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Asymptotically Tight Bounds for PerformingBMMC Permutations on Parallel Disk SystemsThomas H. Cormen�Thomas SundquistyLeonard F. WisniewskizAbstractThis paper presents asymptotically equal lower and upper bounds for the number of paral-lel I/O operations required to perform bit-matrix-multiply/complement (BMMC) permutationson the Parallel Disk Model proposed by Vitter and Shriver. A BMMC permutation maps asource index to a target index by an a�ne transformation over GF (2), where the source andtarget indices are treated as bit vectors. The class of BMMC permutations includes many com-mon permutations, such as matrix transposition (when dimensions are powers of 2), bit-reversalpermutations, vector-reversal permutations, hypercube permutations, matrix reblocking, Gray-code permutations, and inverse Gray-code permutations. The upper bound improves upon theasymptotic bound in the previous best known BMMC algorithm and upon the constant fac-tor in the previous best known bit-permute/complement (BPC) permutation algorithm. Thealgorithm achieving the upper bound uses basic linear-algebra techniques to factor the charac-teristic matrix for the BMMC permutation into a product of factors, each of which characterizesa permutation that can be performed in one pass over the data.The factoring uses new subclasses of BMMC permutations: memoryload-dispersal (MLD)permutations and their inverses. These subclasses extend the catalog of one-pass permutations.Although many BMMC permutations of practical interest fall into subclasses that mightbe explicitly invoked within the source code, this paper shows how to detect quickly whethera given vector of target addresses speci�es a BMMC permutation. Thus, one can determinee�ciently at run time whether a permutation to be performed is BMMC and then avoid thegeneral-permutation algorithm and save parallel I/Os by using the BMMC-permutation algo-rithm herein.�Dartmouth College Department of Computer Science. Portions of this research were performed while at the MITLaboratory for Computer Science and appear in [9]; supported in part by the Defense Advanced Research ProjectsAgency under Grant N00014-91-J-1698 during that time. Other portions of this research were performed while atDartmouth College and were supported in part by funds from Dartmouth College and in part by the National ScienceFoundation under Grant CCR-9308667.yDartmouth College Department of Mathematics. Supported in part by funds from Dartmouth College.zThinking Machines Corporation. Research performed while at the Dartmouth College Department of ComputerScience. Supported in part by INFOSEC Grant 3-56666, in part by the National Science Foundation under GrantCCR-9308667, and in part by a Dartmouth Graduate Fellowship.An extended abstract of this paper appeared in the Proceedings of the 5th Annual ACM Symposium on ParallelAlgorithms and Architectures. 1



BMMC Permutations on Parallel Disk Systems 21 IntroductionFrom both the theoretical and practical points of view, permuting is an interesting and impor-tant problem when the data reside on disk. As one of the most basic data-movement operations,permuting is central to the theory of I/O complexity. The problems that we attack with super-computers are ever-increasing in size, and in several applications matrices and vectors exceed thememory provided by even the largest supercomputers. (Such applications include seismic problems,computational uid dynamics, and processing large images. For a list of Grand Challenge applica-tions with huge I/O requirements, see the list compiled by del Rosario and Choudhary [14].) Onesolution is to store large matrices and vectors on parallel disk systems. The high latency of diskaccesses makes it essential to minimize the number of disk I/O operations. Permuting the elementsof a matrix or vector is a common operation, particularly in the data-parallel style of computing,and good permutation algorithms can provide signi�cant savings in disk-access costs over poor oneswhen the data reside on parallel disk systems.This paper examines the class of bit-matrix-multiply/complement (BMMC) permutations forparallel disk systems and derives four important results:1. a universal lower bound for BMMC permutations,2. an algorithm for performing BMMC permutations whose I/O complexity asymptoticallymatches the lower bound, thus making it asymptotically optimal,3. an e�cient method for determining at run time whether a given permutation is BMMC, thusallowing us to use the BMMC algorithm if it is, and4. two new subclasses of BMMC permutations, memoryload-dispersal (MLD) permutations andtheir inverses, which we show how to perform in one pass.Depending on the exact BMMC permutation, our asymptotically optimal bound may be signi�-cantly lower than the asymptotically optimal bound proven for general permutations. Moreover,the low constant factor in our algorithm makes it very practical.Model and previous resultsWe use the Parallel Disk Model �rst proposed by Vitter and Shriver [24], who also gave asymptot-ically optimal algorithms for several problems including sorting and general permutations. In theParallel Disk Model, N records are stored on D disks D0;D1; : : : ;DD�1, with N=D records storedon each disk. The records on each disk are partitioned into blocks of B records each. When a diskis read from or written to, an entire block of records is transferred. Disk I/O transfers recordsbetween the disks and a random-access memory (which we shall refer to simply as \memory")capable of holding M records. Each parallel I/O operation transfers up to D blocks between thedisks and memory, with at most one block transferred per disk, for a total of up to BD recordstransferred. We assume independent I/O, in which the blocks accessed in a single parallel I/O maybe at any locations on their respective disks, as opposed to striped I/O, which has the restrictionthat the blocks accessed in a given operation must be at the same location on each disk.We measure an algorithm's e�ciency by the number of parallel I/O operations it requires.Although this cost model does not account for the variation in disk access times caused by headmovement and rotational latency, programmers often have no control over these factors. The



BMMC Permutations on Parallel Disk Systems 3D0 D1 D2 D3 D4 D5 D6 D7stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63Figure 1: The layout of N = 64 records in a parallel disk system with B = 2 and D = 8. Each boxrepresents one block. The number of stripes is N=BD = 4. Numbers indicate record indices.
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Figure 2: Parsing the address x = (x0; x1; : : : ; xn�1) of a record on a parallel disk system. Here, n = 13,b = 3, d = 4, m = 8, and s = 6. The least signi�cant b bits contain the o�set of a record within its block, thenext d bits contain the disk number, and the most signi�cant s bits contain the stripe number. The mostsigni�cant n �m bits form the record's memoryload number, and bits b; b+ 1; : : : ;m � 1 form the relativeblock number, used in Section 4.number of disk accesses, however, can be minimized by carefully designed algorithms. Optimalalgorithms have appeared in the literature for fundamental problems such as sorting [3, 6, 21, 22, 24],general permutations [24], and structured permutations [9, 10, 26], as well as higher-level domainssuch as Fast Fourier transform [24], matrix-matrix multiplication [24], LUP decomposition [27],computational geometry problems [5, 18], graph algorithms [8], and boolean function manipulation[4]. For convenience, we use the following notation extensively:b = lgB ; d = lgD ; m = lgM ; n = lgN :We shall assume that b, d, m, and n are nonnegative integers, which implies that B, D, M , andN are exact powers of 2. In order for the memory to accomodate the records transferred in aparallel I/O operation to all D disks, we require that BD � M . Also, we assume that M < N ,since otherwise we can just perform all operations in memory. These two requirements imply thatb+ d � m < n.The Parallel Disk Model lays out data on a parallel disk system as shown in Figure 1. A stripe



BMMC Permutations on Parallel Disk Systems 4Permutation Characteristic matrix Number of passesBMMC(bit-matrix-multiply/complement) nonsingular matrix A 2� lgM � rlg(M=B)�+H(N;M;B)BPC(bit-permute/complement) permutation matrix A 2� �(A)lg(M=B)� + 1MRC(memory-rearrangement/complement) m n�m� nonsingular arbitrary0 nonsingular � mn�m 1Table 1: Classes of permutations, their characteristic matrices, and upper bounds shown in [10] on thenumber of passes needed to perform them. A pass consists of reading and writing each record exactly onceand therefore uses exactly 2N=BD parallel I/Os. For MRC permutations, submatrix dimensions are shownon matrix borders. For BMMC permutations, r is the rank of the leading lgM � lgM submatrix of A, andthe function H(N;M;B) is given by equation (1). For BPC permutations, the function �(A) is de�ned inequation (3).consists of the D blocks at the same location on all D disks. We indicate the address, or index,of a record as an n-bit vector x with the least signi�cant bit �rst: x = (x0; x1; : : : ; xn�1). Recordindices vary most rapidly within a block, then among disks, and �nally among stripes. As Figure 2shows, the o�set within the block is given by the least signi�cant b bits x0; x1; : : : ; xb�1, the disknumber by the next d bits xb; xb+1; : : : ; xb+d�1, and the stripe number by the s = n� (b+ d) mostsigni�cant bits xb+d; xb+d+1; : : : ; xn�1.Since each parallel I/O operation accesses at most BD records, any algorithm that must ac-cess all N records requires 
(N=BD) parallel I/Os, and so O(N=BD) parallel I/Os is the ana-logue of linear time in sequential computing. Vitter and Shriver showed an upper bound of� �min �ND ; NBD lg(N=B)lg(M=B)�� parallel I/Os for general permutations, that is, for arbitrary mappings� : f0; 1; : : : ;N � 1g 1-1! f0; 1; : : : ;N � 1g. The �rst term comes into play when the block size B issmall, and the second term is the sorting bound � � NBD lg(N=B)lg(M=B)�, which was shown by Vitter andShriver for randomized sorting and subsequently by Nodine and Vitter [22] and others [3, 6, 21]for deterministic sorting. These bounds are asymptotically tight, because they match the lowerbounds proven earlier by Aggarwal and Vitter [2] using a model with one disk and D independentread/write heads, which is at least as powerful as the Parallel Disk Model.Speci�c classes of permutations sometimes require fewer parallel I/Os than general permu-tations. Vitter and Shriver showed how to transpose an R � S matrix (N = RS) with only� � NBD �1 + lgmin(B;R;S;N=B)lg(M=B) �� parallel I/Os. Subsequently, Cormen [10] studied several classes ofbit-de�ned permutations that include matrix transposition as a special case. Table 1 shows someof the classes of permutations examined and the corresponding upper bounds derived in [10].



