
Dartmouth College
Dartmouth Digital Commons

Open Dartmouth: Faculty Open Access Articles

2009

The Number of Permutations Realized By a Shift
Sergi Elizalde
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Mathematics Commons

This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty
Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

Recommended Citation
Elizalde, Sergi, "The Number of Permutations Realized By a Shift" (2009). Open Dartmouth: Faculty Open Access Articles. 2072.
https://digitalcommons.dartmouth.edu/facoa/2072

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/231128183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/2072?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


THE NUMBER OF PERMUTATIONS REALIZED BY A SHIFT

SERGI ELIZALDE

Abstract. A permutation π is realized by the shift on N symbols if there is an infinite word
on an N -letter alphabet whose successive left shifts by one position are lexicographically in the
same relative order as π. The set of realized permutations is closed under consecutive pattern
containment. Permutations that cannot be realized are called forbidden patterns. It was shown
in [1] that the shortest forbidden patterns of the shift on N symbols have length N + 2. In this
paper we give a characterization of the set of permutations that are realized by the shift on N
symbols, and we enumerate them according to their length.

1. Introduction and definitions

The original motivation for this paper comes from an innovative application of pattern-avoiding
permutations to dynamical systems (see [1, 3]), which is based on the following idea. Given a
piecewise monotone map on a one-dimensional interval, consider the finite sequences (orbits) that
are obtained by iterating the map, starting from any point in the interval. It turns out that the
relative order of the entries in these sequences cannot be arbitrary. This means that, for any given
such map, there will be some order patterns that will never appear in any orbit. The set of such
patterns, which we call forbidden patterns, is closed under consecutive pattern containment. These
facts can be used to distinguish random from deterministic time series.

A natural question that arises is how to determine, for a given map, what its forbidden patterns
are. While this problem is wide open in general, in the present paper we study it for a particular
kind of maps, called (one-sided) shift systems. Shift systems are interesting for two reasons. One
one hand, they exhibit all important features of low-dimensional chaos, such as sensitivity to initial
conditions, strong mixing, and a dense set of periodic points. On the other hand, they are natural
maps from a combinatorial perspective, and the study of their forbidden patterns can be done in an
elegant combinatorial way.

Forbidden patterns in shift systems were first considered in [1]. The authors prove that the
smallest forbidden pattern of the shift on N symbols has length N + 2. They also conjecture that,
for any N , there are exactly six forbidden patterns of minimal length. In the present paper we give
a complete characterization of forbidden patterns of shift systems, and enumerate them with respect
to their length.

We will start by defining consecutive pattern containment, forbidden patterns in maps, and shift
systems, and introducing some notations and background. In Section 2 we give a formula for the
parameter that determines how many symbols are needed in order for a permutation to be realized
by a shift. This characterizes allowed and forbidden patterns of shift maps. In Section 3 we give
another equivalent characterization involving a transformation on permutations, and we prove that
the shift on N symbols has six forbidden patterns of minimal length N + 2, as conjectured in [1].
In Section 4 we give a formula for the number of patterns of a given length that are realized by the
binary shift. In Section 5 we generalize the results from Section 4 to the shift on N symbols, for
arbitrary N . We end the paper mentioning some conjectures and open questions in Section 6.

2000 Mathematics Subject Classification. Primary 05A05; Secondary 05A15, 37M10, 94A55.
Key words and phrases. shift, consecutive pattern, forbidden pattern.

1



2 SERGI ELIZALDE

1.1. Permutations and consecutive patterns. We denote by Sn the set of permutations of
{1, 2, . . . , n}. If π ∈ Sn, we will write its one-line notation as π = [π(1), π(2), . . . , π(n)] (or π =
π(1)π(2) . . . π(n) if it creates no confusion). The use of square brackets is to distinguish it from the
cycle notation, where π is written as a product of cycles of the form (i, π(i), π2(i), . . . , πk−1(i)), with
πk(i) = i. For example, π = [2, 5, 1, 7, 3, 6, 4] = (1, 2, 5, 3)(4, 7)(6).

Given a permutation π = π(1)π(2) . . . π(n), let D(π) denote the descent set of π, that is, D(π) =
{i : 1 ≤ i ≤ n− 1, π(i) > π(i + 1)}. Let des(π) = |D(π)| be the number of descents. The Eulerian
polynomials are defined by

An(x) =
∑

π∈Sn

xdes(π)+1.

Its coefficients are called the Eulerian numbers. The descent set and the number of descents can be
defined for any sequence of integers a = a1a2 . . . an by letting D(a) = {i : 1 ≤ i ≤ n−1, ai > ai+1}.

Let X be a totally ordered set, and let x1, . . . , xn ∈ X with x1 < x2 < · · · < xn. Any permutation
of these values can be expressed as [xπ(1), xπ(2), . . . , xπ(n)], where π ∈ Sn. We define its reduction
to be ρ([xπ(1), xπ(2), . . . , xπ(n)]) = [π(1), π(2), . . . , π(n)] = π. Note that the reduction is just a
relabeling of the entries with the numbers from 1 to n, keeping the order relationships among them.
For example ρ([4, 7, 1, 6.2,

√
2]) = [3, 5, 1, 4, 2]. If the values y1, . . . , yn are not all different, then

ρ([y1, . . . , yn]) is not defined.
Given two permutations σ ∈ Sm, π ∈ Sn, with m ≥ n, we say that σ contains π as a consecutive

pattern is there is some i such that ρ([σ(i), σ(i + 1), . . . , σ(i + n− 1)]) = π. Otherwise, we say that
σ avoids π as a consecutive pattern. The set of permutations in Sn that avoid π as a consecutive
pattern is denoted by Avn(π). We let Av(π) =

⋃
n≥1 Avn(π). Consecutive pattern containment was

first studied in [5], where the sets Avn(π) are enumerated for certain permutations π.

1.2. Allowed and forbidden patterns in maps. Let f be a map f : X → X. Given x ∈ X and
n ≥ 1, we define

Pat(x, f, n) = ρ([x, f(x), f2(x), . . . , fn−1(x)]),

provided that there is no pair 1 ≤ i < j ≤ n such that f i−1(x) = f j−1(x). If there is such a pair,
then Pat(x, f, n) is not defined. When it is defined, we have Pat(x, f, n) ∈ Sn. If π ∈ Sn and there is
some x ∈ X such that Pat(x, f, n) = π, we say that π is realized by f (at x), or that π is an allowed
pattern of f . The set of all permutations realized by f is denoted by Allow(f) =

⋃
n≥1 Allown(f),

where
Allown(f) = {Pat(x, f, n) : x ∈ X} ⊆ Sn.

The remaining permutations are called forbidden patterns, and denoted by Forb(f) =
⋃

n≥1 Forbn(f),
where Forbn(f) = Sn \Allown(f).

We are introducing some variations to the notation and terminology used in [1, 3]. The main
change is that our permutation π = Pat(x, f, n) is essentially the inverse of the permutation of
{0, 1, . . . , n − 1} that the authors of [1] refer to as the order pattern defined by x. Our convention,
aside from simplifying the notation, will be more convenient from a combinatorial point of view.
The advantage is that now the set Allow(f) is closed under consecutive pattern containment, in the
standard sense used in the combinatorics literature, and we no longer need to talk about outgrowth
forbidden patterns like in [1]. Indeed, if σ ∈ Allow(f) and σ contains τ as a consecutive pattern, then
τ ∈ Allow(f). An equivalent statement is that if π ∈ Forb(f), then Allow(f) ⊆ Av(π). The minimal
elements of Forb(f), i.e., those permutations in Forb(f) that avoid all other patterns in Forb(f),
will be called basic forbidden patterns of f . The set of these patterns will be denoted BF(f). Note
that basic patterns are the inverses of root patterns as defined in [1].

Let us consider now the case in which X is a closed interval in R, with the usual total order on
real numbers. An important incentive to study the set of forbidden patterns of a map comes from
the following result, which is a consequence of [3].
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Proposition 1.1. If I ⊂ R is a closed interval and f : I → I is piecewise monotone, then Forb(f) 6=
∅.

Recall that piecewise monotone means that there is a finite partition of I into intervals such
that f is continuous and strictly monotone on each of those intervals. It fact, it is shown in [3]
that for such a map, the number of allowed patterns of f grows at most exponentially, i.e., there
is a constant C such that |Allown(f)| < Cn for n large enough. The value of C is related to the
topological entropy of f (see [3] for details). Since the growth of the total number of permutations
of length n is super-exponential, the above proposition follows.

Proposition 1.1, together with the above observation that Allow(f) is closed under consecu-
tive pattern containment, provides an interesting connection between dynamical systems on one-
dimensional interval maps and pattern avoiding permutations. An important application is that
forbidden patterns can be used to distinguish random from deterministic time series. Indeed, in a
sequence (x1, x2, x3, . . . ) where each xi has been chosen independently at random from some contin-
uous probability distribution, any pattern π ∈ Sn appears as π = ρ([xi, xi+1, . . . , xi+n−1]) for some
i with nonvanishing probability, and this probability approaches one as the length of the sequence
increases. On the other hand, if the sequence has been generated by defining xk+1 = f(xk) for
k ≥ 1, where f : I → I is a piecewise monotone map, then Proposition 1.1 guarantees that some
patterns (in fact, most of them) will never appear in the sequence. The practical aspect of these
applications has been considered in [2].

