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APPROXIMATION TECHNIQUES FOR AVERAGE COMPLETION
TIME SCHEDULING∗

C. CHEKURI† , R. MOTWANI‡ , B. NATARAJAN§ , AND C. STEIN¶

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 146–166

Abstract. We consider the problem of nonpreemptive scheduling to minimize average (weighted)
completion time, allowing for release dates, parallel machines, and precedence constraints. Recent
work has led to constant-factor approximations for this problem based on solving a preemptive or
linear programming relaxation and then using the solution to get an ordering on the jobs. We
introduce several new techniques which generalize this basic paradigm. We use these ideas to obtain
improved approximation algorithms for one-machine scheduling to minimize average completion time
with release dates. In the process, we obtain an optimal randomized on-line algorithm for the same
problem that beats a lower bound for deterministic on-line algorithms. We consider extensions to
the case of parallel machine scheduling, and for this we introduce two new ideas: first, we show that
a preemptive one-machine relaxation is a powerful tool for designing parallel machine scheduling
algorithms that simultaneously produce good approximations and have small running times; second,
we show that a nongreedy “rounding” of the relaxation yields better approximations than a greedy
one. We also prove a general theorem relating the value of one-machine relaxations to that of the
schedules obtained for the original m-machine problems. This theorem applies even when there are
precedence constraints on the jobs. We apply this result to obtain improved approximation ratios
for precedence graphs such as in-trees, out-trees, and series-parallel graphs.

Key words. approximation algorithms, scheduling, parallel machine scheduling, release dates,
precedence constraints

AMS subject classifications. 68Q25, 68W20, 68W25, 68W40, 90B35

PII. S0097539797327180

1. Introduction. We present new approximation techniques and results for non-
preemptive scheduling to minimize average (weighted) completion time (equivalently,
sum of (weighted) completion times). In this problem, we are given n jobs J1, . . . , Jn,
where job Jj has processing time pj , release date rj , and a positive weight wj . A feasi-
ble schedule S assigns jobs nonpreemptively1 to m machines such that each job starts
after its release date. Let CS

j denote the completion time of job Jj in schedule S. The

∗Received by the editors September 16, 1997; accepted for publication (in revised form) May 9,
2000; published electronically June 5, 2001. A preliminary version [5] of this paper appeared in
SODA 1997.
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1In a nonpreemptive schedule, each job runs uninterrupted on one machine from start to finish;
in a preemptive schedule, a job may be interrupted or may switch machines at any time.
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AVERAGE COMPLETION TIME SCHEDULING 147

objective is to minimize the weighted completion time
∑

j wjC
S
j ; if all wj are 1/n, the

objective becomes the average completion time. For the single machine case, if the
release dates are 0 for all jobs, then the weighted completion time problem can be
solved optimally in polynomial time [30]. We are interested in a more general setting
with release dates and precedence constraints and multiple machines, any of which
makes the problem NP-hard [23]. Thus we will consider approximation algorithms,
or, in an on-line setting, competitive ratios.

An important motivation for studying scheduling to minimize sum of weighted
completion times, aside from its intrinsic theoretical interest, comes from application
to compiler optimizations. Compile-time instruction scheduling is essential for ef-
fectively exploiting the fine-grained parallelism offered in pipelined, superscalar, and
very-long instruction word architectures (see, for example, [17, 35]). Current research
is addressing the issue of profile-based compiler optimization. In a recent paper,
Chekuri et al. [4] show that weighted completion time is the measure of interest
in profile-driven code optimization; some of our results are related to the heuristics
described and empirically tested therein.

Recent work has led to constant-factor approximations for weighted completion
time for a variety of these NP-hard scheduling problems [25, 16, 3, 12, 7, 28]. Most
of these algorithms work by first constructing a relaxed solution, either a preemptive
schedule or a linear programming relaxation. These relaxations are used to obtain an
ordering of the jobs, and then the jobs are list scheduled as per this ordering.