BMMC Permutations on Parallel Disk Systems 5BMMC permutationsThe most general class considered in [10] is bit-matrix-multiply/complement, or BMMC,permutations.1 A BMMC permutation is speci�ed by an n � n characteristic matrix A = (aij)whose entries are drawn from f0; 1g and is nonsingular (i.e., invertible) over GF(2).2 The speci�ca-tion also includes a complement vector c = (c0; c1; : : : ; cn�1) of length n. Treating a source address xas an n-bit vector, we perform matrix-vector multiplication over GF (2) and then form the corre-sponding n-bit target address y by complementing some subset of the resulting bits: y = Ax � c,or 26666664 y0y1y2...yn�1 37777775 = 26666664 a00 a01 a02 � � � a0;n�1a10 a11 a12 � � � a1;n�1a20 a21 a22 � � � a2;n�1... ... ... . . . ...an�1;0 an�1;1 an�1;2 � � � an�1;n�1 37777775 26666664 x0x1x2...xn�1 37777775� 26666664 c0c1c2...cn�1 37777775 :Because we require the characteristic matrix A to be nonsingular, the mapping of source addressesto target addresses is one-to-one. (This property is a consequence of Lemma 3 in Section 2.)We shall generally focus on the matrix-multiplication portion of BMMC permutations ratherthan on the complement vector. The permutation �A characterized by a matrix A is the permuta-tion for which �A(x) = Ax for all source addresses x.The following lemma shows the equivalence of multiplying characteristic matrices and composingpermutations when the complement vectors are zero. For permutations �Y and �Z , the composition�Z � �Y is de�ned by (�Z � �Y )(x) = �Z(�Y (x)) for all x in the domain of �Y .Lemma 1 Let Z and Y be nonsingular n � n matrices and let �Z and �Y be the permutationscharacterized by Z and Y , respectively. Then the matrix product Z Y characterizes the composition�Z � �Y .Proof: For any source address x, we have(�Z � �Y )(x) = �Z(�Y (x))= �Z(Y x)= Z(Y x)= (Z Y )x ;and so the matrix product Z Y characterizes the composition �Z � �Y .When we factor a characteristic matrix A into the product of several nonsingular matrices, eachfactor characterizes a BMMC permutation. The following corollary describes the order in whichwe perform these permutations to e�ect the permutation characterized by A.Corollary 2 Let the n � n characteristic matrix A be factored as A = A(k)A(k�1)A(k�2) � � �A(1),where each factor A(i) is a nonsingular n�n matrix. Then we can perform the BMMC permutation1Edelman, Heller, and Johnsson [15] call BMMC permutations a�ne transformations or, if there is no comple-menting, linear transformations.2Matrix multiplication over GF (2) is like standard matrix multiplication over the reals but with all arithmeticperformed modulo 2. Equivalently, multiplication is replaced by logical-and, and addition is replaced by exclusive-or.



BMMC Permutations on Parallel Disk Systems 6characterized by A by performing, in order, the BMMC permutations characterized by A(1);A(2);: : : ;A(k). That is, we perform the permutations characterized by the factors of a matrix from rightto left.Proof: The proof is a simple induction, using Lemma 1.The BMMC algorithm in [10] exploits Corollary 2 to factor a characteristic matrix into a productof other characteristic matrices, performing the permutations given by the factors right to left. Ituses 2NBD �2� lgM � rlg(M=B)�+H(N;M;B)�parallel I/Os, where r is the rank of the leading lgM � lgM submatrix of the characteristic matrixand H(N;M;B) = 8>>>>>><>>>>>>: 4� lgBlg(M=B)�+ 9 if M � pN ;4� lg(N=B)lg(M=B)�+ 1 if pN < M < pNB ;5 if pNB �M : (1)One can adapt the lower bound proven in this paper to show that 
 � NBD lgM�rlg(M=B)� parallel I/Os arenecessary (see Section 2.8 of [9]), but so far it has been unknown whether the � � NBD H(N;M;B)�term is necessary in all cases. This paper shows that it is not.BPC permutationsBy restricting the characteristic matrix A of a BMMC permutation to be a permutation matrix|having exactly one 1 in each row and each column|we obtain the class of bit-permute/complement,or BPC, permutations.3 One can think of a BPC permutation as forming each target address byapplying a �xed permutation to the source-address bits and then complementing a subset of theresulting bits. The class of BPC permutations includes many common permutations such as matrixtransposition (when dimensions are powers of 2), bit-reversal permutations (used in performingFFTs), vector-reversal permutations, hypercube permutations, and matrix reblocking.Previous work [10] expressed the I/O complexity of BPC permutations in terms of cross-ranks.For any n � n permutation matrix A and for any k = 0; 1; : : : ; n � 1, the k-cross-rank of A is�k(A) = rankAk::n�1;0::k�1 = rankA0::k�1;k::n�1 ; (2)where, for example, Ak::n�1;0::k�1 denotes the submatrix of A consisting of the intersection of rowsk; k + 1; : : : ; n � 1 and columns 0; 1; : : : ; k � 1. The cross-rank of A is the maximum of the b- andm-cross-ranks: �(A) = max(�b(A); �m(A)) : (3)The BPC algorithm in [10] uses at most2NBD �2 � �(A)lg(M=B)� + 1�3Johnsson and Ho [19] call BPC permutations dimension permutations, and Aggarwal, Chandra, and Snir [1] callBPC permutations without complementing rational permutations.



BMMC Permutations on Parallel Disk Systems 7parallel I/Os. One can adapt the lower bound we prove in Section 3 for BMMC permutationsto show that this BPC algorithm is asymptotically optimal. The BMMC algorithm in Section 6,however, is asymptotically optimal for all BMMC permutations|including those that are BPC|and it reduces the innermost factor of 2 in the above bound to a factor of 1. Not only is the BPCalgorithm in [10] improved upon by the results in this paper, but the notion of cross-rank appearsto be obviated as well.MRC permutationsMemory-rearrangement/complement, or MRC, permutations are BMMC permutations with theadditional restrictions shown in Table 1: both the leading m�m and trailing (n �m) � (n �m)submatrices of the characteristic matrix are nonsingular, the upper rightm�(n�m) submatrix cancontain any 0-1 values at all, and the lower left (n�m)�m submatrix is all 0. Cormen [10] showsthat any MRC permutation requires only one pass of N=BD parallel reads and N=BD parallelwrites. If we partition the N records into N=M consecutive sets ofM records each, we call each seta memoryload. Each memoryload consists ofM=BD consecutive stripes in which all addresses havethe same value in the most signi�cant n�m bits, as Figure 2 shows. Any MRC permutation can beperformed by reading in a memoryload, permuting its records in memory, and writing them out toa (possibly di�erent) memoryload number. Because a memoryload may be read and written withstriped I/Os, any MRC permutation may be performed with striped reads and striped writes. Theclass of MRC permutations includes those characterized by unit upper-triangular matrices. As [10]shows, both the standard binary-reected Gray code and its inverse have characteristic matrices ofthis form, and so they are MRC permutations.MLD permutationsWe de�ne here a new BMMC permutation subclass, which we shall use in our asymptoticallyoptimal BMMC algorithm. To de�ne this subclass, we �rst need the standard linear-algebraicnotion of a kernel. The kernel of any p � q matrix A is the set of q-vectors that map to 0 whenmultiplied by A. That is, kerA = fx : Ax = 0g :A memoryload-dispersal, or MLD, permutation has a characteristic matrix that is nonsingularand of the following form: m n�m264 arbitrary� arbitrary� 375 bm� bn�m ;subject to the kernel condition ker� � ker� (4)or, equivalently, �x = 0 implies �x = 0.As we shall see in Section 4, the kernel condition implies that we can perform any MLD per-mutation in one pass by reading in each source memoryload, permuting its records in memory, andwriting these records out toM=BD blocks on each disk. Although the blocks read from each mem-oryload must come from M=BD consecutive stripes, the blocks written may go to any locations



BMMC Permutations on Parallel Disk Systems 8at all, as long as M=BD blocks are written to each disk. That is, MLD permutations use stripedreads and independent writes. We shall also see in Section 4 that we can perform the inverse of anMLD permutation in one pass with independent reads and striped writes.OutlineThe remainder of this paper is organized as follows. Section 2 reviews some fundamental linear-algebraic notions and proves some properties that we shall use in later sections. Section 3 statesand proves the lower bound for BMMC permutations. Section 4 shows how to perform any MLDpermutation in one pass and gives some additional properties of MLD permutations and theirinverses. Section 5 previews several of the matrix forms used in Section 6, which presents analgorithm for BMMC permutations whose I/O complexity asymptotically matches the lower bound.Section 7 shows how to detect at run time whether a vector of target addresses describes a BMMCpermutation, thus enabling us to determine whether the BMMC algorithm is applicable; this sectionalso presents an easy method for determining whether a nonsingular matrix satis�es the kernelcondition (4) and therefore characterizes an MLD permutation. Finally, Section 8 contains someconcluding remarks.The algorithms for MLD and BMMC permutations in Sections 4 and 6 take little computationtime and space. (They do, however, require permutations to be performed in memory, and variousarchitectures may di�er in how e�ciently they do so.) The data structures are vectors of length lgNor matrices of size at most lgN � lgN . Even sequential algorithms for the harder computations(e.g., �nding a maximal set of linearly independent columns of a bit matrix) take time polynomialin lgN , in fact O(lg3N).We shall not concern ourselves with memory issues when manipulating characteristic matrices.That is, we assume throughout this paper that lg2N � M , since as a practical matter, the sizeof any characteristic matrix is much smaller than memory. Consider for example a problem withN = 260 records, or about one quintillion. (This problem is much larger than any problem that oneis likely to see for a long time. If each record were only one byte long, such a data set would occupyone billion gigabytes.) A 60� 60 characteristic matrix for a problem this large would require 3600bits, or 120 words of 32 bits if each column is packed into two words. This amount is insigni�cantcompared to memory sizes of even modest computer systems. Consequently, we shall think of theM -record memory as holding only records and not the characteristic matrix or complement vector.We shall use several notational conventions in this paper, as in equation (2). Matrix row andcolumn numbers are indexed from 0 starting from the upper left. Vectors are indexed from 0, too.We index rows and columns by sets to indicate submatrices, using \: :" notation to indicate sets ofcontiguous numbers. When a matrix is indexed by just one set rather than two, the set indexescolumn numbers; the submatrix consists of entire columns. When a submatrix index is a singletonset, we shall often omit the enclosing braces. We denote an identity matrix by I and a matrix whoseentries are all 0s by 0; the dimensions of such matrices will be clear from their contexts. All matrixand vector elements are drawn from f0; 1g, and all matrix and vector arithmetic is over GF(2).When convenient, we interpret bit vectors as the integers they represent in binary. Vectors aretreated as 1-column matrices in context.Some readers familiar with linear algebra may notice that a few of the lemmas in this paper arespecial cases of standard linear-algebra properties restricted to GF (2). We include the proofs herefor completeness.