A structural property of the set of allowed patterns of a map is that it is closed under consecutive
pattern containment. A new and interesting direction of research is to study more properties of the
sets Allow(f). Some natural problems that arise are the following.

1. Understand how Allow(f) and BF(f) depend on the map f .
2. Describe and/or enumerate (exactly or asymptotically) Allow(f) and BF(f) for a particu-

lar f .
3. Among the sets of patterns Σ such that Avn(Σ) grows at most exponentially in n (this is a

necessary condition), characterize those for which there exists a map f such that BF(f) = Σ.
4. Given a map f , determine the length of its smallest forbidden pattern.
5. Study how Allow(f) is related to the set of permutations realized by periodic orbits of f ,

for which several results generalizing Sharkovskii’s theorem are known (see [7, 4]).

Most of this paper is devoted to solving problem 2 for a specific family of maps, that we describe next.
Before that, it is worth mentioning that problem 5 is briefly considered in [1], where it is explained
that for given π ∈ Sn, the endpoints of the components of the set {x ∈ I : Pat(x, f, n) = π} are
points of period n and (iterated) preimages of points of period less than n.

1.3. One-sided shifts. We will concentrate on the set of allowed patterns of certain maps called
one-sided shift maps, or simply shifts for short. For a detailed definition of the associated dynamical
system, called the one-sided shift space, we refer the reader to [1].

The totally ordered set X considered above will now be the set WN = {0, 1, . . . , N − 1}N of
infinite words on N symbols, equipped with the lexicographic order. Define the (one-sided) shift
transformation

ΣN : WN −→ WN

w1w2w3 . . . 7→ w2w3w4 . . . .

We will use Σ instead of ΣN when it creates no confusion.
Given w ∈ WN , n ≥ 1, and π ∈ Sn, we have from the above definition that Pat(w, Σ, n) = π if,

for all indices 1 ≤ i, j ≤ n, Σi−1(w) < Σj−1(w) if and only if π(i) < π(j). For example,

(1) Pat(2102212210 . . . , Σ, 7) = [4, 2, 1, 7, 5, 3, 6],

because the relative order of the successive shifts is
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2102212210 . . . 4
102212210 . . . 2
02212210 . . . 1
2212210 . . . 7
212210 . . . 5
12210 . . . 3
2210 . . . 6,

regardless of the entries in place of the dots. The case N = 1 is trivial, since the only allowed pattern
of Σ1 is the permutation of length 1. In the rest of the paper, we will assume that N ≥ 2.

If x ∈ {0, 1, . . . , N − 1}, we will use the notation x∞ = xxx . . . . If w ∈ WN , then wn denotes
the n-th letter of w, and we write w = w1w2w3 . . . . We will also write w[k,`] = wkwk+1 . . . w`, and
w[k,∞) = wkwk+1 . . . . Note that w[k,∞) = Σk−1(w).

Let Υ ⊂ WN be the set of all words of the form u(N−1)∞ except the word (N−1)∞. As shown
in [1], WN \Υ is closed under one-sided shifts, and the map

ϕ : WN \Υ −→ [0, 1]
w1w2w3 . . . 7→ ∑

i≥0 wiN
−(i+1)

is an order-preserving isomorphism (here [0, 1] denotes the closed unit interval). The map

ϕ ◦ ΣN ◦ ϕ−1 : [0, 1] → [0, 1]

is the so-called sawtooth map x 7→ Nx mod 1, which is piecewise linear (see Figure 1). By Proposi-
tion 1.1, this map has forbidden patterns. It is not hard to see that ΣN has the same set of forbidden
patterns as this map, and in particular Forb(ΣN ) 6= ∅. Forbidden patterns of shift systems were
first studied in [1], where the main result is that the smallest forbidden patterns of ΣN have length
N + 2.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Figure 1. The sawtooth map x 7→ Nx mod 1 for N = 5.

Proposition 1.2 ([1]). Let N ≥ 2. We have that

(a) Forbn(ΣN ) = ∅ for every n ≤ N + 1,
(b) Forbn(ΣN ) 6= ∅ for every n ≥ N + 2.

Example 1. One can check that the smallest forbidden patterns of Σ4 are

615243, 324156, 342516, 162534, 453621, 435261.

Recall that a word w ∈ {0, 1, . . . , N − 1}k is primitive if it cannot be written as a power of any
proper subword, i.e., it is not of the form w = um for any m > 1, where the exponent indicates
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concatenation of u with itself m times. Let ψN (k) denote the number of primitive words of length
k over an N -letter alphabet. It is well known that

ψN (k) =
∑

d|k
µ(d)Nk/d,

where µ denotes the Möbius function.

2. The number of symbols needed to realize a pattern

Given a permutation π ∈ Sn, let N(π) be the smallest number N such that π ∈ Allow(ΣN ). The
value of N(π) indicates what is the minimum number of symbols needed in the alphabet in order
for π to be realized by a shift. For example, if π = [4, 2, 1, 7, 5, 3, 6], then N(π) ≤ 3 because of (1),
and it is not hard to see that N(π) = 3. The main result in this section is a formula for N(π).

Theorem 2.1. Let n ≥ 2. For any π ∈ Sn, N(π) is given by

(2) N(π) = 1 + |A(π)|+ ∆(π),

where

A(π) = {a : 1 ≤ a ≤ n−1 such that if i = π−1(a), j = π−1(a+1), then i, j < n and π(i+1) > π(j+1)},
and ∆(π) = 0 except in the following three cases, in which ∆(π) = 1:

(I) π(n) /∈ {1, n}, and if i = π−1(π(n)− 1), j = π−1(π(n) + 1), then π(i + 1) > π(j + 1);
(II) π(n) = 1 and π(n− 1) = 2; or

(III) π(n) = n and π(n− 1) = n− 1.

Note that A(π) is the set of entries a in the one-line notation of π such that the entry following
a+1 is smaller than the entry following a. For example, if π = [4, 3, 6, 1, 5, 2], then A(π) = {3, 4, 5},
so Theorem 2.1 says that N(π) = 1 + 3 + 0 = 4. The following lemmas will be useful in the proof.

Lemma 2.2. Suppose that Pat(w, Σ, n) = π, where w ∈ WN and π ∈ Sn. Define w′ = w′1w
′
2 . . . by

w′i = N − 1 − wi for i ≥ 1, and π′ = [π′(1), . . . , π′(n)] by π′(j) = n + 1 − j for 1 ≤ j ≤ n. Then,
Pat(w′, Σ, n) = π′.

Proof. It is clear from the definition of w′ that for any i, j ≥ 1, Σi−1(w) < Σj−1(w) if and only
if Σi−1(w′) > Σj−1(w′). Thus, Pat(w′, Σ, n) is the only permutation π′ ∈ Sn that satisfies that
π(i) < π(j) if and only if π′(i) > π′(j), for all 1 ≤ i, j ≤ n. ¤

Lemma 2.3. Suppose that Pat(w, Σ, n) = π. If 1 ≤ i, j < n, π(i) < π(j), and π(i + 1) > π(j + 1),
then wi < wj.

Proof. Clearly π(i + 1) > π(j + 1) implies that w[i+1,∞) > w[j+1,∞) lexicographically. Similarly,
π(i) < π(j) implies that w[i,∞) = wiw[i+1,∞) < wjw[j+1,∞) = w[j,∞). This can only happen if
wi < wj . ¤

Lemma 2.4. Suppose that Pat(w, Σ, n) = π. If 1 ≤ i < k ≤ n are such that |π(i)− π(k)| = 1, then
the word w[i,k−1] is primitive.

Proof. If w[i,k−1] is not primitive, we can write w[i,k−1] = qr for some r > 1. Let v = w[k,∞), and
let j = i + |q|. We have that w[i,∞) = qrv, w[j,∞) = qr−1v, and w[k,∞) = v.

If π(i) < π(j), then qrv < qr−1v, which, by canceling the prefix qr−l, implies that qlv < ql−1v for
any 1 ≤ l ≤ r. By iteration of this we have that qr−1v < v, and thus π(i) < π(j) < π(k), which is a
contradiction with |π(i) − π(k)| = 1. If π(i) > π(j), then the same argument with the inequalities
reversed shows that qr−1v > v, so π(i) > π(j) > π(k), which is a contradiction as well. ¤

We will prove Theorem 2.1 in two parts. In Subsection 2.1 we prove that 1 + |A(π)|+ ∆(π) is a
lower bound on N(π), and in Subsection 2.2 we prove that it is an upper bound as well.
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2.1. Proof of N(π) ≥ 1 + |A(π)| + ∆(π). To show that the right hand side of (2) is a lower
bound on N(π), we will prove that if w ∈ WN is such that Pat(w, Σ, n) = π, then necessarily
N ≥ 1 + |A(π)|+ ∆(π). This fact is a consequence of the following lemma.