We introduce new techniques that generalize this basic paradigm. We use these
to obtain improved approximation algorithms for one-machine scheduling to minimize
average completion time with release dates. Our main result here is a e

e−1 ≈ 1.58-
approximation algorithm. This algorithm can be turned into a randomized on-line
algorithm with the same bound, where an algorithm is on-line if before time rj it is
unaware of Jj , but at time rj it learns all the parameters of Jj . This randomized on-
line algorithm is particularly interesting as it beats a lower bound for deterministic
on-line algorithms [21] and matches a recent lower bound for randomized on-line
algorithms [33].

We then consider extensions to parallel machine scheduling and introduce two
new ideas: first, we show that a preemptive one-machine relaxation is a powerful
tool for designing parallel machine scheduling algorithms that simultaneously pro-
duce good approximations and have small running times; second, we show that a
nongreedy “rounding” of the relaxation produces better approximations than sim-
ple list scheduling. In fact, we prove a general theorem relating the value of one-
machine relaxations to that of the schedules obtained for the original m-machine
problems. This theorem applies even when there are precedence constraints yielding
better approximations for precedence graphs such as in-trees, out-trees, and series-
parallel graphs, which are of interest in compiler applications that partly motivated
our work.

The bounds in this paper derive from proving bounds on the ratio between solu-
tions to a nonpreemptive scheduling problem and a relaxed version of this problem.
The bounds on this ratio all hold when both the original and relaxed problems have
weights; however, the relaxed problem with weights is typically not solvable exactly in
polynomial time. Because of this, the performance ratios of our algorithms, in some
cases, are not as good as those obtained directly through other techniques. However,
given future improvement in state of the art for one-machine preemptive scheduling
with release dates and/or precedence constraints, our results would also imply better
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148 C. CHEKURI, R. MOTWANI, B. NATARAJAN, AND C. STEIN

bounds for weighted completion time. We begin with a more detailed discussion of
our results and their relation to earlier work.

One-machine scheduling with release dates. The first constant-factor ap-
proximation algorithm for an average completion time problem was the following
2-approximation algorithm of Phillips, Stein, and Wein [25] for minimizing the av-
erage completion time on one machine with release dates. First, an optimal pre-
emptive schedule P is found using the shortest remaining processing time (SRPT)
algorithm [23] which at any time runs an available job that has the least processing
time left; note that this is an on-line algorithm. Given P , the jobs are ordered by
increasing completion times, CP

j , and are scheduled according to that ordering, intro-
ducing idle time as necessary to account for release dates. A simple proof shows that
each job Jj completes at time no later than 2C

P
j , implying a 2-approximation. Other

2-approximation algorithms have been discovered subsequently [21, 32, 12], and it is
also known that no deterministic on-line algorithm has approximation ratio better
than 2 [21, 32]. This approximation technique has been generalized to many other
scheduling problems, and hence finding better approximations for this basic problem
is believed to be an important step toward improved approximations for more general
problems.

Our main result here is a deterministic off-line algorithm for the basic problem
that gives an e

e−1 -approximation (
e

e−1 ≈ 1.58). We also obtain an optimal randomized
on-line algorithm (in the oblivious adversary model) with expected competitive ratio
e

e−1 . This beats the deterministic on-line lower bound. Our approach is based on
what we call α-schedules (this notion was also used by [25] and [15] in a somewhat
different manner). Given a preemptive schedule P and α ∈ (0, 1], we define CP

j (α)
to be the time at which αpj , an α-fraction of Jj , is completed. An α-schedule is a
nonpreemptive schedule obtained by list scheduling jobs in order of increasing CP

j (α),
possibly introducing idle time to account for release dates. Clearly, an α-scheduler is
an on-line algorithm; moreover, for α = 1, the α-scheduler is exactly the algorithm
of Phillips, Stein, and Wein [25] and hence a 2-approximation. We show that for
arbitrary α, an α-scheduler has a tight approximation ratio of 1 + 1/α. Given that
1 + 1/α ≥ 2 for α ∈ (0, 1], it may appear that this notion of α-schedulers is useless
for obtaining ratios better than 2.