BMMC Permutations on Parallel Disk Systems 92 Linear-algebraic fundamentalsThis section reviews some standard linear-algebraic terms and proves a few simple properties thatwe shall use later on. It also shows how to �nd a maximal set of linearly independent columns ofa bit matrix.Ranges and preimagesFor a p� q matrix A with 0-1 entries, we de�ne the range of A byR(A) = fy : y = Ax for some x 2 f0; 1; : : : ; 2q � 1gg ;that is, R(A) is the set of p-vectors that can be produced by multiplying all q-vectors with 0-1entries (interpreted as integers in f0; 1; : : : ; 2q � 1g) by A over GF (2). We also adopt the notationR(A)� c = fz : z = y � c for some y 2 R(A)g ;that is, R(A)� c is the exclusive-or of the range of A and a �xed vector c.Lemma 3 Let A be a p�q matrix whose entries are drawn from f0; 1g, let c be any p-vector whoseentries are drawn from f0; 1g, and let r = rankA. Then jR(A)� cj = 2r.Proof: Let S index a maximal set of linearly independent columns of A, so that S � f0; 1;: : : ; q � 1g, jSj = r, the columns of the submatrix AS are linearly independent, and for anycolumn number j 62 S, the column Aj is linearly dependent on the columns of AS . We claim thatR(A) = R(AS). Clearly, R(AS) � R(A), since R(A) includes the sum (over GF(2)) of each subsetof columns of A. To see that R(A) � R(AS), consider any q-vector y 2 R(A). There is some set Tof column indices such that y =Lj2T Aj . For each column index j 2 T � S, let Sj � S index thecolumns of AS that Aj depends on: Aj =Lk2Sj Ak . Then we havey = Mj2T Aj=  Mj2T\SAj!�  Mj2T�SAj!=  Mj2T\SAj!� 0@ Mj2T�S Mk2Sj Ak!1A ;and so y is a linear combination of columns of AS . Thus, y 2 R(AS), which in turn proves thatR(A) � R(AS) and consequently R(A) = R(AS).We have jR(AS)j = 2jSj = 2r, since each vector in R(AS) is the sum of a unique subset of thecolumns of S and each column index in S may or may not be included in a sum of the columns.Thus, jR(A)j = 2r. Exclusive-oring the result of the matrix multiplication by a constant p-vectordoes not change the cardinality of the range. Therefore, jR(A)� cj = jR(A)j = 2r.For a p� q matrix A and a p-vector y 2 R(A), we de�ne the preimage of y under A byPre(A; y) = fx : Ax = yg :That is, Pre(A; y) is the set of q-vectors x that map to y when multiplied by A.



BMMC Permutations on Parallel Disk Systems 10Lemma 4 Let A be a p � q matrix whose entries are drawn from f0; 1g, let y be any p-vector inR(A), and let r = rankA. Then jPre(A; y)j = 2q�r.Proof: Let S index a maximal set of linearly independent columns of A, so that S � f0; 1;: : : ; q� 1g, jSj = r, the columns of the submatrix AS are linearly independent, and for any columnnumber j 62 S, the column Aj is linearly dependent on the columns of AS . Let S0 = f0; 1;: : : ; q � 1g � S.We claim that for any value i 2 f0; 1; : : : ; 2q�r � 1g, there is a unique q-vector x(i) for whichx(i)S0 is the binary representation of i and y = Ax(i). Why? We have y = AS x(i)S � AS0 x(i)S 0 or,equivalently, y �AS 0x(i)S0 = AS x(i)S : (5)The columns of AS span R(A), which implies that for all z 2 R(A), there is a unique r-vector wsuch that z = AS w. Letting z = y � AS 0 x(i)S0 , we see that there is a unique r-vector x(i)S thatsatis�es equation (5), which proves the claim.Thus, we have shown that jPre(A; y)j � 2q�r. If we had jPre(A; y)j > 2q�r, then because y isarbitrarily chosen from R(A), we would have that Py02R(A) jPre(A; y0)j > 2q. But this inequalitycontradicts there being only 2q possible preimage vectors. We conclude that jPre(A; y)j = 2q�r.Row spacesThe row space of a matrix A, written rowA, is the span of the rows of A. We prove the followinglemma about the relationship between kernels and row spaces, which we shall use later to proveproperties resulting from the kernel condition of MLD permutations and to check that the kernelcondition holds.Lemma 5 Let K and L be q-column matrices. Then kerK � kerL if and only if rowL � rowK.Proof: For any vector space X , the orthogonal space of X, written X?, is the set of vectors Ysuch that for all x 2 X and all y 2 Y , the inner product x � y is 0. We use the following well-knownfacts from linear algebra (see Strang [23, pp. 138{139] for example):1. The row space and the kernel are orthogonal spaces of each other. Thus, (rowK)? = kerKand (rowL)? = kerL.2. For any vector spaces X and Y , X � Y implies Y ? � X?.3. For any vector space X, (X?)? = X.4The latter two properties imply that if Y ? � X?, then X � Y . Thus we havekerK � kerL i� (rowK)? � (rowL)?i� rowL � rowK ;which proves the lemma.4The proof that this property holds over GF (2) is not as straightforward as the conventional proof that it holdsover Rn. Lang [20, p. 131] contains a proof for GF (2).



BMMC Permutations on Parallel Disk Systems 11Finding a maximal set of linearly independent columnsWe conclude this section with a simple sequential algorithm to �nd a maximal set S of linearlyindependent columns of a p� q matrix K. We shall use this technique several times in this paper.We use the following pseudocode:1 S  ;2 for each row index i 0 to p� 1 do3 if there exists some column index j for which Kij = 14 then for each column index j0 such that Kij0 = 15 add column j to column j06 S  S [ fjgAt the completion of this algorithm, the set S contains the indices for a maximal set of linearlyindependent columns of K. Lines 4{5 zero out any column in the set. Each iteration of the outerloop zeros out the next row. By the end of the algorithm, every column gets zeroed out as a columnin S or by the addition of some subset of columns in S.This algorithm takes O(p2q) time on a sequential machine. In our applications of this algorithm,p and q are at most lgN , and so the sequential time will always be O(lg3N).3 A universal lower bound for BMMC permutationsIn this section, we state and prove the lower bound for BMMC permutations. After stating thelower bound, we briey discuss its signi�cance before presenting the full proof. The lower bound isgiven by the following theorem.Theorem 6 Any algorithm that performs a non-identity BMMC permutation with characteristicmatrix A requires 
� NBD �1 + rank lg(M=B)��parallel I/Os, where  is the submatrix Ab::n�1;0::b�1 of size lg(N=B)� lgB.This lower bound is universal in the sense that it applies to all inputs other than the identitypermutation, which of course requires no data movement at all. In contrast, lower bounds such asthe standard 
(N lgN) lower bound for sorting N items on a sequential machine are existential:they apply to worst-case inputs, but for some inputs an algorithm may be able to do better.Section 6 presents an algorithm that achieves the bound given by Theorem 6, and so thisalgorithm is asymptotically optimal.TechniqueTo prove Theorem 6, we rely heavily on the technique used by Aggarwal and Vitter [2] to prove alower bound on I/Os for matrix transposition; their proof is based in turn on a method by Floyd[16]. We prove the lower bound for the case in which D = 1; the general case follows by dividingby D. We consider only I/Os that are simple. An input is simple if each record read is removedfrom the disk and moved into an empty location in memory. An output is simple if the records



BMMC Permutations on Parallel Disk Systems 12are removed from the memory and written to empty locations on the disk. When all I/Os aresimple, exactly one copy of each record exists at any time during the execution of an algorithm.The following lemma, proven by Aggarwal and Vitter, allows us to consider only simple I/Os whenproving lower bounds.Lemma 7 For each computation that implements a permutation of records, there is a correspondingcomputation strategy involving only simple I/Os such that the total number of I/Os is no greater.The basic scheme of the proof of Theorem 6 uses a potential-function argument. Time q is thetime interval starting when the qth I/O completes and ending just before the (q + 1)st I/O starts.We de�ne a potential function � so that �(q) is the potential at time q. This potential measureshow close the current record ordering is to the desired permutation order. Higher potentials indicatethat the current ordering is closer to the desired permutation. We compute the initial and �nalpotentials and bound the amount that the potential can increase in each I/O operation. The lowerbound then follows.To be more precise, we start with some de�nitions. For i = 0; 1; : : : ;N=B � 1, we de�ne theith target group to be the set of records that belong in block i according to the given BMMCpermutation. We denote by gblock(i; k; q) the number of records in the ith target group that arein block k on disk at time q, and gmem(i; q) denotes the number of records in the ith target groupthat are in memory at time q. We de�ne the continuous functionf(x) = � x lg x if x > 0 ;0 if x = 0 ;and we de�ne togetherness functionsGblock(k; q) = N=B�1Xi=0 f(gblock(i; k; q))for each block k at time q and Gmem(q) = N=B�1Xi=0 f(gmem(i; q))for memory at time q. Finally, we de�ne the potential at time q, denoted �(q), as the sum of thetogetherness functions: �(q) = Gmem(q) + N=B�1Xk=0 Gblock(k; q) :Aggarwal and Vitter embed the following lemmas in their lower-bound argument. The �rstlemma is based on the observation that the number of parallel I/Os needed is at least the totalincrease in potential over all parallel I/Os divided by the maximum increase in potential (denoted��max) in any single parallel I/O.Lemma 8 Let D = 1, and consider any algorithm that uses t parallel I/Os to perform a permuta-tion. Then t = 
 ��(t)��(0)��max �.



