* = 0.10, P<
.001, n = 156). To address this potential bias, we supple-
mented our linear mixed model analyses (above) with
identical models in which we weighted observations by
sample size. Although it would be preferable to weight
estimates by the inverse of their standard error, we chose
to weight them by sample size because standard errors
were reported for only 29% (123 of 424) of all selection
estimates. Weighting observations by sample size never
changed the qualitative nature of our results, so we report
the results from unweighted analyses unless otherwise
noted.

Results
Is SA Selection Prevalent in Wild Populations?

We compiled a data set of 424 selection estimates repre-
senting 89 traits in 34 species (table 1; app. A). Across this
entire data set, the median of SA selection, calculated as
the difference between male and female selection estimates,

was 0.13 (fig. 2A). After controlling for spatial and tem-
poral replication within studies (n = 203 estimates; app.
B), we obtained a slightly larger median estimate of 0.17
(fig. 2B). Moreover, 25% of the observations exceeded 0.33
in magnitude for both the full and the reduced data sets.
Considering only those estimates in which the direction
of selection was opposite in males and females, we found
substantially larger median values of 0.30 for SA selection
across all studies (n = 175; fig. 2A) and of 0.31 after cor-
recting for spatial and temporal replication (n = 80; fig.
2B).

If we define SA selection as a difference in the direction
of selection on males and females, then 41% (175 of 424)
of the estimates exhibited SA selection when all temporal
and spatial replicates were considered. When replication
within studies was controlled for, 39% (80 of 203) of the
estimates exhibited SA selection. Considering only those
studies in which the magnitudes of opposing selection
differentials and gradients were at least 0.1 in each sex, we
obtained a more conservative estimate of the frequency of
SA selection, 17% in both our full data set (73 of 424)
and after controlling for replication (34 of 203). Finally,
10% (43 of 424) of the observations in our full data set
consisted of statistically significant selection in one sex and
opposing selection (even if nonsignificant) in the opposite
sex. However, only 3% (13 of 424) of all observations
provided evidence of statistically significant selection in
opposite directions in each sex, and seven of these esti-
mates were derived from a single species (Carpodacus mex-
icanus; Badyaev and Martin 2000; Badyaev et al. 2000).

Is SA Selection Stronger for Reproductive Selection
than for Viability Selection?

Across 164 observations representing 79 traits from 30
species, median SA selection was weakest for viability se-
lection, intermediate for fecundity selection, and strongest

Table 1: Summary of literature review data set, partitioned by taxon and selective episode

Vertebrates Invertebrates All taxa

Selective episode Estimates  Traits = Species Estimates  Traits  Species Estimates  Traits  Species
Viability selection 117 46 14 39 12 4 156 58 18
Fecundity selection 101 36 9 4 3 2 105 40 11
Sexual selection 77 17 7 18 10 8 95 27 15
Fecundity/sexual selection 8 8 3 20 10 3 28 18 6
Net selection 14 (34) 7 (34) 4 (12) 26 (13) 7 (13) 1(5) 40 (47) 14 (47) 5(17)

All selective episodes 317 68 22 107 21 12 424 89 34

Note: “Estimates” refers to the total number of available observations and includes temporal and spatial replicates of selection on individual traits (i.e., the
“full data set”). “Traits” refers to the total number of traits measured across all species and also corresponds to the number of observations after temporal

and spatial replicates are removed. “Fecundity/sexual selection” refers to data for which sexual antagonism was assessed on the basis of fecundity of females
and mating success of males. For net selection, numbers not in parentheses report estimates from original publications and include multiple spatial and

temporal replicates; numbers in parentheses include our additive estimates of net selection and report only one estimate per trait to correct for temporal and

spatial replication.