Lemma 2.5. Suppose that Pat(w, Σ, n) = π, and let b = π(n). The entries of w satisfy

(3) wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(n),

with strict inequalities wπ−1(a) < wπ−1(a+1) for each a ∈ A(π). Additionally, if ∆(π) = 1, then in
each of the three cases from Theorem 2.1 we have, respectively, that

(I) one of the inequalities wπ−1(b−1) ≤ wn ≤ wπ−1(b+1) is strict;
(II) · · · ≤ wn+2 ≤ wn+1 ≤ wn ≤ wn−1 and one of these inequalities is strict;

(III) wn−1 ≤ wn ≤ wn+1 ≤ wn+2 ≤ · · · and one of these inequalities is strict.
In all cases, the entries of w must satisfy |A(π)|+ ∆(π) strict inequalities.

Proof. The condition Pat(w, Σ, n) = π is equivalent to

(4) w[π−1(1),∞) < w[π−1(2),∞) < · · · < w[π−1(n),∞),

which clearly implies equation (3). If we remove the term wn from (3), we get

(5)





(a) wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(b−1) ≤ wπ−1(b+1) ≤ · · · ≤ wπ−1(n) if b /∈ {1, n},
(b) wπ−1(2) ≤ wπ−1(3) ≤ · · · ≤ wπ−1(n) if b = 1,

(c) wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(n−1) if b = n.

For every a ∈ A(π), the inequality wπ−1(a) < wπ−1(a+1) in (5) has to be strict, by Lemma 2.3
with i = π−1(a) and j = π−1(a + 1). Let us now see that in the three cases when ∆(π) = 1, an
additional strict inequality must be satisfied.

Consider first case (I). Let i = π−1(b − 1) and j = π−1(b + 1). Since π(i + 1) > π(j + 1),
Lemma 2.3 implies that wi < wj , so the inequality wπ−1(b−1) < wπ−1(b+1) (equivalently, wi < wj)
in (5a) has to be strict. In case (II), the leftmost inequality in (4) is w[n,∞) < w[n−1,∞). For this
to hold, we need · · · ≤ wn+2 ≤ wn+1 ≤ wn ≤ wn−1 and at least one of these inequalities must be
strict. Similarly, in case (III), the rightmost inequality in (4) is w[n−1,∞) < w[n,∞). This forces
wn−1 ≤ wn ≤ wn+1 ≤ wn+2 ≤ · · · with at least one strict inequality. ¤

We will refer to the |A(π)|+∆(π) strict inequalities in Lemma 2.5 as the required strict inequalities.
Combined with the weak inequalities from the lemma, they force the number of symbols used in w
to be at least 1 + |A(π)|+ ∆(π). Examples 2 and 3 illustrate how this lemma is used.

2.2. Proof of N(π) ≤ 1+ |A(π)|+∆(π). We will show how for any given π ∈ Sn one can construct
a word w ∈ WN with Pat(w, Σ, n) = π, where N = 1 + |A(π)| + ∆(π). We need w to satisfy
condition (4). Again, let b = π(n).

The first important observation is that, if we can only use N different symbols, then the |A(π)|+
∆(π) = N − 1 required strict inequalities from Lemma 2.5 determine the values of the entries
w1w2 . . . wn−1. This fact is restated as Corollary 2.13. Consequently, we are forced to assign values
to these entries as follows:

(a) If b /∈ {1, n}, assign values to the variables in (5a) from left to right, starting with wπ−1(1) = 0
and increasing the value by 1 at each required strict inequality.

(b) If b = 1, assign values to the variables in (5b) from left to right, starting with wπ−1(2) = 0 if
π(n− 1) 6= 2, or with wπ−1(2) = 1 if π(n− 1) = 2 (this is needed in order for condition (II)
in Lemma 2.5 to hold), and increasing the value by 1 at each required strict inequality.

(c) If b = n, assign values to the variables in (5c) from left to right, starting with wπ−1(1) = 0
and increasing the value by 1 at each required strict inequality. (Note that when ∆(π) = 1,
the last assigned value is wπ−1(n−1) = wn−1 = |A(π)| = N − 2.)
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It remains to assign the values to wm for m ≥ n. Before we do this, let us prove some facts about
the entries w1 . . . wn−1. In the following three lemmas, π is any permutation in Sn with N(π) = N
and w1 . . . wn−1 are the values in {0, 1, . . . , N − 1} assigned above in order to satisfy the required
strict inequalities.

Lemma 2.6. Let i < n. If π(i) > π(i + 1), then wi ≥ 1.

Proof. In the case that π(n) = 1 and π(n−1) = 2, our construction makes wj ≥ 1 for 1 ≤ j ≤ n−1,
so this case is trivial.

In any other case, we will show that in equation (5) there is some required strict inequality to
the left of wi. Let c = π(i). Consider the sequence 1, 2, . . . , c and remove the entry π(n) if it is in
the sequence. Let a1, . . . , as be the resulting sequence (note that s = c − 1 or s = c depending on
whether π(n) ≤ c or not). For 1 ≤ ` ≤ s, let b` be the entry following a` in the one-line notation of
π. We have that a1 < b1 and as = c > bs = π(i + 1). Since a`+1 − a` ≤ 2 for every ` and all the b`’s
are different, there has to be some r such that br > br+1. Now the inequality wπ−1(ar) < wπ−1(ar+1)

must be one of the required strict inequalities, because either it is of the form wπ−1(a) < wπ−1(a+1)

with a ∈ A(π), or it is wh < wj with h = π−1(b− 1), j = π−1(b + 1), and π(h + 1) > π(j + 1). ¤

Lemma 2.7. Let i < n. If π(i) < π(i + 1), then wi ≤ N − 2.

Proof. In the case that π(n) = n and π(n − 1) = n − 1, it follows from our construction that
wj ≤ |A(π)| = N − 2 for 1 ≤ j ≤ n− 1, so this case is trivial.

In any other case, we will show that in equation (5) there is some required strict inequality to
the right of wi. Let c = π(i). Consider the sequence c, c + 1, . . . , n and remove the entry π(n) if
it is in the sequence. Let a1, . . . , as be the resulting sequence. For 1 ≤ ` ≤ s, let b` be the entry
following a` in the one-line notation of π. We have that a1 = c < b1 = π(i + 1) and as > bs. Since
a`+1 − a` ≤ 2 for every ` and all the b`’s are different, there has to be some r such that br > br+1.
Now the inequality wπ−1(ar) < wπ−1(ar+1) must be one of the required strict inequalities, as in the
proof of Lemma 2.6. ¤

Lemma 2.8. If 1 ≤ i, j < n are such that π(i) < π(j) and π(i + 1) > π(j + 1), then wi < wj.

Proof. We will show that in equation (5) there is some required strict inequality between wi and
wj . Let a1, . . . , as be the ordered sequence of integers between π(i) and π(j), both included, after
π(n) has been removed from it (if it appeared). For 1 ≤ ` ≤ s, let b` be the entry following a` in
the one-line notation of π. The fact that π(i + 1) = b1 > b` = π(j + 1) implies that there has to be
some 1 ≤ r < s such that br > br+1. Now the inequality wπ−1(ar) < wπ−1(ar+1) has to be strict, as
in the proof of Lemma 2.6. ¤

Once the values w1 . . . wn−1 have been determined, there are several ways to assign values to wm

for m ≥ n. Here we give a few different possibilities. Each one has some restriction on the value of
b = π(n).

A. Assume that b 6= n. Let k = π−1(b + 1). Let u = w1w2 . . . wk−1 and p = wkwk+1 . . . wn−1.
Let m be any integer satisfying m ≥ 1 + n−2

n−k (for definiteness, we can pick m = n− 1). Let
wA(π) = upm0∞.

B. Assume that b 6= 1. Let k = π−1(b − 1). Let u = w1w2 . . . wk−1 and p = wkwk+1 . . . wn−1.
Again, let m be such that m ≥ 1 + n−2

n−k (for definiteness, we can pick m = n − 1). Let
wB(π) = upm(N−1)∞.

C. Assume that b = 1. Let wC(π) = w1w2 . . . wn−10∞.
D. Assume that b = n. Let wD(π) = w1w2 . . . wn−1(N−1)∞.
E. Assume that 1 < b < n, and that wπ−1(b−1) < wπ−1(b+1) (this happens when ∆(π) = 1). Let

c = wπ−1(b−1). Define wE(π) = w1w2 . . . wn−1c(N−1)∞ and wF (π) = w1w2 . . . wn−1(c+1)0∞.
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Clearly, w = w∗(π) uses N different symbols in each one of the above cases. It remains to prove
that Pat(w, Σ, n) = π, which is equivalent to showing that w satisfies condition (4). Let us now
prove that this is the case for w = wA(π), when b 6= n.

In the following three lemmas and in Proposition 2.12, π is any permutation in Sn with π(n) 6= n,
and w = wA(π). Also, k, u, p and m are as defined in case A above.

Lemma 2.9. The word p = wkwk+1 . . . wn−1 has some nonzero entry.

Proof. Since π(k) = π(n) + 1 > π(n), there has to be a descent in the sequence π(k), π(k +
1), . . . , π(n− 1), π(n). Let k ≤ i ≤ n− 1 be such that π(i) > π(i + 1). By Lemma 2.6, wi ≥ 1, so we
are done. ¤

Lemma 2.10. The word p = wkwk+1 . . . wn−1 is primitive.