BMMC Permutations on Parallel Disk Systems 13Lemma 9 Let D = 1, and consider any permutation that can be performed with t parallel I/Os.Then �(t) = N lgB and ��max = O(B lg(M=B)). Therefore, any algorithm that performs apermutation uses 
�N lgB��(0)B lg(M=B) � parallel I/Os.Observe that these lemmas imply lower bounds that are universal. No matter what permutationis being performed, the initial potential is �(0), the �nal potential is �(t), the increase in potentialper parallel I/O is at most ��max, and so 
 ��(t)��(0)��max � parallel I/Os are required.We can now show a trivial lower bound for all non-identity BMMC permutations.Lemma 10 If D = 1, any algorithm that performs a BMMC permutation requires 
(N=B) parallelI/Os whenever the permutation is not the identity permutation.Proof: Consider a BMMC permutation with characteristic matrix A and complement vector c. Itis the identity permutation if and only if A = I and c = 0, so we shall assume that either A 6= I orc 6= 0.A �xed point of the BMMC permutation is a source address x for whichAx� c = x : (6)If a record's source address is not a �xed point, its source block must be read and its targetblock must be written. We shall show that for any non-identity BMMC permutation, at least N=2addresses are not �xed points. Even if these records are clustered into as few source blocks aspossible, then at least half the source blocks, or N=2B, must be read. The lemma then follows.To show that at least N=2 addresses are not �xed points, we shall show that at most N=2addresses are. Rewriting equation (6) as (A � I)x = c, we see that we wish to bound the size ofPre(A� I; c). If c 62 R(A� I), then this size is 0. Otherwise, by Lemma 4, this size is 2n�rank(A�I).If A 6= I, then rank(A � I) � 1, which implies that jPre(A� I; c)j � 2n�1 = N=2. If A = I , thenA� I is the 0 matrix, and the only vector in its range is 0. But A = I and c = 0 yields the identitypermutation, which we speci�cally disallow.Proof of Theorem 6Recall that we shall prove Theorem 6 by proving the lower bound for the case in which D = 1;the general case follows by dividing by D. We work with characteristic matrix A and complementvector c. We assume that all I/Os are simple and transfer exactly B records, some possibly empty.Since all records start on disk and I/Os are simple, memory is initially empty.We need to compute the initial potential in order to apply Lemma 9. The initial potentialdepends on the number of records that start in the same source block and are in the same targetgroup. A record with source address x = (x0; x1; : : : ; xn�1) is in source block k if and only ifk = xb::n�1 ; (7)interpreting k as an (n� b)-bit binary number with the least sign�cant bit �rst. This record mapsto target block i if and only ifi = Ab::n�1;0::n�1 x0::n�1 � cb::n�1= Ab::n�1;0::b�1 x0::b�1 �Ab::n�1;b::n�1 xb::n�1 � cb::n�1 ; (8)



BMMC Permutations on Parallel Disk Systems 14also interpreting i as an (n � b)-bit binary number. The following lemma gives the exact numberof records that start in each source block and are in the same target group.Lemma 11 Let r = rankAb::n�1;0::b�1, and consider any source block k. There are exactly 2rdistinct target blocks that some record in source block k maps to, and for each such target block,exactly B=2r records in source block k map to it.Proof: For a given source block k, all source addresses ful�ll condition (7), and so they map totarget block numbers given by condition (8) but with xb::n�1 �xed at k. The range of target blocknumbers is thus R(Ab::n�1;0::b�1)�(Ab::n�1;b::n�1 k�cb::n�1) which, by Lemma 3, has cardinality 2r.Now we determine the set of source addresses in source block k that map to a particulartarget block i in R(Ab::n�1;0::b�1) � (Ab::n�1;b::n�1 k � cb::n�1). Again �xing xb::n�1 = k in condi-tion (8) and exclusive-oring both sides by Ab::n�1;b::n�1 k � cb::n�1, we see that this set is preciselyPre(Ab::n�1;0::b�1; i � Ab::n�1;b::n�1 k � cb::n�1). By Lemma 4, this set has cardinality exactly 2b�r,which equals B=2r.We can interpret Lemma 11 as follows. Let r = rankAb::n�1;0::b�1, and consider a particularsource block k. Then there are exactly 2r target blocks i for which gblock(i; k; 0) is nonzero, and foreach such nonzero target block, we have gblock(i; k; 0) = B=2r.Now we can compute �(0). Since memory is initially empty, gmem(i; 0) = 0 for all blocks i,which implies that Gmem(0) = 0. We have�(0) = Gmem(0) + N=B�1Xk=0 Gblock(k; 0)= 0 + N=B�1Xk=0 N=B�1Xi=0 f(gblock(i; k; 0))= N=B�1Xk=0 2r B2r lg B2r (by Lemma 11)= NBB lg B2r= N(lgB � r) : (9)Combining Lemmas 9 and 10 with equation (9), we get a lower bound of
�NB + N lgB �N(lgB � r)B lg(M=B) � = 
�NB �1 + rankAb::n�1;0::b�1lg(M=B) ��parallel I/Os. Dividing through by D yields a lower bound of
� NBD �1 + rankAb::n�1;0::b�1lg(M=B) �� ;which completes the proof of Theorem 6.



BMMC Permutations on Parallel Disk Systems 154 MLD permutationsIn this section, we describe how to perform any MLD permutation in only one pass. This sectionalso discusses additional properties of MLD and MRC permutations and concludes with a discussionof MLD�1 permutations, which are permutations whose inverses are MLD permutations. Section 7shows how to determine whether a given matrix characterizes an MLD permutation.How the kernel condition implies a one-pass permutationWe shall show in three steps that the kernel condition implies that, for a given source memoryload,the source records are permuted into full target blocks spread evenly across the disks. To do so,we �rst need to de�ne the notion of relative block number, as shown in Figure 2. For a given n-bitrecord address x0::n�1, the relative block number of x is the m� b bits xb::m�1. The relative blocknumber ranges from 0 to M=B � 1 and determines the number of a block within its memoryload.Recall that the memoryload number is the n �m bits xm::n�1. We shall prove that for a givensource memoryload, the following properties hold:1. Its records map to all M=B relative block numbers, and each relative block number hasexactly B records mapping to it.2. Records that map to the same relative block number map to the same target memoryloadnumber as well.The �rst two properties imply that the records of each source memoryload map to exactly M=Btarget blocks and that each such target block is full.3. These M=B target blocks are distributed evenly among the disks, with M=BD mapping toeach disk.Given these properties, we can perform an MLD permutation in one pass. Like the other one-pass permutations described in [10], we allow the permutation to map records from one set ofN=BD stripes (the \source portion" of the parallel disk system) to a di�erent set of N=BD stripes(the \target portion"). One can think of addresses as relative to the beginning of the appropriateportion. In this way, we need not be concerned with overwriting source records before we get achance to read them. Note that when we chain passes together, as in the BMMC algorithm ofSection 6 and the BPC algorithm of [10], we can avoid allocating a new target portion in each passby reversing the roles of the source and target portions between passes, and so the total disk spaceused is 2N records.We perform anMLD permutation by processing source memoryload numbers from 0 toN=M�1.For each source memoryload, we �rst read into memory its M=BD consecutive stripes from thesource portion. We then permute its records in memory, clustering them into M=B full targetblocks that are distributed evenly among the disks. We then write out these target blocks usingM=BD independent writes to the target portion. After processing all N=M source memoryloads,we have read each record from the source portion and written it to where it belongs in the targetportion. Thus, we have performed the MLD permutation in one pass.The following lemma gives an important consequence of the kernel condition.Lemma 12 If the matrix A characterizes an MLD permutation, then the submatrix � has rankm� b.



BMMC Permutations on Parallel Disk Systems 16Proof: We shall prove that all rows of the leading m�m submatrix of A are linearly indepedent.The lemma then follows because � is a subset of these rows.Because A is nonsingular, the rank of its leftmostm columns (i.e., the submatrix A0::n�1;0::m�1)is m. The row rank of any matrix equals the column rank, and so there are m linearly independentrows in A0::n�1;0::m�1.Since ker� � ker�, Lemma 5 implies that row� � row�. Thus, every row of � is linearlydependent on some rows of � and hence on some rows of the leading m�m submatrix of A. Sincethere are m linearly independent rows in A0::n�1;0::m�1, all rows of the leading m �m submatrixmust be linearly independent.We now prove property 1.Lemma 13 The records of each source memoryload in an MLD permutation map to exactly M=Brelative block numbers. Moreover, for a given source memoryload, each relative block number hasexactly B records mapping to it.Proof: Let A characterize an MLD permutation with complement vector c. By Lemma 12,rankAb::m�1;0::m�1 = m � b. The target relative block number yb::m�1 corresponding to a sourceaddress x is given by the equationyb::m�1 = Ab::m�1;0::m�1 x0::m�1 �Ab::m�1;m::n�1 xm::n�1 � cb::m�1 : (10)The value of xm::n�1 is �xed for a given source memoryload, and so the (m � b)-vectorAb::m�1;m::n�1 xm::n�1 � cb::m�1 has the same value for all records. By Lemma 3, yb::m�1 takeson 2rankAb::m�1;0::m�1 = 2m�b =M=B di�erent values for the M di�erent values of x0::m�1. That is,the records of each source memoryload map to exactly M=B di�erent relative block numbers.Now consider some relative block number yb::m�1 that some source address in a memoryloadmaps to. Using equation (10), the number of source addresses x0::m�1 within that memoryloadthat map to yb::m�1 is equal to jPre(Ab::m�1;0::m�1; yb::m�1 � Ab::m�1;m::n�1 xm::n�1 � cb::m�1)j. ByLemma 4, this number is equal to 2m�rankAb::m�1;0::m�1 = 2m�(m�b) = B.Property 2 follows directly from the kernel condition. Although we use kernel notation forits simplicity of expression, the following lemma shows that the kernel condition is equivalent torequiring that, for a given source memoryload, every record destined for a particular relative blocknumber must also be destined for the same target memoryload.Lemma 14 Let K and L be matrices with q columns. Then kerK � kerL if and only if for allq-vectors x and y, Kx = Ky implies Lx = Ly.Proof: Suppose that kerK � kerL and Kx = Ky. Then K(x � y) = 0, which implies thatL(x� y) = 0, which in turn implies Lx = Ly.Conversely, suppose that Kx = Ky implies Lx = Ly for all q-vectors x and y, and consider anyq-vector z 2 kerK. We have Kz = 0 = K � 0, which implies Lz = L � 0 = 0. Thus, z 2 kerL.For an MLD permutation, since ker� � ker�, we apply Lemma 14 with K = � and L = �.Thus, any two source records x and y from the same source memoryload that are mapped to relativeblock number � x0::m�1 are also mapped to the same target memoryload � x0::m�1.Property 3 follows from property 1. Each source memoryload maps to relative block numbers0; 1; : : : ;M=B � 1. As Figure 2 shows, the number of the disk that a block resides on is encoded in