1501 [ Concordant

125 Il Antagonistic

100

50+
251
0-

Number of Observations
N
i

0.10.2030405060.708091.0
60—

501
407
301

B 1 Concordant
Il Antagonistic

20

101

Number of Observations

0.10.20.30405060.708091.0
SA Selection, | B, - B¢

Figure 2: Frequency distributions for sexual differences in directional
selection differentials and gradients across all spatial and temporal rep-
licates (A) and after removing spatial and temporal replicates within
species (B). Data are separated into measurements in which males and
females differed in the direction of selection (antagonistic, filled bars) or
in which selection acted in the same direction in both sexes (concordant,
open bars). Data are binned at intervals of 0.1 standard deviations (bins
contain all values below axis value), and plots are truncated at 1.0 for
visual clarity. SA = sexually antagonistic.

for sexual and net selection (Kruskal-Wallis: x> = 22.83,
P <.0001; fig. 3A). Mean SA selection followed a similar
pattern even after species and trait (nested within species)
were included as random factors (linear mixed model:
F = 15.80, df = 3,116, P<.0001; fig. 3B). This result re-
mained highly significant even after selection estimates
were weighted by sample size (linear mixed model: F =
18.19, df = 3,114, P < .0001). To verify that these patterns
were not simply driven by sexual differences in the relative
strength of selection acting in the same direction, we re-
peated these analyses after assigning a value of 0 to all
estimates in which the direction of selection was the same
in each sex. These analyses verified that sexual selection
and net selection exhibited the greatest sexual antagonism
(Kruskal-Wallis: x> = 13.12, P = .004; linear mixed
model weighted by sample size: F = 9.37, df = 3,114,
P < .0001). Moreover, the proportion of observations in
which selection acted in opposite directions on males and
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females was significantly higher for estimates of sexual and
net selection than for fecundity or viability selection (like-
lihood ratio: x* = 11.38; P = .001; fig. 3C). This result
approached statistical significance even when we used a
more stringent categorization of sexual antagonism as se-
lection acting in opposite directions and with a magnitude
of at least 0.1 in each sex (x> = 6.95, P = .073).

When we pooled estimates of fecundity and sexual se-
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lection into a single category reflecting differential repro-
duction, we found that net selection generated greater SA
than reproductive selection or viability selection alone
(Kruskal-Wallis: x* = 17.76, P <.0001). This result was
consistent regardless of whether we analyzed all available
data (n = 197 observations, 85 traits, 34 species; linear
mixed model: F = 19.60, df = 2,137, P < .0001; weighted
by sample size: F = 22.03, df = 2,117, P<.0001) or con-
ducted more conservative analyses in which we (1) in-
cluded only the subset of studies for which both repro-
ductive and viability selection were measured on the same
traits (n = 147 observations, 41 traits, 14 species; linear
mixed model: F = 18.85, df = 2,117, P<.0001) or (2)
included only those studies for which net selection was
estimated directly by the authors in nonadditive fashion
(n = 51 observations, 12 traits, 3 species; linear mixed
model: F = 4.35, df = 2,37, P = .02). After assigning a
value of 0 to all observations in which the direction of
selection was the same in each sex, we still observed the
greatest SA arising from net selection and the lowest SA
arising from viability selection (Kruskal-Wallis: x* =
6.33, P = .042; linear mixed model weighted by sample
size: F = 12.95, df = 2,117, P<.0001).

Does the Strength of SA Selection Increase
as Ontogeny Progresses?

We compared the strength of SA selection as a function
of ontogeny across 149 observations representing 78 traits
from 31 species. We did not find an overall difference in
the median strength of SA selection when comparing se-
lection for juvenile viability with selection for adult via-
bility (Wilcoxon: x*> = 2.12, P = .15) or selection for
adult reproduction (Wilcoxon: x> = 0.06, P = .82). We
obtained similar results when comparing mean SA selec-
tion between ontogenetic stages after accounting for spe-
cies and traits (nested within species) as random factors
(linear mixed models: P> .3 for all comparisons). After
categorizing SA selection binomially (present if the direc-
tion of selection differed between sexes, absent otherwise),
we actually found a slightly greater frequency of SA se-
lection resulting from juvenile viability relative to adult
viability (likelihood ratio: x*> = 3.91, P = .048). This
weak effect was also observed when we used this criterion
to assign a value of 0 to instances in which SA selection
was absent and when we retained quantitative measures
when SA selection was present (Wilcoxon: x* = 4.09,
P = .043; linear mixed model weighted by sample size:
F = 3.50, df = 1,38, P = .069). In part, this unexpected
result may reflect the fact that we obtained very few es-
timates of juvenile viability selection (14 traits in four
species) after controlling for spatial and temporal repli-
cation within studies. These patterns were not evident

when we used a more stringent criterion that considered
SA selection to be present only when the magnitude of
selection was at least 0.1 in each sex (P < 4 for all analyses).
Moreover, we did not detect any difference in the fre-
quency or magnitude of SA selection when comparing
juvenile viability and adult reproduction with any of the
above methods (P < .3 for all analyses).