Proof. Assume for contradiction that p = qr for some r > 1. Let s = |q|. Then, k ≤ i < n − s, we
have that wi = wi+s. There are now two possibilities depending on the relationship between π(k)
and π(k + s).

If π(k) < π(k + s), then by Lemma 2.8, π(k + 1) < π(k + s + 1). By iterating this argument,
we see that π(i) < π(i + s) for k ≤ i ≤ n − s. In particular, π(k) < π(k + s) < π(k + 2s) < · · · <
π(k + rs) = π(n), which contradicts the choice of k as the index such that π(k) = π(n) + 1.

If π(k) > π(k+s), then similarly by Lemma 2.8 we have that π(i) > π(i+s) for k ≤ i ≤ n−s. In
particular, π(k) > π(k + s) > · · · > π(k + rs) = π(n). Since r > 1, this implies that π(k)−π(n) ≥ 2,
which contradicts again the choice of k. ¤

Lemma 2.11. We have that w[n,∞) < w[k,∞). Moreover, there is no 1 ≤ s ≤ n such that w[n,∞) <
w[s,∞) < w[k,∞).

Proof. For the first part, note that w[n,∞) = pm−10∞ < w[k,∞) = pm0∞ because p has some nonzero
entry, by Lemma 2.9. For the second part, assume there is an s such that pm−10∞ < w[s,∞) < pm0∞.
Then w[s,∞) = pm−1v, with 0∞ < v < p0∞. Since p is primitive (by Lemma 2.10), the initial p
in w[s,∞) cannot overlap simultaneously with the two occurrences of p at the beginning of w[k,∞).
Given that s 6= k, n, this only leaves the possibility that s < k. If some of the occurrences of p
in w[s,∞) = pm−1v and in w[k,∞) = pm0∞ coincide, then the condition v < p0∞ does not hold.
The only remaining possibility is that the m − 1 initial occurrences of p in w[s,∞) are entirely
contained in u = w1w2 . . . wk−1. However, the choice of m satisfying m ≥ 1+ n−2

n−k was made so that
|pm−1| = (n − k)(m − 1) ≥ n − 2. This only leaves the case that s = 1 and u = pm−1, but then
v = w[k,∞) = pm0∞, so the condition v < p0∞ does not hold. ¤

The next proposition proves that Pat(wA(π),Σ, n) = π.

Proposition 2.12. If 1 ≤ i, j ≤ n are such that π(i) < π(j), then w[i,∞) < w[j,∞).

Proof. Let S(i, j) be the statement “π(i) < π(j) implies w[i,∞) < w[j,∞)”. We want to prove S(i, j)
for all 1 ≤ i, j ≤ n with i 6= j. We consider three cases.

• Case i = n. Assume that π(n) < π(j). By Lemma 2.11 we know that w[n,∞) < w[k,∞). If
j = k we are done. If j 6= k, then π(n) < π(j) implies that π(k) < π(j), since π(k) = π(n)+1.
So, if S(k, j) holds, then S(n, j) must hold as well. We have reduced S(n, j) to S(k, j).
Equivalently, ¬S(n, j) ⇒ ¬S(k, j), where ¬ denotes negation.

• Case j = n. Assume that π(i) < π(n), so in particular i 6= k. By the second part of
Lemma 2.11, in order to prove that w[i,∞) < w[n,∞) it is enough to show that w[i,∞) < w[k,∞).
Also, π(i) < π(n) implies that π(i) < π(k). We have reduced S(i, n) to S(i, k).

• Case i, j < n. Assume that π(i) < π(j). If wi < wj , then w[i,∞) < w[j,∞) and we are done.
If wi = wj , then we know by Lemma 2.8 that π(i + 1) < π(j + 1). If we can show that
w[i+1,∞) < w[j+1,∞), then w[i,∞) = wiw[i+1,∞) < wjw[j+1,∞) = w[j,∞). So, we have reduced
S(i, j) to S(i + 1, j + 1).
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The above three cases prove that for all 1 ≤ i, j ≤ n − 1, ¬S(i, j) ⇒ ¬S(g(i), g(j)), where g is
defined for 1 ≤ i ≤ n− 1 as

g(i) =

{
i + 1 if i < n− 1,

k if i = n− 1.

Suppose now that S(i, j) does not hold for some i, j. Using the first two cases above, we can assume
that 1 ≤ i, j ≤ n − 1. Then, S(g`(i), g`(j)) fails for every ` ≥ 1. Let r be the index for which π(r)
is maximum among those r with k ≤ r ≤ n− 1. Let ` be such that g`(i) = r and k ≤ g`(j) ≤ n− 1
(such an ` always exists). Then S(g`(i), g`(j)) must hold because π(g`(i)) ≥ π(g`(j)). This is a
contradiction, so the proposition is proved. ¤

If b 6= 1, proving that w = wB(π) satisfies Pat(w, Σ, n) = π is analogous to our argument for
w = wA(π). Instead of Lemma 2.6 we would use Lemma 2.7, and the analogue of Lemma 2.9 is the
fact that p = wkwk+1 . . . wn−1 has some entry strictly smaller than N − 1. Lemma 2.11 would be
replaced with the fact that w[k,∞) < w[n,∞) and there is no 1 ≤ s ≤ n such that w[k,∞) < w[s,∞) <
w[n,∞). With these variations, Proposition 2.12 can be proved similarly for w = wB(π).

We can complete the proof of the upper bound on N(π) as follows. Let π ∈ Sn be given, and let
N = 1 + |A(π)| + ∆(π). If π(n − 1) > π(n), let w = wA(π). If π(n − 1) < π(n), let w = wB(π).
Since Pat(w, Σ, n) = π and w ∈ WN , the theorem is proved.

Example 2. Let π = [4, 3, 6, 1, 5, 2]. By Theorem 2.1, N(π) = 4. If Pat(w, Σ, n) = π, then
Lemma 2.5 implies that w4 ≤ w6 ≤ w2 < w1 < w5 < w3, and there are no more required strict
inequalities. We assign w4 = w2 = 0, w1 = 1, w5 = 2, w3 = 3. Since π(5) > π(6) and b = π(6) = 2,
we can take w = wA(π) (with m = 2), so k = π−1(3) = 2, u = w1 = 1, and p = w2w3w4w5 = 0302.
We get w = up20∞ = 1030203020∞.

The following consequence of the proof of Theorem 2.1 will be used in Section 4.

Corollary 2.13. Let π ∈ Sn, N = N(π), and let w ∈ WN be such that Pat(w, Σ, n) = π. Then the
entries w1w2 . . . wn−1 are uniquely determined by π.

Note that, however, with the conditions of Corollary 2.13, wn is not always determined. In the
case that π(n) /∈ {1, n} and ∆(π) = 1, we have two choices for wn. In general, there is a lot of
flexibility in the choice of wm for m ≥ n. The choices w = wA(π) and w = wB(π) in the proof
of Theorem 2.1 were made to simplify the proof of Proposition 2.12 for all cases at once. It is not
hard to modify the proof to see that wC(π), wD(π), wE(π) and wF (π) work as well, in the cases
where they are defined. Let us see some examples of different ways to find a word w ∈ WN such
that Pat(w, Σ, n) = π, for given π ∈ Sn with N(π) = N .
Example 3. (i) Let π = [8, 9, 3, 1, 4, 6, 2, 7, 5]. If Pat(w, Σ, n) = π, then by Lemma 2.5 we must

have w4 ≤ w7 < w3 ≤ w5 ≤ w9 ≤ w6 ≤ w8 ≤ w1 < w2, with a strict inequality w5 < w6

caused by the fact that ∆(π) = 1. We have N(π) = 4 = 1 + |{2, 8}| + 1. If w ∈ W4, the
entries w4 = w7 = 0, w3 = w5 = 1, w6 = w8 = w1 = 2, w2 = 3 are forced. For the remaining
entries we could take for example w[9,∞) = 13∞, obtaining w = wE(π) = 2310120213∞.

(ii) If π = [3, 5, 2, 4, 1], then Lemma 2.5 tells us that w5 ≤ w3 ≤ w1 < w4 ≤ w2 and there are no
more required strict inequalities. We can take w = wC(π) = 010100∞.

(iii) If π = [2, 3, 1, 4, 5, 6], then by Lemma 2.5 we have that w3 < w1 < w2 ≤ w4 ≤ w5 ≤ w6, and
there must be some strict inequality in w5 ≤ w6 ≤ w7 ≤ · · · . We can take w = wD(π) =
1202233∞.

Note that in terms of π−1, the set A(π) can alternatively be described as

A(π) = {i : π−1(i) + 1 appears to the right of π−1(i + 1) + 1 in the one-line notation for π−1}.
For instance, if π is the permutation in part (i) of the above example, we have π−1 = [4, 7, 3, 5, 9, 6, 8, 1, 2],
so A(π) = {2, 8}.
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3. An equivalent characterization

We start this section by giving an expression for N(π) that is sometimes more convenient to work
with than the one in Theorem 2.1. We denote by Cn the set of permutations in Sn whose cycle
decomposition consists of a unique cycle of length n. Let Tn be the set of permutations π ∈ Cn

with one distinguished entry π(i), for some 1 ≤ i ≤ n. We call the elements of Tn marked cycles.
We will use the symbol ? to denote the distinguished entry, both in one-line and in cycle notation.
Note that it is not necessary to keep track of its value, since it is determined once we know all
the remaining entries. For example, T3 = {[?, 3, 1], [2, ?, 1], [2, 3, ?], [?, 1, 2], [3, ?, 2], [3, 1, ?]}. Clearly,
|Tn| = (n− 1)! · n = n!, since there are n ways to choose the distinguished entry.