BMMC Permutations on Parallel Disk Systems 17the least signi�cant d bits of its relative block number. TheM=B relative block numbers, therefore,are evenly distributed among the D disks, with M=BD residing on each disk.Thus, we have the following theorem.Theorem 15 Any MLD permutation can be performed in one pass with striped reads and indepen-dent writes.Proof: The above argument demonstrates that we can perform any MLD permutation in one passwith independent writes. Because a memoryload can be read with M=BD striped reads and theabove method for performing MLD permutations reads full memoryloads, it uses striped reads.Additional properties of MLD and MRC permutationsWe now examine some additional properties of MLD permutations. We shall use these proper-ties primarily to combine matrix factors in the BMMC algorithm, thus reducing the number ofpasses. The �rst property bounds the rank of the submatrix � as another consequence of the kernelcondition.Lemma 16 In the characteristic matrix for an MLD permutation, the submatrix � has rank atmost m� b.Proof: By Lemma 5 and the kernel condition, row� � row�, which in turn implies thatdim(row�) � dim(row�), where the dimension of a vector space is the size of any basis for it.Applying Lemma 12, we have that rank� � rank� = m� b.Thus, if the lower left (n �m) �m submatrix of a characteristic matrix has rank more thanm� b, the matrix cannot characterize an MLD permutation.Theorem 17 Let the matrix Y characterize an MLD permutation, and let the matrix X charac-terize an MRC permutation. Then the matrix product Y X characterizes an MLD permutation.Proof: Write the nonsingular matrix Y as m n�mY = " � � � # mn�m ;where ker�b::m�1;0::m�1 � ker : (11)Write the nonsingular matrix X as m n�mX = " � �0 � # mn�m ;



BMMC Permutations on Parallel Disk Systems 18where � and � are nonsingular. We now show that the productm n�mY X = " �� �� � ��� � � �� # mn�m :characterizes an MLD permutation. Observe that the product Y X is nonsingular because Y and Xare each nonsingular.We must also prove that the kernel condition (4) holds for the product, i.e., thatker(��)b::m�1;0::m�1 � ker(�). For an m�m matrix � , note that �b::m�1;0::m�1 = Ib::m�1;0::m�1 � ,where I is the usual m � m identity matrix. We have that x 2 ker(��)b::m�1;0::m�1 implies(Ib::m�1;0::m�1��)x = 0 (taking �� as �), which in turn implies that �x 2 ker(Ib::m�1;0::m�1�) =ker�b::m�1;0::m�1 � ker , by property (11). Thus, � x = 0, and so x 2 ker(�). We conclude thatker(��)b::m�1;0::m�1 � ker(�), which completes the proof.Theorem 17 shows that the composition of an MLD permutation with an MRC permutationis an MLD permutation. Since we have seen how to perform MLD permutations, we can gain anintuitive understanding of why Theorem 17 holds. An MRC permutation permutes memoryloadnumbers, with records that start together within a source memoryload remaining together in atarget memoryload. We perform an MLD permutation by reading in entire memoryloads. Thus, toperform the composition as an MLD permutation, we only have to remap the source memoryloadnumbers and adjust the in-memory permutations accordingly. Furthermore, as the following lemmashows, the composition of two MRC permutations is merely the composition of their memoryloadmappings with the in-memory permutations adjusted accordingly.Theorem 18 The class of MRC permutations is closed under composition and inversion. That is,if a matrix A characterizes an MRC permutation, then so does the matrix A�1, and if A(1) and A(2)characterize MRC permutations, then so does the product A(1)A(2).Proof: We �rst show that MRC permutations are closed under inverse. Let the matrixm n�mA = " � �0 � # mn�mcharacterize an MRC permutation, so that the leading submatrix � and trailing submatrix � arenonsingular. The inverse of this matrix is m n�mA�1 = " ��1 ��1���10 ��1 # mn�m ;where the leadingm�m submatrix ��1 and trailing (n�m)�(n�m) submatrix ��1 are nonsingular.Thus, the matrix A�1 characterizes an MRC permutation.We now show that MRC permutations are closed under composition. Consider MRC charac-teristic matrices A(1) = m n�m" �(1) �(1)0 �(1) # mn�m ;



BMMC Permutations on Parallel Disk Systems 19A(2) = m n�m" �(2) �(2)0 �(2) # mn�m ;where the submatrices �(1), �(2), �(1), and �(2) are nonsingular. Then their product isA(1) A(2) = m n�m" �(1) �(2) �(1) �(2) � �(1) �(2)0 �(1) �(2) # mn�m :Because �(1) and �(2) are nonsingular, so is their product �(1) �(2). Similarly, the product �(1) �(2)is nonsingular. The product A(1)A(2), therefore, characterizes an MRC permutation.On the other hand, the composition of two MLD permutations is not necessarily an MLDpermutation. We can see this fact in two ways. First, since we perform an MLD permutation byreading in entire memoryloads but writing blocks independently, it may not be possible to remapthe source memoryload numbers. Second, consider the product of two matrices, each of whichcharacterizes an MLD permutation. Although the rank of the lower left (n �m) �m submatrixof each factor is at most m � b, it may be the case that the rank of the lower left (n �m) �msubmatrix of the product exceeds m� b. If so, then by Lemma 16, the product cannot characterizean MLD permutation.Moreover, the composition of an MRC permutation with an MLD permutation (that is, reversingthe order of the factors in Theorem 17) is not necessarily an MLD permutation. A simple exampleis the productb m� b n�m264 0 I 0I 0 00 0 I 375 b m� b n�m264 I 0 00 I 00 I I 375 = b m� b n�m264 0 I 0I 0 00 I I 375 bm� bn�m ;MRC MLD not MLDwith b = m�b = n�m. This product is not MLD since an m-vector with 0s in the �rst b positionsand 1s in the last m� b positions is a vector in ker�, but it is not a vector in ker�.Finally, we note that any MRC permutation is an MLD permutation. Observe that the lowerleft (n�m)�m submatrix of an MRC permutation must be 0, which implies that its kernel is theset of all m-vectors. No matter what ker� is, it is a subset of this set.Inverses of MLD permutationsThe �rst BMMC algorithm we shall see works by factoring the BMMC characteristic matrix intomatrices that characterize MRC and MLD permutations. In some settings, it may be easier toperform a permutation whose inverse is MLD (we call this class MLD�1) than to perform an MLDpermutation. We shall see an alternative way to factor BMMC characteristic matrices|into MRCand MLD�1 characteristic matrices|so that the resulting algorithm takes the same number ofparallel I/Os as the original factorization into MRC and MLD permutations. In the remainderof this section, we examine the properties of MLD�1 permutations that enable this alternativefactorization.



BMMC Permutations on Parallel Disk Systems 20Striped writes may be valuable when redundant data is maintained on a parallel disk system toreduce the chance of data loss due to a failed device. Many common parallel-disk organizations fallunder the heading of RAID (Redundant Array of Inexpensive Disks) [7, 17], which is organized into\levels" of redundancy. In RAID levels 3 and 4, an additional disk is added to the disk array tostore redundancy. Each block of this parity disk contains the bitwise exclusive-or of the contents ofthe corresponding blocks of the other D data disks. If any one data disk fails, its contents are easilyreconstructed from the contents of the D� 1 remaining data disks and the parity disk. If an entirestripe is written to the disk array, it is easy to compute the corresponding parity information at thesame time and write it to the parity disk in parallel with the data being written to the data disks.On the other hand, when less than a full stripe of data is being written to a given stripe of the diskarray, updating the parity disk is harder. For each partial stripe being written, the old data andparity information must be read and the new data and parity information must be written. If kdi�erent stripes are being written, accessing the parity disk may become a severe bottleneck sincek di�erent blocks of the parity disk must be read and rewritten. Because an independent writemay update individual blocks in several di�erent stripes, in a RAID 3 or 4 organization, algorithmsthat use striped writes are preferable to those that use independent writes.With this motivation, we begin our investigation of MLD�1 permutations with a property thatpertains to all one-pass permutations.Lemma 19 If a permutation � is a one-pass permutation, then its inverse permutation ��1 isalso a one-pass permutation. Moreover, if we perform � using striped reads (respectively, writes),then we can perform ��1 using striped writes (respectively, reads).Proof: Consider a one-pass algorithm to perform the permutation �. It repeatedly reads a setof blocks, permutes their records in memory, and writes the records as full blocks. The one-passalgorithm reads and writes each record once. To perform the inverse permutation ��1, we inverteach read-permute-write step in the algorithm for �. In each step, we read the blocks that werewritten in the corresponding step for �, we perform the inverse in-memory permutation, and wewrite the blocks that were read in the corresponding step for �. Each record is still read andwritten once, and thus ��1 is also a one-pass permutation. Note that if a read (respectively, write)for � is striped, then the corresponding write (respectively, read) for ��1 is also striped.The following corollary follows directly from Theorem 15 and Lemma 19.Corollary 20 Any MLD�1 permutation can be performed in one pass with independent reads andstriped writes.Our �nal property of MLD�1 permutations is analogous to Theorem 17.Lemma 21 Let the matrix X characterize an MRC permutation, and let the matrix Y characterizean MLD�1 permutation. Then the matrix product X Y characterizes an MLD�1 permutation.Proof: Let Z = X Y , so that Z�1 = Y �1X�1. Since the matrix Y characterizes an MLD�1permutation, the matrix Y �1 characterizes an MLD permutation. By Theorem 18, the matrix X�1characterizes an MRC permutation. By Theorem 17, therefore, the matrix Z�1 characterizes anMLD permutation. We conclude that the matrix Z characterizes an MLD�1 permutation.