After including all replicates within studies, we found
no support for an ontogenetic component to SA selection
using estimates of juvenile and adult viability that were
measured for the same trait in the same species (Wilcoxon
matched-pairs test: P = 43, n = 24 comparisons). How-
ever, when we conducted a paired comparison of juvenile
viability selection and adult reproductive selection, we
found slightly stronger SA selection during adult repro-
duction (Wilcoxon matched-pairs test: P = .044, n =
19 comparisons). This result provides weak support for a
tendency toward an increase in SA selection as ontogeny
progresses, although it is derived from only 11 indepen-
dent traits in two species.

Is Sexual Dimorphism Maintained
by Current SA Selection?

Opverall, the degree of SA selection was positively correlated
with the magnitude of sexual dimorphism (SD), although
most of the variance in SA selection was unrelated to SD
(r* = 0.04, P = .002, n = 232 observations; data log,,
transformed). However, we found no evidence of a rela-
tionship between SA selection and SD after correcting for
temporal and spatial replication and including species and
trait (nested within species) as random factors (linear
mixed model: F = 1.91,df = 1,60, P = .17, n = 138 ob-
servations, 55 traits, 22 species). We obtained the same
result even when considering only estimates of net selec-
tion (linear mixed model: F = 0.67, df = 1,22, P = 42,
n = 25 traits, 12 species), which shows the strongest sex-
ual antagonism (above) and presumably provides the best
measure of total selection for SD.

We also compared the median intensity of SA selection
across three arbitrary categories corresponding to slight
(SD < 0.03), moderate (0.03 <SD <£0.10), or strong
(SD > 0.10) SD. We classified the direction of SA selection
as positive if it favored the observed dimorphism and neg-
ative if it opposed the dimorphism and then used Wil-
coxon signed-rank tests to determine whether median SA
selection differed from 0 within each category (fig. 4A).
The median magnitude of SA selection did not differ from
0 for traits exhibiting slight dimorphism (W = 16, n =
36, P = .81) but acted in the direction of observed sexual
differences for both moderate (W = 340, n = 68, P =
.037) and strong dimorphisms (W = 130.5, n = 34,
P = .017). However, these latter two comparisons are only
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Figure 4: Sexually antagonistic (SA) selection as a function of sexual
dimorphism (SD), categorized as slight (SD < 0.03), moderate (0.03 <
SD £0.1), and strong (SD>0.1). A, Box-and-whisker plots (median,
twenty-fifth to seventy-fifth percentile, and tenth to ninetieth percentile)
expressing SA selection as the difference between selection gradients in
males and females. Estimates were assigned positive values when SA
selection favored an increase in observed sexual dimorphism. Statistics
are reported for Wilcoxon signed-rank tests to determine whether median
SA selection differed from 0 within each category. B, Least squares means
(+1 SE) of SA selection estimated from linear mixed models including
species and trait (nested within species) as random effects. Data were
log,, transformed before analysis, but actual values are shown for illus-
trative purposes. C, Frequency of SA selection expressed as the proportion
of observations in which selection acted in opposite directions in males
and females and favored the observed dimorphism.

marginally significant after adjustment of the overall sig-
nificance level for three independent comparisons (Bon-
ferroni correction: o = 0.017). Moreover, we found no
evidence of a difference in the strength of SA selection
across these categories after including species and trait
(nested within species) as random factors (linear mixed
model: F = 0.23, df = 1,10, P = .80, n = 138 observa-
tions, 55 traits, 22 species; fig. 4B). The proportion of
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observations in which selection acted in opposite direc-
tions on males and females did not differ across these SD
categories (likelihood ratio: x> = 2.26, P = .32; fig. 4C),
nor did it differ when SA selection was recognized only
when the magnitude of opposing selection was at least 0.1
in each sex (likelihood ratio: x* = 0.81, P = .67). Finally,
we found no difference in SA selection across these SD
categories when assigning a value of 0 when the direction
of selection was the same in each sex (P> .6 for Kruskal-
Wallis and linear mixed model analyses).