A key observation is that a worst-case instance that induces a performance ratio
1+1/α for one value of α is not a worst-case instance for many other values of α. This
suggests that a randomized algorithm which picks α at random, and then behaves like
an α-scheduler, may lead to an approximation better than 2. Unfortunately, we show
that choosing α uniformly at random gives an expected approximation ratio of 2 and
that this is tight. However, this leaves open the possibility that for any given instance
I, there exists a choice α(I) for which the α(I)-schedule yields an approximation
better than 2. We refer to the resulting deterministic off-line algorithm which, given
I, chooses α to minimize α(I), as Best-α.

It turns out, however, that the randomized on-line algorithm which chooses α
to be 1 with probability 3/5 and 1/2 with probability 2/5 has competitive ratio 1.8;
consequently, for any input I, either the 1-schedule or the 1

2 -schedule is no worse
than an 1.8-approximation. More significantly, the nonuniform choice in the random-
ized version suggests the possibility of defining randomized choices of α that may
perform better than 1.8 while being easy to analyze. In fact, our main result here
is that it is possible to define a distribution for α that yields a randomized on-line
e

e−1 -approximation algorithm implying that Best-α is an e
e−1 -approximation algo-
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AVERAGE COMPLETION TIME SCHEDULING 149

rithm. It should be noted that Best-α can be implemented in O(n2) time and all
our other algorithms can be implemented in either O(n) or O(n log n) time. Torng
and Uthaisombut [34] recently showed that our analysis of Best-α is tight by giving
instances on which the approximation ratio achieved by Best-α is arbitrarily close
to e/(e− 1).

Our bounds are actually job-by-job, i.e., we produce a schedule N in which
E[CN

j ] ≤ e
e−1C

P
j for all j where E[CN

j ] is the expected completion time of Jj in
the nonpreemptive schedule. Thus our conversion results generalize to weighted com-
pletion time. However, since for the weighted case even the preemptive scheduling
problem is NP-hard (given release dates), we must use an approximation for the re-
laxation. The current best approximation algorithm for the preemptive case [26] has a
ratio of 4/3, which yields a 2.12-approximation for the nonpreemptive case. However,
this does not improve earlier results.

Independently, Goemans [12] has used similar ideas to design a 2-approximation
algorithm for the problem of nonpreemptive scheduling on one machine so as to mini-
mize the average weighted completion time. His algorithm is also a Best-α algorithm
and works off a preemptive schedule that is optimal for a certain linear programming
relaxation of the problem and the analysis is based on the linear programming formu-
lation. Interestingly, Goemans proves the performance of his algorithm by choosing
α uniformly at random in the interval (0, 1]. Further work [26, 13] based on the
idea of using independent random α points for each job has resulted in an improved
approximation ratio of 1.6853.

Scheduling parallel machines with release dates. We consider generaliza-
tions of the single machine problems to the case of m identical parallel machines. We
first consider the problem of minimizing average completion time with release dates
and no precedence constraints. Extending the techniques to the m-machine problem
gives rise to two complications: the problem of computing an optimal m-machine pre-
emptive schedule is NP-hard [9], and the best known approximation ratio is 2 [25];
further, the conversion bounds from preemptive to nonpreemptive schedules are not
as good. Chakrabarti et al. [3] obtain a bound of 7/3 on the conversion from the
preemptive to the nonpreemptive case yielding a 14/3-approximation for scheduling
on m machines with release dates. Several other algorithms do not use the preemp-
tive schedule but use a linear programming relaxation. Phillips, Stein, and Wein [25]
gave the first such algorithm, a 24-approximation algorithm. This has been greatly
improved to 4 + ε [15], 4− 1

m [16], and 3.5 [3]. Using a general on-line framework [3],
one can obtain an algorithm with an approximation ratio of 2.89 + ε. Unfortunately,
the algorithm with the best approximation is inefficient, as it uses the polynomial
approximation scheme for makespan due to Hochbaum and Shmoys [20].