BMMC Permutations on Parallel Disk Systems 215 Matrix-column operationsIn this section, we classify forms of matrices which, as factors, have the e�ect of adding columnsof other matrices to yield a product. We shall use matrices of this form in Section 6 to transformthe characteristic matrix for any BMMC permutation into a characteristic matrix for an MRCpermutation. This section shows the structure and useful properties of speci�c characteristic matrixforms we shall use.Column additionsWe de�ne a column-addition matrix as a matrix Q such that the product A0 = AQ is a modi�edform of A in which speci�ed columns of A have been added into others. Denoting the kth columnof A by Ak , we de�ne the matrix Q = (qij) byqij = 8<: 1 if i = j ;1 if column Ai is added into column Aj ;0 otherwise :For example,26664 1 0 1 10 1 1 01 1 0 00 1 0 1 37775 26664 1 1 1 00 1 0 00 0 1 00 1 0 1 37775 = 264 A0 A0 �A1 � A3 A0 �A2 A3 375 = 26664 1 0 0 10 1 1 01 0 1 00 0 0 1 37775 :A Q A0Column-addition matrices are also subject to a dependency restriction that if column i is addedinto column j, then column j cannot be added into any other column. That is, if qij = 1, thenqjk = 0 for all k 6= j. The following lemma shows that any column-addition matrix is the productof two nonsingular matrices, and so any column-addition matrix is also nonsingular.Lemma 22 Any column-addition matrix is nonsingular.Proof: We shall prove by induction on the matrix size n that any column-addition matrix Q isthe product of two nonsingular matrices L and U . Thus, the matrix Q is also nonsingular.For the basis, when n = 2, the only column-addition matrices are � 1 01 1 � ; � 1 10 1 � ; and� 1 00 1 �. Since each of these matrices is nonsingular, each of them is the product of itself and theidentity matrix.For the inductive step, we assume that every (n � 1) � (n � 1) column-addition matrix is theproduct of two nonsingular matrices. We partition an arbitrary n � n column-addition matrix Qas 1 n� 1Q = " 1  � � # 1n� 1 :



BMMC Permutations on Parallel Disk Systems 22The trailing (n� 1)� (n � 1) submatrix � is a column-addition matrix because all of its diagonalelements are 1s and, as a submatrix of Q, it obeys the dependency restriction. By our inductivehypothesis, therefore, the submatrix � is the product of two (n� 1)� (n� 1) nonsingular matrices,say � and �. By the dependency restriction, if there are any 1s in �, then there cannot be any 1sin  . Therefore, either  or � is a zero submatrix, and consequently we can factor Q asQ = 1 n� 1" 1 0� � # 1 n� 1" 1  0 � # 1n� 1 :L UThe rightmost n � 1 columns of L are linearly independent since the submatrix � is nonsingularand the upper right 1� (n� 1) submatrix is 0. The leftmost column is linearly independent of therightmost n � 1 columns since its top entry is 1 and the top entry of each of the rightmost n � 1columns is 0. Thus, L is nonsingular. Similarly, because the submatrix � is nonsingular and thelower left (n� 1)� 1 submatrix of U is 0, the matrix U is nonsingular. Thus, any column-additionmatrix is the product of two nonsingular matrices, and therefore is also nonsingular.In fact, the factors L and U in the proof of Lemma 22 are unit lower-triangular and unitupper-triangular matrices, respectively. Thus, we can factor the example above asQ = 26664 1 1 1 00 1 0 00 0 1 00 1 0 1 37775 = 26664 1 1 1 00 1 0 00 0 1 00 0 0 1 37775 26664 1 0 0 00 1 0 00 0 1 00 1 0 1 37775 = LU :Partitioning the matrixIn Section 6, we shall factor nonsingular matrices into column-addition matrices and matrices thatcharacterize MRC permutations. These matrices will be of various block forms, and to classifythese forms, we use the following block representation. We partition a matrix into three sections:left, middle, and right. The left section includes the leftmost b columns, the middle section includesthe middle m� b columns and the right section includes the rightmost n�m columns. When theform of a particular submatrix is known, we label that block accordingly. Otherwise, we place anasterisk (*) in blocks whose contents are not of any particular form.For column-addition operations, the characteristic matrix has the following form. Every entryon the diagonal is 1. We place an asterisk in each submatrix that contains any non-diagonal 1s asde�ned by the operation. Returning to the example above, if b = 1 and m = 2, the form of Q isb = 1 m� b = 1 n�m = 2Q = 264 I � �0 I 00 � I 375 b = 1m� b = 1n�m = 2 :We de�ne several column-addition operations and MRC permutations by the form of their char-acteristic matrices. Each of these forms is nonsingular and characterizes a one-pass permutation.We shall show that the inverse of each of these one-pass permutations falls into a speci�c class ofone-pass permutations.



BMMC Permutations on Parallel Disk Systems 23Trailer matrix formIn Section 6, we shall need to transform a nonsingular matrix into one that has a nonsingulartrailing (n�m)� (n�m) submatrix. We shall create the nonsingular trailing submatrix by addingsome columns from the left and middle sections to the right section. We de�ne a trailer matrixas a column-addition matrix that adds some columns from the left and middle sections into thecolumns of the right section. The matrix T for this operation is of the formb m� b n�mT = 264 I 0 �0 I �0 0 I 375 bm� bn�m :The trailer matrix form characterizes an MRC permutation.Reducer matrix formOnce we have a matrix with a nonsingular trailing submatrix, we need an operation that puts thematrix into \reduced form." (We shall de�ne reduced form precisely in Section 6.) We convert amatrix into reduced form by adding columns from the left and middle sections into other columns inthe left and middle sections while respecting the dependency restriction. Thus, a reducer matrix Ris a column-addition matrix of the form b m� b n�mR = 264 � � 0� � 00 0 I 375 bm� bn�m :Since the dependency restriction is obeyed, the leadingm�m submatrix of R is nonsingular. Thus,the matrix R characterizes an MRC permutation.We can multiply the forms T and R to create another matrix form that also characterizes aone-pass permutation. The product T R results in a matrix of the formb m� b n�mP = 264 � � �� � �0 0 I 375 bm� bn�m :Since both of the matrix forms T and R characterize MRC permutations, by Theorem 18, so doesthe matrix form P and its inverse.Swapper matrix formWe shall also need to transform the columns in the lower left and lower middle submatrices intocolumns of zeros. To do so, we must move the nonzero columns in the lower left submatrix intothe lower middle submatrix positions by swapping at most m � b columns at a time from the left



BMMC Permutations on Parallel Disk Systems 24section with those in the middle section. Thus, the swap operation is a permutation of the leftmostm columns. A swapper matrix is of the formm n�mS = " permutation 00 I # mn�mso that the leadingm�m submatrix is a permutation matrix, which dictates the permutation of theleftmost m columns. The matrix form S characterizes an MRC permutation and, by Theorem 18,so does its inverse.Erasure matrix formThe last operation used in Section 6 is an erasure operation to zero out columns in the lower middlesubmatrix. To perform this operation, we add columns from the right section into columns in themiddle section. Thus, an erasure matrix form is de�ned asb m� b n�mE = 264 I 0 00 I 00 � I 375 bm� bn�m :This matrix form characterizes an MLD permutation because the kernel of Eb::m�1;0::m�1 includesonly those m-vectors x with xb::m�1 = 0, and each such vector is also in the kernel of Em::n�1;0::m�1.Moreover, observe that any matrix of this form is its own inverse. Consequently, the inverse of sucha matrix characterizes an MLD permutation.6 An asymptotically optimal BMMC algorithmIn this section, we present an algorithm to perform any BMMC permutation by factoring itscharacteristic matrix into matrices which characterize one-pass permutations. We assume that theBMMC permutation is given by an n � n characteristic matrix A and a complement vector c oflength n. We show that the number of parallel I/Os to perform any BMMC permutation is atmost 2NBD �l rank lg(M=B)m+ 2� parallel I/Os, where  is the submatrix Ab::n�1;0::b�1, which appears inthe lower bound given by Theorem 6.Our strategy is to factor the matrix A into a product of matrices, each of which characterizes anMRC or MLD permutation. For now, we ignore the complement vector c. According to Corollary 2,we read the factors right to left to determine the order in which to perform the permutations.To obtain the factorization for A, we multiply A by matrices of the forms described in Section 5.By applying these matrix-column operations, we transform the matrix A into a matrix F thatcharacterizes an MRC permutation. Multiplying F by the inverse of each of the matrix-columnfactors yields the factorization.