For studies involving at least three independent mor-
phological traits, we ranked the direction and intensity of
SA selection and the direction and magnitude of SD for
each trait and then estimated the slope of the relationship
between these ranks within each species (see Badyaev et
al. 2000). When multiple selective episodes or spatial/tem-
poral replicates were available for a given species, we used
estimates of net selection or the mean intensity of SA
selection across episodes and replicates to avoid bias due
to multiple measures from the same system. Each of the
eight studies that we analyzed revealed a positive corre-
lation between the degree of trait dimorphism and the
intensity of SA selection. While these rank-order corre-
lations were generally not significant within each species
because of the small number of traits under consideration
(range 3-8), the overall mean slope across studies was
significantly greater than 0 (mean = 1 SD = 0.62 +
0.28, t = 6.28, P< .001).

Discussion
Is SA Selection Prevalent in Wild Populations?

The median difference in selection between males and
females was 0.17 across all traits and studies after we con-
trolled for spatial and temporal replication. This is anal-
ogous to selection driving the sexes apart by 0.17 standard
deviations per selective episode. However, we emphasize
that our measure of SA selection does not describe within-
generation change in trait means in the same manner as
a selection differential. One additional caveat to this anal-
ysis is that our use of absolute values to derive the fre-
quency distribution of SA selection is subject to bias that
will systematically overestimate the strength of selection
(Hereford et al. 2004). Even if selection were entirely ab-
sent, measurement error would produce a scatter of pos-
itive and negative estimates converging on 0, and the trans-
formation of this random error to absolute values would
give the erroneous impression that selection intensity was
greater than 0 (Hereford et al. 2004).

As a supplemental approach, we categorized SA selec-
tion as a difference in the direction of selection in each
sex and considered only those instances in which the
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strength of such antagonism was at least 0.1 in each sex.
Using this approach, we found that 17% of available es-
timates exhibited sexual antagonism (fig. 2). When we
considered only these estimates, the median strength of
SA selection was 0.3 across all traits. Thus, it appears that
SA selection is common (though clearly not ubiquitous)
and often quite strong in wild populations. However, we
note that only 3% of available estimates reported statis-
tically significant selection that differed in direction be-
tween the sexes. This apparent lack of support for SA
selection may, in part, reflect the fact that most studies
did not explicitly test for sexual differences in selection
(i.e., sex-by-trait interactions that influenced fitness). In
many cases, such interactions could be present even when
selection estimates are not significant within either sex. We
suggest that future studies should explicitly test for sexual
differences in the form and intensity of selection. More-
over, it is difficult to assess the actual prevalence of SA
selection even within the selection literature, given that
many studies of highly dimorphic traits focus only on
selection in one sex (e.g., 14 of 50 studies in the data set
of Kingsolver et al. [2001] focus on a single sex), whereas
many studies of monomorphic traits combine males and
females for analysis (e.g., 16 of 50 studies in this same
data set pool sexes for analysis).

Is SA Selection Stronger for Reproductive Selection
than for Viability Selection?

Selection arising from variance in reproduction (i.e., sexual
and fecundity selection) exhibited a greater magnitude of
sexual antagonism than selection arising from differential
viability. This trend was driven primarily by estimates of
sexual selection, which generated stronger sexual antag-
onism than either viability or fecundity selection (fig. 3).
This result was consistent across all available data (fig. 3A),
after effects due to species and multiple traits nested within
species were removed (fig. 3B), and when SA selection was
dichotomized on the basis of the direction of selection in
each sex (fig. 3C). These results agree with previous anal-
yses suggesting that selection is generally stronger when
arising from differential mating success and fecundity than
when arising from differential viability (Hoekstra et al.
2001; Kingsolver et al. 2001; Blanckenhorn 2007).
Estimates of net selection incorporating multiple selec-
tive episodes generally revealed stronger sexual antagonism
than estimates that decomposed selection into individual
episodes (i.e., viability, fecundity, and mating success). Al-
though the magnitude of net SA selection was only slightly
greater than that arising from sexual selection alone, it is
interesting that the additional contributions of fecundity
and viability selection tended to exacerbate sexual antag-
onism rather than to counteract the effects of sexual se-

lection. This underscores the importance of integrating
multiple selective episodes to estimate net lifetime fitness
when assessing SA selection in wild populations (Fairbairn
2007).