We give a new algorithm for this problem. First we introduce a different relaxa-
tion—a preemptive one-machine relaxation. More precisely, we maintain the original
release dates and allow preemptions but divide all the processing times by m. We
then compute a one-machine schedule. The resulting completion time ordering is then
used to generate a nonpreemptivem-machine schedule that is a 3-approximation. Our
algorithm has a running time of O(n log n) and in addition is also on-line. We then
show that the approximation ratio can be improved to 2.83 using a general conversion
algorithm that we develop. This improves on the approximation bounds of previous
algorithms and gives a much smaller running time of O(n log n). Subsequent to our
work, Schulz and Skutella [28] using some of our ideas have obtained an approximation
ratio of 2 for the more general case of sum of weighted completion times.
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150 C. CHEKURI, R. MOTWANI, B. NATARAJAN, AND C. STEIN

Scheduling with precedence constraints. We now consider the weighted
completion time problem with precedence constraints. For one-machine scheduling,
minimizing the weighted completion time is NP-hard for arbitrary precedence con-
straints even without release dates [11, 22]. A 2-approximation for the case of no
release dates [16] and an e � 2.718-approximation [29] with release dates are known.
For arbitrarym, the problem is NP-hard even without precedence constraints and re-
lease dates if weights are not required to be identical; on the other hand, the problem
is strongly NP-hard even when all weights are identical and the precedence graph is
a union of chains [10]. An expected approximation ratio of 5.33+ ε is achievable with
release dates and precedence constraints [3]. This has been recently improved to 4 in
[24].

A general conversion algorithm. We obtain a fairly general algorithm for
m-machine problems with precedence constraints, release dates, and job weights. To
do so, we first solve a one-machine preemptive relaxation and apply an algorithm we
call Delay List to get an m-machine nonpreemptive schedule. Since, in general, the
one-machine preemptive relaxation is also NP-hard, we would have to settle for a
ρ-approximation for it; then our algorithm would give a (2ρ + 2)-approximation for
the m-machine case. In fact, we give an algorithm that gives a (1 + β)ρ+ (1 + 1/β)-
approximation for any β > 0 which when optimized for ρ yields a (ρ + 2

√
ρ + 1)-

approximation. In the absence of release dates an optimal one-machine schedule can
be computed in polynomial time when the precedence graph is a forest [19] or a series-
parallel graph [22, 1]. Applying our conversion algorithm for these cases results in
improved approximation results. Although the algorithm fails to obtain improved
results for the most general problem, we feel that it is of independent interest and
likely to find applications in the future. Further, our conversion algorithm has the
advantage of being simple and combinatorial. In applications such as compilers [4],
speed and simplicity are sometimes more important than getting the best possible
ratio. Finally, our algorithm has a surprising property: it gives schedules that are
good for both makespan and average completion time (Chakrabarti et al. [3] and Stein
and Wein [31] also have shown the existence of such schedules).

2. One-machine scheduling with release dates. In this section, we present
our results for one-machine scheduling with release dates to minimize average comple-
tion time. Let P be a preemptive schedule, and let CP

i and C
α
i denote the completion

time of Ji in P and in the nonpreemptive α-schedule derived from P , respectively. We
begin by analyzing simple α-schedules. Techniques from [25, 16] are easily generalized
to yield the following.

Theorem 2.1. Given an instance of one-machine scheduling with release dates,
for any α ∈ (0, 1], an α-schedule has

∑
j C

α
j ≤ (1 + 1/α)

∑
j C

P
j . Further, there are

instances where the inequality is asymptotically tight.
Proof. Index the jobs by the order of their α-points in the preemptive schedule

P . Let rmax
j = max1≤k≤j rk be the latest release date among jobs with α points no

greater than j’s. By time rmax
j , jobs 1 through j have all been released, and hence

Cα
j ≤ rmax

j +

j∑
k=1

pk.(2.1)