BMMC Permutations on Parallel Disk Systems 25Creating a nonsingular trailing submatrixWe start to transform the characteristic matrix A by creating a nonsingular matrix A(1) which hasa nonsingular trailing (n�m)� (n�m) submatrix. We represent the matrix A asm n�mA = " � �� � # mn�m :Our algorithm depends on the structure of � rather than . The following lemma allows us toconsider rank� instead of rank  with only a minor di�erence.Lemma 23 For any matrix A,rankAb::n�1;0::b�1 � lg(M=B) � rankAm::n�1;0::m�1 � rankAb::n�1;0::b�1 + lg(M=B) :Proof: Because the rank of a submatrix is the maximum number of linearly independent rows orcolumns, we haverankAm::n�1;0::b�1 � rankAb::n�1;0::b�1 � rankAm::n�1;0::b�1 + lg(M=B) ; (12)rankAm::n�1;0::b�1 � rankAm::n�1;0::m�1 � rankAm::n�1;0::b�1 + lg(M=B) : (13)Subtracting lg(M=B) from the right-hand inequality of (12) and combining the result with theleft-hand inequality of (13) yieldsrankAb::n�1;0::b�1 � lg(M=B) � rankAm::n�1;0::b�1 � rankAm::n�1;0::m�1 : (14)Adding lg(M=B) to the left-hand inequality of (12) and combining the result with the right-handinequality of (13) yieldsrankAm::n�1;0::m�1 � rankAm::n�1;0::b�1 + lg(M=B) � rankAb::n�1;0::b�1 + lg(M=B) : (15)Combining inequalities (14) and (15) proves the lemma.By Lemma 23, therefore, rank� � rank  + lg(M=B) : (16)We shall use this fact later in the analysis of the algorithm to express the bound in terms of rank.We make the trailing (n �m) � (n �m) submatrix nonsingular by adding columns in � intothose in �. Consider � as a set of n � m columns and � as a set of m columns. Because A isnonsingular, the submatrix of A consisting of the bottom n �m rows (i.e., submatrices � and �)has rank n �m. Hence, there exists a set of n �m linearly independent columns in the bottomn�m rows of A. We use the method described in Section 2 to determine a maximal set V of rank �linearly independent columns in � and a set W of n�m� rank � columns in � that, along with V ,comprise a set of n�m linearly independent columns. Denoting by V the n�m� rank � columnsof � not in V , we make the trailing submatrix of A nonsingular by pairing up columns of W withcolumns of V and adding each column in W into its corresponding column in V . Because V is a



BMMC Permutations on Parallel Disk Systems 26maximal set of linearly independent columns in �, the columns of V depend only on columns of Vand not on columns of W . Adding a column of W into a column of V must produce a columnthat is linearly independent of those in V . Because each column of V has a di�erent column of Wadded in, the resulting columns are linearly independent of each other, too.We must express the above transformation as a column-addition operation. Although we focusedabove on adding columns of � to columns of �, column-addition operations add entire columns, andso we must also add the corresponding columns of � to the corresponding columns of �. Since weadd columns from the leftmost m columns of A to the rightmost n�m columns, the characteristicmatrix of this operation has the trailer matrix form T described in Section 5. The matrix productis now m n�mA(1) = AT = " � b�� b� # mn�m ;where b� is nonsingular. Since the matrices A and T are nonsingular, the matrix A(1) is nonsingular.Transforming the matrix into reduced formThe next step is to transform the matrix A(1) into reduced form. For our purposes, a matrixis in reduced form when there are rank� linearly independent columns and m � rank� columnsof zeros in the lower left (n � m) � m submatrix and the trailing (n � m) � (n �m) submatrixis nonsingular. Once again, we use the method of Section 2 to determine a set U that indexesrank� linearly independent columns of �. To perform the reduction, we determine for each linearlydependent column �j a set of column indices Uj � U such that �j = �k2Uj�k. Adding the set ofcolumns of � indexed by Uj into �j zeros it out. We add linearly independent columns from theleft and middle sections into the linearly dependent columns of these sections. Since we never adda linearly dependent column into any other column and there are no column additions into thelinearly independent columns, we respect the dependency restriction. The matrix R that reducesthe matrix A(1) has the reducer matrix form described in Section 5. Thus, the matrix product T Ris of the form P also described in Section 5, and it characterizes an MRC permutation. We nowhave the product m n�mA(2) = A(1)R = AT R = AP = " b� b�b� b� # mn�m ;with a nonsingular trailing submatrix b� and a lower left submatrix b� in reduced form. Since Aand P are nonsingular, the matrix A(2) is also nonsingular.Zeroing out the lower left submatrixOur eventual goal is to transform the original matrix A into a matrix F that characterizes an MRCpermutation. At this point, the matrix A has been transformed into the nonsingular matrix A(2).Thus, our �nal task is to multiply A(2) by a series of matrices that transform the rank� nonzerocolumns in the lower left (n�m)�m submatrix b� into columns of zeros. We do so by multiplying



BMMC Permutations on Parallel Disk Systems 27A(2) by matrices of the swapper and erasure matrix forms described in Section 5. Let us furtherpartition the leftmostm columns of A(2) into the leftmost b columns and the middlem�b columns:b m� b n�mA(2) = " b�0 b�00 b�b�0 b�00 b� # mn�m :Our strategy is to repeatedly use swapper matrix forms to move at most m� b columns from theleft section into the middle section and then zero out those columns using erasure matrix forms.We begin by swappingm�b�rank b�00 columns from b�0 with the zero columns of b�00. Multiplyingthe matrix A(2) by a nonsingular matrix S1 of the swapper matrix form described in Section 5,we swap at most m� b columns from the left section with the appropriate columns in the middlesection. After performing the swap operation on the matrix A(2), the lower left submatrix hasm� b� rank b�00 additional zero columns and the lower middle submatrix has full rank. The abovediscussion assumes that rank b�0 � m� b� rank b�00; if the opposite holds, we swap rank b�0 columnsand the lower left submatrix becomes all zeros.Our next step is to transform the m� b columns in the lower middle submatrix into columns ofzeros. Since the nonsingular trailing (n�m)� (n�m) submatrix b� forms a basis for the columns ofthe lower n�m rows of matrix A(2), we zero out each nonzero column in the lower middle submatrixby adding columns of b�. Since we add columns from the rightmost n�m columns into the middlem� b columns, we perform the matrix-column operation characterized by a nonsingular matrix E1of the erasure matrix form described in Section 5. After multiplying by the erasure matrix E1, theoriginal matrix is transformed into a nonsingular matrixA(3) = AP S1E1 ;which has zero columns in the lower middle (n�m)� (m� b) submatrix and possibly some morenonzero columns in the lower left (n�m)� b submatrix.If there are still nonzero columns in the lower left (n �m) � b submatrix of the matrix A(3),then those columns must also be swapped into the lower middle (n � m) � (m � b) submatrixby a swapper matrix and transformed into zero columns by an erasure matrix. We repeatedlyswap in up to m� b nonzero columns of the lower left submatrix into the lower middle submatrix.Each time we perform a swap operation, we multiply the current product by a matrix Si of theswapper matrix form. Note that we swap entire columns here, not just the portions in the lowersubmatrices. After we perform each matrix-column operation Si, we zero out the lower middlesubmatrix by multiplying the current product by a matrix Ei of the erasure matrix form.After repeatedly swapping and erasing each of the nonzero columns in the lower left (n�m)�msubmatrix, the lower left submatrix will contain only zero columns. This matrix is the matrix Fmentioned at the beginning of this section. Since the matrix A(2) is in reduced form, there are atmost rank� columns in the submatrix b� that need to be transformed into zero columns. Thus, atmost g = �rank�m� b � (17)pairs of swap and erasure operations transform all the columns in the lower left (n � m) � msubmatrix into zero columns. Since each matrix-column operation that we performed on the originalmatrix A to transform it into F is nonsingular, the resulting matrix productF = AP S1E1 S2E2 � � �Sg Eg



BMMC Permutations on Parallel Disk Systems 28is a nonsingular matrix that characterizes an MRC permutation. Multiplying both sides by theinverses of the factors yields the desired factorization of A:A = F E�1g S�1g E�1g�1 S�1g�1 � � � E�11 S�11 P�1 : (18)AnalysisWe now apply several properties that we have gathered to complete the analysis of our BMMCpermutation factoring method.Theorem 24 We can perform any BMMC permutation with characteristic matrix A and comple-ment vector c in at most 2NBD �� ranklg(M=B)�+ 2�parallel I/Os, where  = Ab::n�1;0::b�1, using striped reads, independent writes, and 2N records ofdisk space.Proof: Ignore the complement vector c for the moment. In the factorization (18) of A, bothfactors S�11 and P�1 characterize MRC permutations. By Theorem 18, therefore, so does theproduct S�11 P�1. As we saw in Section 5, each factor E�1i characterizes an MLD permutation.Applying Theorem 17, each grouping of factors E�11 S�11 P�1 and E�1i S�1i , for i = 2; 3; : : : ; g,characterizes an MLD permutation. By Theorem 15, and adding in one more pass for the MRCpermutation characterized by F , we can perform A with g + 1 passes.If the complement vector c is nonzero, we include it as part of the MRC permutation charac-terized by the leftmost factor F . See [10] for details.Regardless of the complement vector, therefore, we can perform the BMMC permutation withg + 1 passes. Combining equation (17) and inequality (16), we obtain a bound ofg + 1 = � rank�lg(M=B)�+ 1� � rank  + lg(M=B)lg(M=B) �+ 1= � rank lg(M=B)�+ 2passes for a total of at most 2NBD �� ranklg(M=B)�+ 2�parallel I/Os.Because each factor characterizes either an MRC permutation (performed with striped readsand writes) or an MLD permutation (performed with striped reads and independent writes), andstriped I/O is a special case of independent I/O, the method as a whole uses striped reads andindependent writes. The method uses 2N records of disk space by reversing the roles of the sourceand target portions between passes. That is, the target portion written to in one pass becomes thesource portion read from in the next pass.