Define a map

θ : Sn → Tn

π 7→ π̂

as follows. For each 1 ≤ i ≤ n with i 6= π(n), let π̂(i) be the entry immediately to the right of i in
the one-line notation of π. For i = π(n), let π̂(i) = ? be the distinguished entry.

We can also give the following equivalent definition of π̂. If π = [π(1), π(2), . . . , π(n)], then
π̂ is the permutation with cycle decomposition (π(1), π(2), . . . , π(n)) with the entry π(1) distin-
guished. We write π̂ = (?, π(2), . . . , π(n)). For example, if π = [8, 9, 2, 3, 6, 4, 1, 5, 7], then π̂ =
(?, 9, 2, 3, 6, 4, 1, 5, 7), or in one-line notation, π̂ = [5, 3, 6, 1, 7, 4, ?, 9, 2].

The map θ is a bijection between Sn and Tn, since it is clearly invertible. Indeed, to recover π
from π̂ ∈ Tn, write π̂ in cycle notation, replace the ? with the entry in {1, . . . , n} that is missing,
and turn the parentheses into brackets, thus recovering the one-line notation of π.

For π̂ ∈ Tn, let des(π̂) denote the number of descents of the sequence that we get by deleting
the ? from the one-line notation of π̂. That is, if π̂ = [a1, . . . , aj , ?, aj+1, . . . , an−1], then des(π̂) =
|{i : 1 ≤ i ≤ n− 2, ai > ai+1}|. We can now state a simpler formula for N(π).

Proposition 3.1. Let π ∈ Sn, π̂ = θ(π). Then N(π) is given by

N(π) = 1 + des(π̂) + ε(π̂),

where

ε(π̂) =

{
1 if π̂ = [?, 1, . . . ] or π̂ = [. . . , n, ?],
0 otherwise.

Proof. We compare this formula with the one in Theorem 2.1. If π(n) /∈ {1, n}, then ε(π̂) = 0, and
des(π̂) = |A(π)|+1 or |A(π)| depending on whether π(i+1) > π(j+1) or not, where i = π−1(π(n)−1)
and j = π−1(π(n) + 1). If π(n) ∈ {1, n}, then des(π̂) = |A(π)| and ε(π̂) = ∆(π). In all cases, the
two formulas for N(π) are equivalent. ¤

For example, if π = [8, 9, 2, 3, 6, 4, 1, 5, 7], then π̂ = [5, 3, 6, 1, 7, 4, ?, 9, 2] has 4 descents, so N(π) =
1 + 4 + 0 = 5. If π = [8, 9, 3, 1, 4, 6, 2, 7, 5], then π̂ = [4, 7, 1, 6, ?, 2, 5, 9, 3] has 3 descents, so
N(π) = 1 + 3 + 0 = 4. If π = [3, 4, 2, 1], then π̂ = [?, 1, 4, 2] has 1 descent, so N(π) = 1 + 1 + 1 = 3.

If π ∈ Sn, we have by definition that N(π) = min{N : π /∈ Forbn(ΣN )} = min{N : π ∈
Allown(ΣN )}. As a consequence of Proposition 3.1 we recover Proposition 1.2, which in terms of
the statistic N(π) can be reformulated as follows.

Corollary 3.2. Let n ≥ 3. We have that
(a) for every π ∈ Sn, N(π) ≤ n− 1;
(b) there is some π ∈ Sn such that N(π) = n− 1.

Proof. (a) Since π̂ has n−1 entries other than the ?, it can have at most n−2 descents. Besides,
in the cases when ε(π̂) = 1, we have necessarily des(π̂) ≤ n − 3. Thus, by Proposition 3.1,
N(π) = 1 + des(π̂) + ε(π̂) ≤ n− 1 in any case.
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(b) If n = 2m is even, we can take for example π = [m,m+1,m−1,m+2,m−2,m+3, . . . , 1, 2m],
so π̂ = [2m, 2m− 1, . . . , m + 1,m− 1,m− 2, . . . , 1, ?]. If n = 2m + 1 is odd, take π = [m +
1,m, m+2,m−1, m+3,m−2, . . . , 1, 2m+1], so π̂ = [2m+1, 2m, . . . , m+2,m, m−1, . . . , 1, ?].
In both cases, des(π̂) = n− 2, so N(π) = n− 1.

¤

We define Sn,N = {π ∈ Sn : N(π) = N}. We are interested in the numbers an,N = |Sn,N |. To
avoid the trivial cases, we will assume that n,N ≥ 2. From the definitions,

Allown(ΣM ) =
M⋃

N=2

Sn,N , Forbn(ΣM ) =
n−1⋃

N=M+1

Sn,N .

Since the sets Sn,N are disjoint, we have that

|Allown(ΣM )| =
M∑

N=2

an,N , |Forbn(ΣM )| =
n−1∑

N=M+1

an,N .

The first few values of an,N are given in Table 1. It follows from Lemma 2.2 that all the an,N are
even.

n\N 2 3 4 5 6 7
2 2
3 6
4 18 6
5 48 66 6
6 126 402 186 6
7 306 2028 2232 468 6
8 738 8790 19426 10212 1098 6

Table 1. The numbers an,N = |{π ∈ Sn : N(π) = N}| for n ≤ 8.

The next result shows that, independently of n, there are exactly six permutations of length n
that require the maximum number of symbols (i.e., n − 1) in order to be realized. This settles a
conjecture from [1]. Given a permutation π ∈ Sn, we will use πrc to denote the permutation such
that πrc(i) = n + 1− π(n + 1− i) for 1 ≤ i ≤ n. If σ is a marked cycle, then σrc is defined similarly,
where if σ(i) is the marked entry of π, then σrc(n + 1 − i) is the marked entry of σrc. It will be
convenient to visualize π ∈ Sn as an n × n array with dots in positions (i, π(i)), for 1 ≤ i ≤ n.
The first coordinate refers to the row number, which increases from left to right, and the second
coordinate is the column number, which increases from bottom to top. Then, the array of πrc is
obtained from the array of π by a 180-degree rotation. Of course, the array of π−1 is obtained from
the one of π by reflecting it along the diagonal y = x. Notice also that the cycle structure of π is
preserved in π−1 and in πrc. A marked cycle can be visualized in the same way, replacing the dot
corresponding to the distinguished element with a ?.

Proposition 3.3. For every n ≥ 3, an,n−1 = 6.

Proof. First we show (this part was already proved in [1]) that an,n−1 ≥ 6, by giving six permutations
in this set. Let m = dn/2e, and let

σ = [n, n− 1, . . . , m + 1, ?, m,m− 1, . . . , 2], τ = [?, 1, n, n− 1 . . . , m + 2,m, m− 1, . . . , 2] ∈ Tn

(see Figure 2). Using Proposition 3.1, it is easy to check that if π̂ ∈ {σ, σrc, σ−1, (σ−1)rc, τ, τ rc},
then N(π) = n− 1, and that the six permutations in the set are different.

Let us now show that there are no other permutations with N(π) = n− 1. We know by Proposi-
tion 3.1 that N(π) = n− 1 can only happen if des(π̂) = n− 2, or if des(π̂) = n− 3 and ε(π̂) = 1.
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Figure 2. The arrays of σ and τ for n = 8, with dotted lines indicating the cycle structure.

Case 1: des(π̂) = n− 2. In this case, all the entries in π̂ other that the ? must be in decreasing
order. If the distinguished entry is neither π̂(1) nor π̂(n), then the ? must be replacing either 1 or
n; otherwise we would have that π̂(1) = n and π̂(n) = 1, so π̂ would not be an n-cycle. It follows
that in the array of π̂, the entry corresponding to the ? is either in the top or bottom row, or in the
leftmost or rightmost column.

If the ? is replacing 1 (i.e, it is is the bottom row of the array), we claim that the only possible
n-cycle in which the other entries are in decreasing order is π̂ = σ. Indeed, if we consider the
cycle structure of π̂ = (1, π̂(1), π̂2(1), . . . , π̂n−1(1)), we see that π̂(1) = n and π̂2(1) = π̂(n) = 2.
Now, π̂i(1) 6= 1 for 3 ≤ i ≤ n − 1, so the decreasing condition on the remaining entries forces
π̂3(1) = π̂(2) = n − 1, π̂4(1) = π̂(n − 1) = 3, and so on. A similar argument, considering that
rotating the array 180 degrees preserves the cycle structure, shows that if the ? is replacing n (i.e,
it is in the top row of the array), then necessarily π̂ = σrc.