We know that CP
j ≥ rmax

j , since only an α fraction j has finished by rmax
j . We also

know that CP
j ≥ α

∑j
k=1 pk, since the α fractions of jobs 1, . . . , j must run before time

CP
j . Plugging these last two inequalities into (2.1) yields C

α
j ≤ (1+ 1

α )C
P
j . Summing
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AVERAGE COMPLETION TIME SCHEDULING 151

over all j yields the lemma.
To see that this is tight, consider the following class of instances. Let ε be a

small positive number. We will also allow jobs with processing time 0, although the
proof can be modified even if these are not allowed. At time 0, we release a job with
processing time 1. At time α− ε, we release a job with processing time ε and at time
α+ε, we release x jobs of processing time 0. The optimal preemptive completion time
is α + x(α + ε) + 1 + ε, while the completion time of the nonpreemptive α-schedule
is α+ (α+ 1) + x(1 + α). As x gets large and ε goes to 0, the ratio between the two
goes to 1 + 1

α .
This theorem, in and of itself, always yields approximation bounds that are worse

than 2.
We thus introduce a new fact that ultimately yields better algorithms. We will

show that the makespan of an α-schedule is within a (1 + α)-factor of the makespan
of the corresponding preemptive schedule; in fact, we will prove a stronger result in
Lemma 2.3 below. Thus the idle time introduced in the nonpreemptive schedules
decreases as α is reduced from 1 to 0. On the other hand, the (worst-case) bound
on the completion time of any specific job increases as α goes from 1 to 0. It is the
balancing of these two effects that leads to better approximations. In the following
discussion we do not assume that the preemptive schedule is the optimal preemptive
schedule found using SRPT. In fact, our results on converting preemptive schedules to
nonpreemptive schedules apply in general, but when we want to prove upper bounds
on the performance ratio for total completion time, we assume that the preemptive
schedule is an optimal preemptive schedule whose value is a lower bound on the value
of any optimal nonpreemptive schedule.

Let SP
i (β) denote the set of jobs which complete exactly β fraction of their pro-

cessing time before CP
i in the schedule P (note that Ji is included in SP

i (1)). We
overload notation by using SP

i (β) to also denote the sum of processing times of all
jobs in the set SP

i (β); the meaning should be clear from the context. Let Ti be the
total idle time in P before Ji completes.

The preemptive completion time of Ji can be written as the sum of the idle time
and fractional processing times of jobs that ran before CP

i . This yields the following
lemma.

Lemma 2.2. CP
i = Ti +

∑
0<β≤1 βS

P
i (β).

We next upper bound the completion time of a job Ji in the α-schedule.
Lemma 2.3.

Cα
i ≤ Ti + (1 + α)

∑
β≥α

SP
i (β) +

∑
β<α

βSP
i (β).

Proof. Let J1, . . . , Ji−1 be the jobs that run before Ji in the α-schedule. We will
give a procedure which converts the preemptive schedule into a schedule in which
(C1) jobs J1, . . . , Ji run nonpreemptively in that order,
(C2) the remaining jobs run preemptively, and
(C3) the completion time of Ji obeys the bound given in the lemma.

Since the actual Cα
i is no greater than the completion time of Ji in this schedule, the

lemma will be proven.
Splitting up the second term in the bound from Lemma 2.2, we get the following

equation:

CP
i = Ti +

∑
β<α

βSP
i (β) +

∑
β≥α

αSP
i (β) +

∑
β≥α

(β − α)SP
i (β).
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Fig. 2.1. Illustration of proof of Lemma 2.3 with α = 1/2 and i = 4.

Let JB =
⋃

β≥α S
P
i (β) and JA = J − JB . We can interpret the four terms in the

above equation as (1) the idle time in the preemptive schedule before CP
i , (2) the

pieces of jobs in JA that ran before CP
i , (3) for each job Jj ∈ JB , the pieces of

Jj that ran before CP
j (α), and (4) for each job Jj ∈ JB , the pieces of Jj that ran

between CP
j (α) and CP

i . Let xj be the β for which Jj ∈ SP
i (β), that is, the fraction

of Jj that was completed before C
P
i . Then

∑
β≥α(β − α)SP

i (β) can be rewritten as∑
Jj∈JB (xj −α)pj . Observe that (xj −α)pj is the fraction of job Jj that ran between

CP
j (α) and CP

i .