BMMC Permutations on Parallel Disk Systems 29Performing BMMC permutations with striped writesHere we describe another way to compose the factors from the product of equation (18) into g + 1factors, such that each factor characterizes either an MRC or MLD�1 permutation. Both MRC andMLD�1 permutations can be performed with striped writes. As mentioned in Section 4, stripedwrites may have advantages in parallel disk systems organized as RAID levels 3 or 4.In our alternative factorization, we start by noting that because any erasure matrix is its owninverse, not only does each factor E�1i in the factorization (18) characterize an MLD permuta-tion, it also characterizes an MLD�1 permutation. Instead of grouping the factors E�11 S�11 P�1and E�1i S�1i for i = 2; 3; : : : ; g, here we group by F E�1g and S�1i E�1i�1, for i = 2; 3; : : : ; g. ByLemma 21, each such grouping of factors characterizes an MLD�1 permutation. Thus, the result-ing factorization of A has g MLD�1 factors and the MRC product S�11 P�1. Thus, this alternativefactorization of A has the same number of one-pass factors as our previous grouping, but it usesonly MRC and MLD�1 permutations as its factors. Thus, we have proven the following.Theorem 25 We can perform any BMMC permutation with characteristic matrix A and comple-ment vector c in at most 2NBD �� ranklg(M=B)�+ 2�parallel I/Os, where  = Ab::n�1;0::b�1, using independent reads, striped writes, and 2N records ofdisk space.7 Detecting BMMC permutations at run timeIn practice, we wish to run the BMMC algorithm of Section 6 whenever possible to reap the savingsover having run the more costly algorithm for general permutations. For that matter, we wish to runeven faster algorithms for any of the special cases of BMMC permutations (MRC, MLD, MLD�1,or block BMMC [10]) whenever possible as well. We must know the characteristic matrix A andcomplement vector c, however, to run any of these algorithms. If A and c are speci�ed in the sourcecode, before running the algorithm we only need to check that A is of the correct form, e.g., that itis nonsingular for a BMMC permutation, of the MLD or MRC form, etc. Later in this section, weshow how to check the kernel condition for MLD permutations. If instead the permutation is givenby a vector of N target addresses, we can detect at run time whether it is a BMMC permutationby the following procedure:1. Check that N is a power of 2.2. Form a candidate characteristic matrix A and complement vector c such that if the permuta-tion is BMMC, then A and c must be the correct characterizations. This section shows howto do so with only l lg(N=B)+1D m parallel reads.3. Check that the characteristic matrix is of the correct form. That is, check that it is nonsin-gular, which is easily done by the method of Section 2. If further structure is desired, e.g.,MRC or MLD forms, check further for the desired form.



BMMC Permutations on Parallel Disk Systems 304. Verify that all N target addresses are described by the candidate characteristic matrix andcomplement vector. If for any source address x and its corresponding target address y we havey 6= Ax� c, the permutation is not BMMC and we can terminate veri�cation. If y = Ax� cfor all N source-target pairs, the permutation is BMMC. Veri�cation uses at most N=BDparallel reads, since we need to read each target address at most once. Source addresses aregenerated implicitly, and so they do not entail any I/O cost.The total number of parallel I/Os is at mostNBD + � lg(N=B) + 1D � ;all of which are reads, and it is usually far fewer when the permutation turns out not to be BMMC.One bene�t of run-time BMMC detection is that the programmer might not realize that thedesired permutation is BMMC. For example, as noted in Section 1, the standard binary reectedGray code and its inverse are both MRC permutations. Yet the programmer might not know tocall a special MRC or BMMC routine. Even if the system provides an entry point to performthe standard Gray code permutation and this routine invokes the MRC algorithm, variations onthe standard Gray code may foil this approach. For example, a standard Gray code with all bitspermuted the same (i.e., a characteristic matrix of �G, where � is a permutation matrix andG is the MRC matrix that characterizes the standard Gray code) is BMMC but not necessarilyMRC. It might not be obvious enough that the permutation characterized by �G is BMMC forthe programmer to invoke the BMMC algorithm explicitly.Forming the candidate characteristic matrix and complement vectorThe method for forming the candidate characteristic matrix A and candidate complement vector cis based on two observations. First, if the permutation is BMMC, then the complement vector cmust be the target address corresponding to source address 0. This relationship holds becausex = 0 and y = Ax� c imply that y = c.The second observation is as follows. Consider a source address x = (x0; x1; : : : ; xn�1), andsuppose that bit position k holds a 1, i.e., xk = 1. Let us denote the jth column for matrix Aby Aj . Also, let Sk denote the set of bit positions in x other than k that hold a 1: Sk = fj :j 6= k and xj = 1g. If y = Ax� c, then we havey =  Mj2Sk Aj!�Ak � c ; (19)since only the bit positions j for which xj = 1 contribute a column of A to the sum of columnsthat forms the matrix-vector product. If we know the target address y, the complement vector cand the columns Aj for all j 6= k, we can rewrite equation (19) to yield the kth column of A:Ak = y �  Mj2SkAj!� c : (20)We shall compute the complement vector c �rst and then the columns of the characteristicmatrix A one at a time, from A0 up to An�1. When computing Ak, we will have already computed



BMMC Permutations on Parallel Disk Systems 31A0;A1; : : : ;Ak�1, and these will be the only columns we need in order to apply equation (20). Inother words, Sk � f0; 1; : : : ; k � 1g. Recall that as Figure 2 shows, the lower b bits of a record'saddress give the record's o�set within its block, the middle d bits give the disk number, and theupper s = n� (b+ d) bits give the stripe number.From equation (20), it would be easy to compute Ak if Sk were empty. The set Sk is emptyif the source address is a unit vector, with its only 1 in position k. If we look at these addresses,however, we �nd that the target addresses for a disproportionate number|all but d of them|resideon disk D0. The block whose disk and stripe �elds are all zero contains b such addresses, so theycan be fetched in one disk read. A problem arises for the s source addresses with one 1 in the stripe�eld: their target addresses all reside on di�erent blocks of disk D0. If we use this method, each ofthese blocks must be fetched in a separate read. The total number of parallel reads to fetch all thetarget addresses corresponding to all unit-vector source addresses is s+ 1 = lg(N=BD) + 1.To achieve only l lg(N=B)+1D m parallel reads, each read fetches one block from each of the D disks.The �rst parallel read determines the complement vector, the �rst b + d columns, and the nextD� d� 1 columns. Each subsequent read determines another D columns, until all n columns havebeen determined.In the �rst parallel read, we do the same as above for the �rst b + d bits. That is, we fetchblocks containing target addresses whose corresponding source addresses are unit vectors with one 1in the �rst b + d positions. As before, b of them are in the same block on disk D0. This blockalso contains address 0, which we need to compute the complement vector. The remaining d arein stripe number 0 of disks D1;D2;D4;D8; : : : ;DD=2. Having fetched the corresponding targetaddresses, we have all the information we need to compute the complement vector c and columnsA0;A1; : : : ;Ab+d�1.The columns we have yet to compute correspond to bit positions in the stripe �eld. If we wereto compute these columns in the same fashion as the �rst b + d, we would again encounter theproblem that all the blocks we need to read are on disk D0. In the �rst parallel read, the onlyunused disks remaining are those whose numbers are not a power of 2 (D3;D5;D6;D7;D9; : : :). Thekey observation is that we have already computed all d columns corresponding to the disk �eld, andwe can thus apply equation (20). For example, let us compute column Ab+d, which corresponds tothe �rst bit of the stripe number. We read stripe 1 on disk D3 and �nd the �rst target address yin this block. Disk number 3 corresponds to the �rst two disk-number columns, Ab and Ab+1.Applying equation (20) with Sb+d = fb; b+ 1g, we compute Ab+d = y � Ab � Ab+1 � c. The nextcolumn we compute is Ab+d+1. Reading the block at stripe 2 on disk D5, we fetch a target address yand then compute Ab+d+1 = y �Ab �Ab+2 � c. Continuing on in this fashion, we compute a totalof D � d� 1 stripe-bit columns from the �rst parallel read.The remaining parallel reads compute the remaining stripe-bit columns. We follow the stripe-bit pattern of the �rst read, but we use all disks, not just those whose disk numbers are not powersof 2. Each block read fetches a target address y, which we exclusive-or with a set of columns fromthe disk �eld and with the complement vector to compute a new column from the stripe �eld.The �rst parallel read computes b +D � 1 columns and all subsequent parallel reads compute Dcolumns. The total number of parallel reads is thus1 + �n� (b+D � 1)D � = 1 + � lg(N=B)�D + 1D �



BMMC Permutations on Parallel Disk Systems 32= � lg(N=B) + 1D � :Checking the kernel condition for MLD permutationsIn practice, we would like a simple procedure to verify that a given matrix characterizes an MLDpermutation. By the method of Section 2, it is easy to verify that a candidate matrix A is nonsin-gular. It may not be obvious how to verify that ker� � ker� when the matrix is blocked into �and �. Instead of determining directly whether ker� � ker�, we check whether row � � row�. ByLemma 5, these conditions are equivalent.Checking whether row� � row� is easy. Note that the rows of the submatrix Ab::n�1;0::m�1consist of the union of the rows of � and �, and observe that row� � row� if and only ifrow� = rowAb::n�1;0::m�1. That is, if including the rows of � adds no new vectors to the rowspace of �, then the row space of � must be a subset of the row space of �. The conditionrow� = rowAb::n�1;0::m�1 is equivalent to dim row� = dimrowAb::n�1;0::m�1, which is in turnequivalent to rank� = rankAb::n�1;0::m�1. We can check this last condition easily by using themethod of Section 2.8 ConclusionsThis paper has shown an asymptotically tight bound on the number of parallel I/Os required toperform BMMC permutations on parallel disk systems. It is particularly satisfying that the tightbound was achieved not by raising the lower bound proven here and in [9], but by decreasingthe upper bound in [10]. (After all, we would rather perform BMMC permutations with fewerparallel I/Os.) The multiplicative and additive constants in the I/O complexity of our algorithmare small, which is especially fortunate in light of the expense of disk accesses. Our algorithmhas been implemented on a DEC 2100 server with 8 disk drives [13]. This implementation usesasynchronous independent reads and asynchronous striped writes, so that when performing eachMRC or MLD�1 permutation, it overlaps prefetching the next memoryload, writing the previousmemoryload, and permuting in memory the current memoryload. A later implementation that runson either the DEC 2100 server or a network of workstations [11] uses asynchronous striped readsand asynchronous independent writes; it is a key subroutine in an e�cient out-of-core Fast FourierTransform implementation [12].One can adapt the proof by Aggarwal and Vitter [2] of Lemma 9 to bound ��max precisely,rather than just asymptotically. In particular, it is a straightforward exercise to derive the bound��max � B � 2e ln 2 + lg(M=B)� :Moreover, the potential change is at most zero for write operations, and so the potential increasesonly during read operations. If all I/Os are simple, then the total number of blocks read equalsthe total number of blocks written. Therefore, we can modify the lower bound of Lemma 8 to2 �(t)��(0)��max , with which we can derive a lower bound of2NBD rank 2e ln 2 + lg(M=B)
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