If the distinguished entry is π̂(1) (i.e, it is in the leftmost column of the array), then a symmetric
argument, reflecting the array along y = x), shows that π̂ = σ−1. Similarly, if the distinguished
entry is π̂(n) (i.e, it is is the rightmost column of the array), then necessarily π̂ = (σ−1)rc.

Case 2: des(π̂) = n−3 and ε(π̂) = 1. The second condition forces π̂ = [?, 1, . . . ] or π̂ = [. . . , n, ?].
Let us restrict to the first case (the second one can be argued in a similar way if we rotate the array
180 degrees). We must have π̂(3) > π̂(4) > · · · > π̂(n). We claim that the only such π̂ that is also
an n-cycle is π̂ = τ . Indeed, looking at the cycle structure π̂ = (π̂−(n−1)(1), . . . , π̂−1(1), 1), we see
that π̂−1(1) = 2. Now, π̂−i(1) 6= 1 for 2 ≤ i ≤ n − 1, so the decreasing condition on the remaining
entries forces π̂−2(1) = π̂−1(2) = n, π̂−3(1) = π̂−1(n) = 3, π̂−4(1) = π̂−1(3) = n− 1, and so on. ¤

4. The number of allowed patterns of the binary shift

In the rest of the paper, we will assume for simplicity that wA(π) and wB(π) are defined taking
m = n− 1, so they are of the form upn−1x∞, with x = 0 or x = N − 1 respectively. The following
variation of Lemma 2.11 will be useful later.

Lemma 4.1. Let w = upn−10∞ ∈ WN , where |u| = k − 1 and |p| = n− k for some 1 ≤ k ≤ n− 1,
and p is primitive. If π = Pat(w, Σ, n) is defined, then π(n) = π(k)− 1.

Proof. We have that w[k,∞) = pn−10∞ and w[n,∞) = pn−20∞. Since p must have some nonzero
entry (otherwise Pat(w, Σ, n) would not be defined), it is clear that w[n,∞) < w[k,∞). The same
argument as in the proof of Lemma 2.11 can be used to show that there is no 1 ≤ s ≤ n such that
pn−20∞ < w[s,∞) < pn−10∞. It follows that π(n) = π(k)− 1. ¤

For n ≥ 2, the set of patterns of length n that are realized by the shift on two symbols is
Allown(Σ2) = Sn,2. In this section we enumerate these permutations. Recall that an,2 = |Sn,2| and
that ψ2(t) is the number of primitive binary words of length t.
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Theorem 4.2. For n ≥ 2,

an,2 =
n−1∑
t=1

ψ2(t)2n−t−1.

Proof. Fix n ≥ 2. We will construct a set W ⊂ W2 with the following four properties:

(i) for all w ∈ W , Pat(w, Σ2, n) is defined,
(ii) for all w, w′ ∈ W with w 6= w′, we have that Pat(w, Σ2, n) 6= Pat(w′, Σ2, n),
(iii) for all π ∈ Allown(Σ2), there is a word w ∈ W such that Pat(w, Σ2, n) = π,
(iv) |W | = ∑n−1

t=1 ψ2(t)2n−t−1.

Properties (i)-(iii) imply that the map

W −→ Sn,2

w 7→ Pat(w, Σ2, n)(6)

is a bijection. Thus, an,2 = |W | and the result will follow from with property (iv).
Let

W =
n−1⋃
t=1

{upn−1x∞ : u ∈ {0, 1}n−t−1, p ∈ {0, 1}t is a primitive word, and x = p̄t},

where we use the notation 0̄ = 1, 1̄ = 0. Given binary words u, p of lengths n−t−1 and t respectively,
where p is primitive, and x = p̄t, we will denote v(u, p) = upn−1x∞.

To see that W satisfies (i), we have to show that for any w ∈ W and any 1 ≤ i < j ≤ n, we have
w[i,∞) 6= w[j,∞). This is clear because if x = 0 (resp. x = 1) both w[i,∞) and w[j,∞) end with 10∞

(resp. 01∞), with the last 1 (resp. 0) being in different positions in w[i,∞) and w[j,∞).
Now we prove that W satisfies (ii). Let u, u′ be binary words of lengths n − t − 1, n − t′ − 1,

respectively, and let p, p′ be primitive binary words of lengths t, t′, respectively. Let w = v(u, p)
and w′ = v(u′, p′), and let π = Pat(w, Σ2, n), π′ = Pat(w′, Σ2, n). We assume that w 6= w′, and
want to show that π 6= π′. From w 6= w′ it follows that u 6= u′ or p 6= p′.

Corollary 2.13 for N = 2 implies that if w1w2 . . . wn−1 6= w′1w
′
2 . . . w′n−1, then Pat(w, Σ2, n) 6=

Pat(w′, Σ2, n). In particular, if t = t′, then up 6= u′p′, so π 6= π′.
We are left with the case that t 6= t′and up = u′p′ = w1w2 . . . wn−1. Let us first assume that

wn−1 = 1 (and so pt = p′t′ = 1). By Lemma 4.1 with k = n− t, we have that π(n) = π(n− t)− 1,
and similarly π′(n) = π′(n − t′) − 1. If we had that π = π′, then π(n) = π′(n) and so π(n − t) =
π′(n − t′) = π(n − t′). But t 6= t′, so this is a contradiction. In the case wn−1 = 0, an analogous
argument to the proof of Lemma 4.1 implies that w[n−t,∞) = pn−11∞ < pn−21∞ = w[n,∞) and there
is no s such that w[s,∞) is strictly in between the two. Thus, π(n) = π(n − t) + 1, and similarly
π′(n) = π′(n− t′) + 1, so again π 6= π′.

To see that W satisfies (iii) we use the construction from the proof of the upper bound in The-
orem 2.1. Let π ∈ Allown(Σ2). If π(n − 1) > π(n), let w = wA(π) = upn−10∞. By Lemma 2.6,
wn−1 = 1, so w ∈ W . Similarly, if π(n − 1) < π(n), let w = wB(π) = upn−11∞. By Lemma 2.7,
wn−1 = 0, so w ∈ W . In both cases, Pat(w, Σ2, n) = π, so this construction is the inverse of the
map (6).

To prove (iv), observe that the union in the definition of W is a disjoint union. This is because
the value of t determines the position of the last entry in w that is not equal to x. For fixed t, there
are 2n−t−1 choices for u and ψ2(t) choices for t, so the formula follows. ¤

Example 4. For n = 3, we have W = {0 0 0 1∞ 0 1 1 0∞, 1 0 0 1∞, 1 1 1 0∞, 10 10 1∞, 01 01 0∞},
where each word is written as w = u p p x∞. The permutations corresponding to these words are
Allow3(Σ2) = {123, 132, 312, 321, 231, 213}, in the same order.
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For n = 4, we have

W = {00 0 0 0 1∞, 00 1 1 1 0∞, 01 0 0 0 1∞, 01 1 1 1 0∞, 10 0 0 0 1∞, 10 1 1 1 0∞, 11 0 0 0 1∞, 11 1 1 1 0∞,

0 01 01 01 0∞, 0 10 10 10 1∞, 1 01 01 01 0∞, 1 10 10 10 1∞,

001 001 001 0∞, 010 010 010 1∞, 011 011 011 0∞, 100 100 100 1∞, 101 101 101 0∞, 110 110 110 1∞},
where each word is written as w = u p p p x∞. The permutations corresponding to these words are

Allow4(Σ2) = {1234, 1243, 3412, 1432, 4123, 2143, 4312, 4321,

1342, 1324, 4231, 4213,

2341, 2413, 2431, 3124, 3142, 3214}.
5. The number of allowed patterns of the shift on N symbols

In this section we give a formula for the numbers an,N , which count permutations that can
be realized by the shift on N symbols but not by the shift on N − 1 symbols. This generalizes
Theorem 4.2. For any N ≥ 2, define
(7)

Ωn,N =
n−1⋃
t=1

{upn−10∞ : u ∈ {0, 1, . . . , N − 1}n−t−1, and p ∈ {0, 1, . . . , N − 1}t is a primitive word}.

Lemma 5.1. Let w = upn−10∞ ∈ Ωn,N . Then Pat(w, Σ, n) is defined if and only if p 6= 0.

Proof. If p = 0, then w[n−1,∞) = w[n,∞) = 0∞, so Pat(w, Σ, n) is not defined. Otherwise, since p is
primitive, it must have some nonzero entry. Let p` be the rightmost nonzero entry of p. Then, for
any 1 ≤ i < j ≤ n, we have that w[i,∞) 6= w[j,∞), because both w[i,∞) and w[j,∞) end with p`0∞,
with the last nonzero entry being in different positions in w[i,∞) and w[j,∞). ¤

Let H′n,N = {π ∈ Sn,N : π(n) = n}, and let hn,N = |H′n,N |. Recall the definition of wA(π) from
Section 2.2. We have a map

Sn,N \ H′n,N −→ Ωn,N

π 7→ wA(π).
This is a one-to-one map, since π can be recovered from w = wA(π) using that Pat(w, Σ, n) = π.
Denote its range by

Γn,N = {wA(π) : π ∈ Sn,N \ H′n,N}.
Defining gn,N = |Γn,N |, it is clear that

gn,N = |Sn,N \ H′n,N | = an,N − hn,N .