Let JC = {J1, . . . , Ji}. Clearly JC is a subset of JB . Now think of schedule P as
an ordered list of pieces of jobs (with sizes). For each Jj ∈ JC modify the list by (1)
removing all pieces of jobs that run between CP

j (α) and CP
i and (2) inserting a piece

of size (xj −α)pj at the point corresponding to C
P
j (α). In this list, we have pieces of

size (xj − α)pj of jobs J1, . . . , Ji in the correct order (plus other pieces of jobs). Now
convert this ordered list back into a schedule by scheduling the pieces in the order
of the list, respecting release dates. We claim that job i still completes at time CP

i .
To see this observe that the total processing time before CP

i remains unchanged and
that other than the pieces of size (xj − α)pj , we moved pieces only later in time, so
no additional idle time need be introduced.

Now, for each job Jj ∈ JC , extend the piece of size (xj − α)pj to one of size pj
by adding pj − (xj − α)pj units of processing and replace the pieces of Jj that occur
earlier, of total size αpj , by idle time. Figure 2.1 illustrates this transformation. We
now have a schedule in which J1, . . . , Ji are each scheduled nonpreemptively for pj
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AVERAGE COMPLETION TIME SCHEDULING 153

units of time and in which the completion time of Ji is

CP
i +

∑
Jj∈JC

(pj − (xj − α)pj) ≤ CP
i +

∑
Jj∈JB

(pj − (xj − α)pj)

= CP
i +

∑
β≥α

(1− β + α)SP
i (β)

= Ti + (1 + α)
∑
β≥α

SP
i (β) +

∑
β<α

βSP
i (β),

where the second equality just comes from reindexing terms by β instead of j, and
the third comes from plugging in the value of CP

i from Lemma 2.2. To complete the
proof, we observe that the remaining pieces in the schedule are all from jobs in J−JC ,
and we have thus met the conditions (C1), (C2), and (C3) above.

Although we will not use it directly, applying Lemma 2.3 to the last job to com-
plete in the α-schedule yields the following corollary.

Corollary 2.4. The makespan of the α-schedule is at most (1 + α) times the
makespan of the corresponding preemptive schedule, and there are instances for which
this bound is tight.

Having analyzed completion times as in Lemma 2.3, we see that the approximation
ratio is going to depend on the distribution of the different sets SP

i (β). To avoid the
worst-case α, we choose α randomly according to some probability distribution. We
now give a general bound on this algorithm, which we call Random-α.

Lemma 2.5. Suppose α is chosen from a probability distribution over (0, 1] with
a density function f . Then for each job Ji, E [C

α
i ] ≤ (1 + δ)CP

i , where

δ = max
0<β≤1

∫ β

0

1 + α− β

β
f(α)dα.

It follows that E [
∑

i C
α
i ] ≤ (1 + δ)

∑
i C

P
i .

Proof. We will show that the expected completion time of any job Ji is within
(1 + δ) of its preemptive completion time. From Lemma 2.3 it follows that for any
given α,

Cα
i ≤ Ti + (1 + α)

∑
β≥α

SP
i (β) +

∑
β<α

βSP
i (β).

Therefore, when α is chosen according to f , the expected completion time of Ji,

E[Cα
i ] =

∫ 1

0
f(α)Cα

i dα, is bounded by

Ti +

∫ 1

0

f(α)

(
(1 + α)

∑
β≥α

SP
i (β) +

∑
β<α

βSP
i (β)

)
dα

since Ti is independent of α. We now bound the second term in the above expression:
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154 C. CHEKURI, R. MOTWANI, B. NATARAJAN, AND C. STEIN

∫ 1

0

f(α)

(
(1 + α)

∑
β≥α

SP
i (β) +

∑
β<α

βSP
i (β)

)
dα

=
∑

0<β≤1

SP
i (β)

(∫ β

0

(1 + α)f(α)dα+

∫ 1

β

βf(α)dα

)

=
∑

0<β≤1

βSP
i (β)

(
1 +

∫ β

0

1 + α− β

β
f(α)dα

)

≤
(
1 + max

0<β≤1

∫ β

0

1 + α− β

β
f(α)dα

) ∑
0<β≤1

βSP
i (β)

≤ (1 + δ)
∑

0<β≤1

βSP
i (β).