Does the Strength of SA Selection Increase
as Ontogeny Progresses?

We did not find an overall difference in the strength of
SA selection when comparing selection for juvenile via-
bility with selection for adult viability or adult reproduc-
tion. However, when we conducted a paired analysis com-
paring juvenile viability selection with adult reproductive
selection within a subset of species for which both esti-
mates were available, we found significantly stronger SA
directional selection during adult reproduction. This pro-
vides some support for a tendency toward increasing SA
selection as ontogeny progresses, a result predicted by the-
ory and observed empirically in some species (Chippindale
et al. 2001; Rice and Chippindale 2001). However, this
result is derived from only 11 independent traits in two
species. In general, estimates of sex-specific juvenile se-
lection were relatively uncommon. This may reflect a ten-
dency for researchers to combine data from juvenile males
and females for analysis, either because sex identification
is problematic before adulthood (Merild et al. 1998) or
because SA selection is either assumed or verified to be
absent. Any such bias could prevent nonsignificant SA
selection from being reported for juveniles.

Is Sexual Dimorphism Maintained
by Current SA Selection?

Opverall, the degree of SA selection was positively correlated
with the magnitude of sexual dimorphism in morpholog-
ical traits. Monomorphic or weakly dimorphic traits ex-
hibited no consistent pattern of SA selection, whereas
moderate and highly dimorphic traits were subject to cur-
rent SA selection that favored increased sexual dimorphism
(fig. 4A). This suggests that sexual dimorphism is often
subject to ongoing SA selection, possibly indicating a gen-
eral potential for unresolved intralocus sexual conflict
across diverse traits and taxa. However, this result was not
observed after we controlled for multiple replicates and
traits within studies (fig. 4B). Thus, our results are am-
biguous with respect to the relationship between sexual
dimorphism and current selection. Recent studies are also
equivocal on this issue. Positive correlations between pop-
ulation fitness and sexual dimorphism are consistent with
the interpretation that the evolution of sexual dimorphism
liberates seed beetles (Callosobruchus maculatus) from the
gender load imposed by SA selection (Rankin and Arnqvist
2008). However, a suite of experiments on fruit flies (Dro-



sophila melanogaster) suggest that intralocus sexual conflict
persists despite the evolution of sexual dimorphism (Pis-
chedda and Chippindale 2006; Bedhomme and Chippin-
dale 2007).

Case Studies of SA Selection and
Intralocus Sexual Conflict

Our analyses suggest that SA selection and resultant in-
tralocus sexual conflict may be common in wild popula-
tions, but it is difficult to evaluate the prevalence of the
respective scenarios in figure 1 on the basis of these data
alone. Interestingly, case studies of SA selection provide
empirical examples of each of these hypothetical scenarios.
As might be intuitively predicted, sexual monomorphism
often corresponds to the absence of SA selection (fig. 1A).
For example, sexually monomorphic traits experience sim-
ilar net selective pressures in male and female house
finches (Carpodacus mexicanus), whereas sexually dimor-
phic traits are subject to SA selection (Badyaev and Martin
2000; Badyaev et al. 2000).

Sexual monomorphism may also persist despite strong
SA selection favoring dimorphism (fig. 1B). Collared fly-
catcher (Ficedula albicollis) males and females are similar
in size despite SA selection favoring small size in male
nestlings and large size in female nestlings (Merild et al.
1997). This suggests that differential juvenile viability leads
to adult sexual dimorphism that is purely phenotypic, in
the sense that it is perpetually eroded by the strong in-
tersexual heritability of size such that each new generation
reverts to monomorphism (Merild et al. 1997, 1998). How-
ever, the absence of sexual dimorphism in this case may
actually reflect temporal variation in selection and/or se-
lection on the nonheritable portion of phenotypic varia-
tion rather than unresolved conflict per se (Kruuk et al.
2001).