Our first goal is to find a formula for gn,N .

Let w = upn−10∞ ∈ Ωn,N . By Lemma 5.1, Pat(w, Σ, n) is defined unless p = 0. Assuming that
p 6= 0, let π = Pat(w, Σ, n). Clearly π ∈ Allown(ΣN ), so 2 ≤ N(π) ≤ N . Let M = N(π), and let
j = N −M . We can write Ωn,N as a disjoint union:

Ωn,N =
N−2⋃

j=0

{w ∈ Ωn,N : π = Pat(w, Σ, n) is defined and N(π) = N − j}(8)

∪ {u0∞ : u ∈ {0, 1, . . . , N − 1}n−2},
where the last term is the set of words w for which Pat(w, Σ, n) is not defined. Let us restrict to the
case where π = Pat(w, Σ, n) is defined.

Lemma 5.2. Let w ∈ Ωn,N . If π = Pat(w, Σ, n) is defined, then π(n) 6= n.

Proof. We have that w[n,∞) = pn−20∞ < pn−10∞, so π(n) is not the largest value in π. ¤
For j = 0, we have the following result.
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Lemma 5.3. Let w ∈ Ωn,N . If π = Pat(w, Σ, n) is defined and N(π) = N , then w = wA(π).

Proof. Write w = upn−10∞, and let w′ = wA(π) = u′p′n−10∞ ∈ WN . Since Pat(w′, Σ, n) =
Pat(w, Σ, n) = π, Corollary 2.13 implies that u′p′ = w′1w

′
2 . . . w′n−1 = w1w2 . . . wn−1 = up, because

these entries are uniquely determined by π. Let t = |p| and t′ = |p′|. From the definition of wA, we
have that π(n) = π(n− t′)− 1, and by Lemma 4.1 with k = n− t, we have that π(n) = π(n− t)− 1.
It follows that π(n− t′) = π(n− t), so t = t′. Therefore, w = w′. ¤

From Lemmas 5.2 and 5.3 we have that

{w ∈ Ωn,N : π = Pat(w, Σ, n) is defined and N(π) = N} = Γn,N .

For general j, the situation is slightly more involved.

Lemma 5.4. Let w ∈ Ωn,N . If π = Pat(w, Σ, n) is defined and N(π) = M = N−j, then the entries
w1w2 . . . wn−1 satisfy

(wi1 , wi2 , . . . , win−1) = (vi1 + c1, vi2 + c2, . . . , vin−1 + cn−1)

for some 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ j, where i1, . . . , in−1 are the subindices in equation (5) from
left to right, and v = wA(π) ∈ Γn,M .

Proof. First note that by Lemma 5.2, π(n) 6= n, so v ∈ Γn,M . We know by Theorem 2.1 that
M = 1 + |A(π)|+ ∆(π). By definition of i1, i2, . . . , in−1, equation (5) can be written as

(9) wi1 ≤ wi2 ≤ · · · ≤ win−1 .

By Lemma 2.5, the entries of w have to fulfill (9), plus M − 1 required strict inequalities. Similarly,
since Pat(v, ΣM , n) = π, the entries of v satisfy vi1 ≤ vi2 ≤ · · · ≤ vin−1 and the same M −1 required
strict inequalities. In fact, by Corollary 2.13, the entries v1v2 . . . vn−1 are uniquely determined by
these inequalities and the fact that v ∈ WM .

It is now easy to see that w ∈ Ωn,N satisfies (9) plus the M − 1 required strict inequalities if and
only if the values w1w2 . . . wn−1 satisfy

(wi1 , wi2 , . . . , win−1) = (vi1 + c1, vi2 + c2, . . . , vin−1 + cn−1)

for some 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ j. ¤

Note that for j = 0, Lemma 5.4 says that the values w1w2 . . . wn−1 are determined by π, which
is just Corollary 2.13. For general j, there are

(
n+j−1

j

)
choices for the vector (c1, c2, . . . , cn−1). Let

Cn,j = {(c1, c2, . . . , cn−1) : 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ j}.
Lemma 5.5. For 0 ≤ j ≤ N − 2, the map

{w ∈ Ωn,N : π = Pat(w, Σ, n) is defined and N(π) = N − j} −→ Γn,N−j × Cn,j

w 7→ (v, (c1, c2, . . . , cn−1))

defined by Lemma 5.4 is a bijection.

Proof. The map is clearly well defined, since v = wA(π) ∈ Γn,N−j and (c1, . . . , cn−1) ∈ Cn,j are
uniquely determined by w. To see that it is invertible, take (v, (c1, c2, . . . , cn−1)) ∈ Γn,N−j × Cn,j .
Then, π = Pat(v, Σ, n) determines the sequence i1, i2, . . . , in−1 of subindices in equation (5), so
the first n − 1 entries in w must be (wi1 , wi2 , . . . , win−1) = (vi1 + c1, vi2 + c2, . . . , vin−1 + cn−1).
By Lemma 4.1, the unique word in w ∈ Ωn,N with these entries such that Pat(w, Σ, n) = π is
w = w1w2 . . . wk−1(wkwk+1 . . . wn−1)n−10∞, where k = π−1(π(n) + 1). ¤

Proposition 5.6. The numbers gn,N satisfy
n−1∑
t=1

ψN (t)Nn−t−1 =
N−2∑

j=0

(
n + j − 1

j

)
gn,N−j + Nn−2.
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Proof. The formula is obtained by taking set cardinalities in equation (8). For the left hand side we
use that |Ωn,N | =

∑n−1
t=1 ψN (t)Nn−t−1, which follows from the definition (7) of Ωn,N , noticing that

it is a disjoint union. By Lemma 5.5,

|{w ∈ Ωn,N : π = Pat(w, Σ, n) is defined and N(π) = N−j}| = |Γn,N−j ||Cn,j | = gn,N−j

(
n + j − 1

j

)

for 0 ≤ j ≤ N − 2. Finally, it is clear that |{u0∞ : u ∈ {0, 1, . . . , N − 1}n−2}| = Nn−2. ¤

From Proposition 5.6 we obtain the following recurrence for gn,N , for N ≥ 2.

(10) gn,N =
n−1∑
t=1

ψN (t)Nn−t−1 −Nn−2 −
N−2∑

j=1

(
n + j − 1

j

)
gn,N−j .

To obtain an expression for the general term gn,N , we use the following lemma.

Lemma 5.7. Let n ≥ 1 and {bN}N≥2 be fixed. If the sequence {rN}N≥2 satisfies the recurrence

rN = bN −
N−2∑

j=1

(
n + j − 1

j

)
rN−j ,

then

rN =
N−2∑

i=0

(−1)i

(
n

i

)
bN−i

for all N ≥ 2.

Proof. We proceed by induction on N . Assuming that rM =
∑M−2

i=0 (−1)i
(
n
i

)
bM−i for 2 ≤ M ≤

N − 1, we have that

rN = bN −
N−2∑

j=1

(
n + j − 1

j

) (
N−j−2∑

i=0

(−1)i

(
n

i

)
bN−j−i

)

= bN −
N−2∑

k=1

k∑

j=1

(
n + j − 1

j

)
(−1)k−j

(
n

k − j

)
bN−k

= bN −
N−2∑

k=1

(−1)k−1

(
n

k

)
bN−k =

N−2∑

k=0

(−1)k

(
n

k

)
bN−k,

where in the second step we have made the substitution k = i + j, and in the third step we have
used the identity

∑k
j=1(−1)j−1

(
n+j−1

j

)(
n

k−j

)
=

(
n
k

)
. ¤

Substituting bN =
∑n−1

t=1 ψN (t)Nn−t−1 − Nn−2 in Lemma 5.7, we can solve recurrence (10) for
gn,N .

Corollary 5.8. For any n,N ≥ 2,

gn,N =
N−2∑

i=0

(−1)i

(
n

i

) (
n−1∑
t=1

ψN−i(t)(N − i)n−t−1 − (N − i)n−2

)
.

Recall that gn,N = an,N − hn,N , and that our main goal is to compute an,N , the number of
permutations of length n that require N symbols in the alphabet in order to be realized by a shift.
The next step will be to find a formula for hn,N = |{π ∈ Sn,N : π(n) = n}|, using similar ideas to
the ones we used for gn,N . Let Hn,N = {π ∈ Sn,N : π(n) = 1}. By Lemma 2.2, hn,N = |Hn,N |. We
now define analogues of Ωn,N and Γn,N corresponding to permutations ending with a 1. Let

Θn,N = {w ∈ Ωn,N : π = Pat(w, Σ, n) is defined and has π(n) = 1},
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Λn,N = {wA(π) : π ∈ Hn,N}.
Since wA is one-to-one, it is clear that |Λn,N | = hn,N .

Proposition 5.9. For any n, N ≥ 2, |Θn,N | = (N − 1)Nn−2.

Proof. We will give a bijection between the set

Rn,N = {w1w2 . . . wn−1 : wi ∈ {0, 1, . . . , N − 1} for 1 ≤ i ≤ N − 2, and wn−1 ∈ {1, 2, . . . , N − 1}}
and Θn,N .