It follows that

E[Cα
i ] ≤ Ti + (1 + δ)

∑
0<β≤1

βSP
i (β) ≤ (1 + δ)CP

i .

Using linearity of expectations, it is easy to show that the expected total comple-
tion time of the schedule is within (1+δ) of the preemptive schedule’s total completion
time.

With Lemma 2.5 in place, we can simply choose different PDFs to establish
different bounds.

Theorem 2.6. For the problem of scheduling to minimize weighted completion
time with release dates, Random-α performs as follows:

1. If α is chosen uniformly in (0, 1], the expected approximation ratio is at
most 2.

2. If α is chosen to be 1 with probability 3/5 and 1/2 with probability 2/5, the
expected approximation ratio is at most 1.8.

3. If α is chosen from (0, 1] according to the density function f(α) = eα

e−1 , the
expected approximation ratio is at most e

e−1 ≈ 1.58.
Proof.
1. Choosing α uniformly corresponds to the PDF f(α) = 1. Plugging into the
bound from Lemma 2.5, we get an approximation ratio of

1 + max
0<β≤1

∫ β

0

1 + α− β

β
dα = 1 + max

0<β≤1

1

β

(
(1− β)β +

β2

2

)

= 1 + max
0<β≤1

(
1− β

2

)
≤ 2.

2. Omitted.
3. If f(α) = eα

e−1 , then

max
0<β≤1

∫ β

0

(
1 + α− β

β

)(
eα

e− 1
)
dα = max

0<β≤1

1

β(e− 1)
(
((1− β) + (β − 1))eβ

− ((1− β)− 1)
)

= max
0<β≤1

1

e− 1
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AVERAGE COMPLETION TIME SCHEDULING 155

=
1

e− 1 .

Therefore

1 + max
0<β≤1

∫ β

0

(
1 + α− β

β

)(
eα

e− 1
)
dα ≤ e

e− 1 .

It can be shown that the density function eα

e−1 minimizes the expression

max0<β≤1

∫ β

0
1+α−β

β f(α)dα over all choices of f(α). In the off-line setting, rather
than choosing α randomly, we can try different values of α and choose the one that
yields the best schedule. We call the algorithm which computes the schedule of value
minα

∑
j C

α
j , Best-α.

Corollary 2.7. Algorithm Best-α is an e/(e− 1)-approximation algorithm for
nonpreemptive scheduling to minimize average completion time on one machine with
release dates. It runs in O(n2) time.

Proof. The approximation bound follows from Theorem 2.6. For the running
time, we observe that given a preemptive SRPT schedule we can efficiently determine
the best possible choice of α. The SRPT schedule preempts only at release dates.
Thus it has at most n − 1 preemptions and there are at most n “combinatorially
distinct” values of α for a given preemptive schedule. The SRPT schedule can be
computed in O(n log n) time using a simple priority queue and given that schedule
and an α, the corresponding α-schedule can be computed in linear time by a simple
scan.

In the on-line setting, we cannot implement Best-α. However, if we choose α
randomly we get the following theorem.

Theorem 2.8. There is a polynomial-time randomized on-line algorithm with an
expected competitive ratio e/(e − 1) for the problem of minimizing total completion
time in the presence of release dates.