Water striders (Aquarius remigis) exhibit moderate sex-
ual dimorphism in body size, and net lifetime fitness func-
tions indicate that stabilizing selection maintains male and
female body sizes at their respective phenotypic optima
(Preziosi and Fairbairn 2000; Fairbairn 2007). In this ex-
ample, current sexual dimorphism appears to resolve sex-
ual conflict over body size (fig. 1D). Yellow-pine chip-
munks ( Tamias amoenus) also exhibit moderate sexual size
dimorphism, but in this case, only males appear to be at
their ecological optimum for body size. Females remain
under directional selection for increased size (Schulte-
Hostedde et al. 2002), suggesting that unresolved sexual
conflict is impeding the evolution of adaptive sexual size
dimorphism by holding females below their ecological fit-
ness optimum.

In other dimorphic species, directional selection is
strong in both sexes and acts in opposite directions, in-
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dicating that sexual conflict persists despite the evolution
of sexual dimorphism (fig. 1C). Fitness of male zebra
finches (Taeniopygia guttata) increases with the intensity
of red bill color because of strong female preference for
redder bills, whereas females with red bills experience re-
duced survival relative to those with orange bills (Price
and Burley 1994). Similarly, body size and bill morphology
are subject to SA selection in the house finch (C. mexi-
canus; Badyaev and Martin 2000; Badyaev et al. 2000).
Despite the evolution of sexual dimorphism, both sexes
remain far from their ecological optima, presumably be-
cause of unresolved sexual conflict arising from strong
intersexual genetic correlations (Badyaev and Martin
2000).

Sexual conflict may also occur at loci for discrete poly-
morphisms. Insular populations of adders (Vipera berus)
express a dorsal color polymorphism, with individuals ex-
hibiting either melanistic or “zig-zag” patterns (Forsman
1995). Whereas zig-zag males have higher annual survival
than melanistic males, the pattern is reversed in females.
Other examples of sex-specific selection on color poly-
morphisms occur in marine isopods (Jormalainen et al.
1995), butterflies (Kingsolver 1996), grasshoppers (Fors-
man and Appelqvist 1999), and lizards (Forsman and
Shine 1995), suggesting that color polymorphism may of-
ten be a transient evolutionary stage in the resolution of
sexual conflict via sex linkage or hormonal regulation of
sexual dichromatism.

Sexual antagonism may also result from correlational
selection acting on trait combinations rather than on in-
dividual traits per se. Viability selection favors a late date
of eclosion to the adult stage in both male and female
water striders (A. remigis), but whereas males that eclose
late in the season attain maximal fitness at small body
sizes, females that eclose late attain maximal fitness at large
body sizes (Ferguson and Fairbairn 2000). Viability selec-
tion favors a negative phenotypic correlation between
stamina and immune function in male lizards (Anolis sa-
grei), whereas females experience selection for increased
stamina and immune function (Calsbeek and Bonneaud
2008). A similar situation is observed in the serin (Serinus
serinus), where viability selection favors a negative phe-
notypic correlation between wing and tail lengths in males
and a positive association between these same traits in
females (Bjorklund and Senar 2001). Male and female
dark-eyed juncos (Junco hyemalis) experience antagonistic
selection on wing length, but selection acting on the in-
teraction between wing length and the size of white tail
patches favors positive trait correlations in each sex
(McGlothlin et al. 2005). In this example, correlational
selection may mitigate intralocus conflict by favoring sim-
ilar genetic correlations in each sex, despite SA selection
on individual traits.
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Although most selection studies focus on particular
traits, perhaps the most valuable information regarding
intralocus sexual conflict will come from investigations of
the intersexual heritability of overall fitness. Several recent
studies have shown that genomewide sexual conflict can
result in the production of high-quality offspring of the
same sex but low-quality offspring of the opposite sex
(Fedorka and Mousseau 2004; Pischedda and Chippindale
2006; Foerster et al. 2007). This phenomenon may be a
general feature of sexual mating systems, potentially over-
whelming the fitness benefits of sexual selection (Pis-
chedda and Chippindale 2006) and maintaining genetic
variation for fitness even in the face of strong selection
(Foerster et al. 2007). With genetic paternity analyses now
commonplace, it should be possible to test for reversed
inheritance of fitness across sexes in many wild popula-
tions. We predict that these approaches will reveal that SA
selection and resultant intralocus sexual conflict are prev-
alent across diverse taxa and mating systems, with im-
portant implications for a variety of evolutionary
processes.
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