Given w1 . . . wn−1 ∈ Rn,N , we want to construct a word w = upn−10∞ ∈ Θn,N where u =
w1w2 . . . wk−1 and p = wkwk+1 . . . wn−1 for some 1 ≤ k ≤ n − 1. Let k be the index such that
wkwk+1 . . . wn−10∞ is smallest (in lexicographic order), with 1 ≤ k ≤ n− 1. Note that these n− 1
words are all different because the last nonzero entry of wkwk+1 . . . wn−10∞ is wn−1, which is in
position n − k. We claim that with this choice of k, the word p = wkwk+1 . . . wn−1 is primitive.
Otherwise, if p = qm for some m > 1, then qm0∞ > q0∞, contradicting the choice of k. Since
p 6= 0, Lemma 5.1 guarantees that π = Pat(w, Σ, n) is defined. Moreover, π(n) = 1 because
w[n,∞) = pn−20∞ < w[k,∞) = pn−10∞, and by the choice of k, w[k,∞) < w[i,∞) for all 1 ≤ i ≤ n− 1
with i 6= k. Thus w ∈ Θn,N .

This map is clearly one-to one, because w1 . . . wn−1 can be recovered by taking the first n − 1
entries in w. To show that it is onto, we have to show that if w ∈ Θn,N , then wn−1 6= 0. Assume for
contradiction that wn−1 = 0. Then, w[n−1,∞) = 0w[n,∞), so w[n−1,∞) ≤ w[n,∞), which contradicts
the fact that π = Pat(w, Σ, n) has π(n) = 1.

Clearly |Rn,N | = (N − 1)Nn−2, so the proposition is proved. ¤

Similarly to the decomposition of Ωn,N in equation (8), we can decompose Θn,N as

(11) Θn,N =
N−2⋃

j=0

{w ∈ Θn,N : N(Pat(w, Σ, n)) = N − j}.

For j = 0, Lemma 5.3 implies that

{w ∈ Θn,N : N(Pat(w, Σ, n)) = N} = Λn,N .

In general, given w ∈ Θn,N , let π = Pat(w, Σ, n), and assume that N(π) = N−j. Then, π ∈ Hn,N−j ,
and the word v = wA(π) given by Lemma 5.4 is in Λn,N−j . Restricting to permutations with
π(n) = 1, we obtain the following analogue of Lemma 5.5.

Lemma 5.10. For 0 ≤ j ≤ N − 2, the map

{w ∈ Θn,N : N(Pat(w, Σ, n)) = N − j} −→ Λn,N−j × Cn,j

w 7→ (v, (c1, c2, . . . , cn−1))

defined by Lemma 5.4 is a bijection.

Proposition 5.11. The numbers hn,N satisfy

(N − 1)Nn−2 =
N−2∑

j=0

(
n + j − 1

j

)
hn,N−j .

Proof. The result follows by taking set cardinalities in equation (11). The left hand side is given by
Proposition 5.9. For the right hand side, we use Lemma 5.10 to deduce that

|{w ∈ Θn,N : N(Pat(w, Σ, n)) = N − j}| = |Λn,N−j ||Cn,j | = hn,N−j

(
n + j − 1

j

)

for 0 ≤ j ≤ N − 2. ¤
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From Proposition 5.11 we obtain the recurrence

hn,N = (N − 1)Nn−2 −
N−2∑

j=1

(
n + j − 1

j

)
hn,N−j ,

which can be solved using Lemma 5.7 to get the following expression for the general term hn,N .

Corollary 5.12. For any n,N ≥ 2,

hn,N =
N−2∑

i=0

(−1)i

(
n

i

)
(N − i− 1)(N − i)n−2.

Combining Corollaries 5.8 and 5.12, and using the fact that an,N = gn,N + hn,N , we obtain an
expression for the numbers an,N = |{π ∈ Sn : N(π) = N}|.
Theorem 5.13. For any n,N ≥ 2,

(12) an,N =
N−2∑

i=0

(−1)i

(
n

i

) (
(N − i− 2)(N − i)n−2 +

n−1∑
t=1

ψN−i(t)(N − i)n−t−1

)
.

For N = 2, Theorem 5.13 gives an,2 =
∑n−1

t=1 ψ2(t)2n−t−1, which agrees with Theorem 4.2.

6. Conjectures and further work

Some general open questions that deserve further study have already been discussed at the end
of Section 1.2. Here we mention two curious conjectures that came up while studying forbidden
patterns of shift systems. They are derived from experimental evidence, and it would be interesting
to find combinatorial proofs.

6.1. An appearance of the Eulerian numbers. Using Proposition 3.1, the problem of enumer-
ating Sn,N can be formulated in terms of counting marked cycles π̂ ∈ Tn with respect to des(π̂) and
ε(π̂). More precisely,

(13) an,N = |{π̂ ∈ Tn : des(π̂) = N−1 and ε(π̂) = 0}|+|{π̂ ∈ Tn : des(π̂) = N−2 and ε(π̂) = 1}|.
Let us take a closer look at rightmost summand. Marked cycles with ε(π̂) = 1 can be separated into
two disjoint sets En and E ′n, depending on whether they are of the form π̂ = [?, 1, . . . ] or π̂ = [. . . , n, ?],
respectively. The map π̂ 7→ π̂rc (see the definition above Proposition 3.3) is a bijection between En

and E ′n, which preserves the number of descents. Thus, for any 0 ≤ k ≤ n− 3,

|{π̂ ∈ Tn : des(π̂) = k and ε(π̂) = 1}| = 2 |{π̂ ∈ En : des(π̂) = k}|.
It will be convenient to define the set T 0

n of n-cycles where one entry has been replaced with
0. The set T 0

n is essentially the same as Tn, with the only difference that the ? symbol in each
element is replaced with a 0. The reason for this change is that now we define a descent of σ =
[σ(1), . . . , σ(n)] ∈ T 0

n to be a position i such that σ(i) > σ(i+1), so the 0 entry is no longer skipped
in the computation of the descent set D(σ) and the number of descents des(σ).

Lemma 6.1. For n ≥ 3, the map

Φ : En −→ T 0
n−2

[?, 1, π̂(3), π̂(4), . . . , π̂(n)] 7→ [π̂(3)− 2, π̂(4)− 2, . . . , π̂(n)− 2]

is well-defined and it is a bijection.

Proof. First we show that if π̂ ∈ En, then Φ(π̂) ∈ T 0
n−2. Let j ∈ {1, . . . , n} be the missing entry

in π̂, that is, the entry that ? is replacing. Clearly j 6= 2, otherwise π̂ would not be an n-cycle.
In particular, there is some 3 ≤ i ≤ n such that π̂(i) = 2, which produces the 0 entry in Φ(π̂).
Besides, if we replace this 0 entry in Φ(π̂) with j − 2, we obtain an (n− 2)-cycle. This is indeed the
same (n− 2)-cycle that we get starting from the cycle notation of π̂, replacing the ? with j, deleting
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the entries 1 and 2, and shifting the values of the remaining entries down by 2. This proves that
Φ(π̂) ∈ T 0

n−2.
The map is clearly invertible, and the fact that [σ̂(1), σ̂(2), . . . , σ̂(n− 2)] ∈ T 0

n−2 guarantees that
[?, 1, σ̂(1) + 2, σ̂(2) + 2, . . . , σ̂(n− 2) + 2] is a marked cycle. ¤

For example, if π̂ = [?, 1, 5, 7, 6, 2, 3], then Φ(π̂) = [3, 5, 4, 0, 1]. Note that from the cycle notation
of π̂ = (2, 1, ?, 7, 3, 5, 6), after replacing the ? with a 4, deleting 2 and 1, and shifting the remaining
entries down by 2, we obtain (2, 5, 1, 3, 4), which is the cycle notation of Φ(π̂) with the 0 replaced
with a 2.

It is clear from the definition of Φ that it preserves the number of descents. As a consequence of
this property,

|{π̂ ∈ En : des(π̂) = k}| = |{π̂ ∈ T 0
n−2 : des(π̂) = k}|,

so we have reduced the computation of the rightmost summand of (13) to studying the distribution
of the number of descents in T 0

n−2. Experimental evidence suggests that this is a very well-known
distribution:

Conjecture 6.2. For any n and any subset D ⊆ {1, 2, . . . , n− 1},
|{σ ∈ T 0

n : D(σ) = D}| = |{π ∈ Sn : D(π) = D}|.
In particular, the statistic des has the same distribution in T 0

n as in Sn, i.e,
∑

σ∈T 0
n

xdes(σ)+1 = An(x),

the n-th Eulerian polynomial.

We have checked this conjecture by computer for n up to 9.

6.2. Divisibility properties. Even though Theorem 5.13 gives an explicit formula for the numbers
an,N , some properties of these numbers are not apparent from the formula. For example, it is not
trivial to derive Proposition 3.3 from equation (12). A striking property of the entries of Table 1
(and of other values of an,N computed for larger n using Theorem 5.13) is that they are all divisible
by 6. We conjecture that this is always the case.

Conjecture 6.3. For every n,N ≥ 3, an,N is divisible by 6.
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[1] J.M. Amigó, S. Elizalde and M. Kennel, Forbidden patterns and shift systems, J. Combin. Theory Ser. A 115
(2008), pp. 485–504.
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