Proof. The randomized on-line algorithm is the following. The algorithm picks an
α ∈ (0, 1] at random according to the density function f(x) = ex

e−1 before receiving any
input (this is the only randomness used in the algorithm). The algorithm simulates the
on-line preemptive SRPT schedule. At the exact time when a job finishes α fraction of
its processing time in the simulated SRPT schedule, it is added to the queue of jobs to
be executed nonpreemptively. The nonpreemptive schedule is obtained by executing
jobs in the strict order of their insertion into the queue while respecting the insertion
times into the queue. Observe that this rule leads to a valid on-line nonpreemptive
schedule and that in fact the order of the jobs scheduled is exactly the same as in the
α-schedule. The schedule respects the insertion times; therefore no job is executed in
the nonpreemptive schedule before its α point in the SRPT schedule. To show the
bound on the expected competitive ratio, we claim that the bounds in Lemma 2.3
(and hence Theorem 2.6 also) hold for the nonpreemptive schedule created by the
on-line algorithm. The main observation is that the proof of Lemma 2.3 does not use
the true α-schedule but a weaker one in which for every job Ji the first α fraction of
its processing time in the SRPT schedule is left as idle time. A careful examination
of the proof of Lemma 2.3 with Figure 2.1 as an illustration makes this clear.

We also give some negative results for the various algorithms.
Theorem 2.9. For the problem of scheduling to minimize weighted completion

time with release dates, Random-α performs as follows:
1. If α is chosen uniformly, the expected approximation ratio is at least 2.
2. For the Best-α algorithm, the approximation ratio is at least 4/3.
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156 C. CHEKURI, R. MOTWANI, B. NATARAJAN, AND C. STEIN

Proof. We will use a set of parameterized instances to show all the above bounds.
We define an instance I(δ, n) as follows. At time 0 a job of size 1 is released and
at time δ < 1, n jobs of size 0 are released (we use zero length jobs for ease of
exposition). The optimal preemptive schedule for this instance has a total completion
time of 1+nδ. The optimal nonpreemptive schedule for this instance can be obtained
by first completing all the small jobs and running the large job after them for a total
completion time of 1+δ+nδ. It is easy to see that there are only two combinatorially
distinct schedules corresponding to the values of α ≤ δ and α > δ and we can restrict
our attention to those two schedules and the probability with which they are chosen.
Let S1 and S2 be the two schedules and C1 and C2 be their total completion times,
respectively. It is easy to see that C1 = 1 + n and C2 = 1 + δ + nδ.

1. If α is chosen uniformly at random, S1 is chosen with probability δ and S2
is chosen with probability (1 − δ) and a simple calculation shows that if we
choose n � 1 and 1� δ, the expected approximation ratio approaches 2.

2. Consider an instance I in which in addition to the jobs of I(1/2, n) we release
n more jobs of size 0 at time 1. The optimal preemptive schedule for I
consists of the preemptive schedule for I(1/2, ε, n) followed by the additional
n small jobs. The completion time of the optimal preemptive schedule is term
1+3n/2. An optimal nonpreemptive schedule schedules the large job after all
the small jobs and has a total completion time 2+3n/2. It is easy to see that
there are only two combinatorially distinct α-schedules, one corresponding
to α ≤ 1/2 and the other corresponding to α > 1/2. In both cases it is
easy to verify that the completion time of the schedule is 1 + 2n. Thus the
approximation ratio of the Best-α cannot be better than 4/3.

After learning of our results, Stougie and Vestjens [33] improved the lower bound
for randomized on-line algorithms to e/(e − 1). This implies that our randomized
on-line algorithm is optimal. Torng and Uthaisombut [34] have shown that there are
instances on which the approximation ratio of Best-α can be made arbitrarily close
to e

e−1 . This improves our lower bound of 4/3 on Best-α’s performance and also
implies that our upper bound analysis is tight.

3. Parallel machine scheduling with release dates. We now turn to the
problem of minimizing average completion time on parallel machines in the presence
of release dates. In this section, we give a simple 3-approximation algorithm for the
problem that is also an on-line algorithm. Our algorithm does not use linear pro-
gramming or slow dynamic programming. It introduces the notion of a one-machine
preemptive relaxation. In the next section, we will show how to improve this to a
2.83-approximation algorithm using more involved techniques.

Given an instance I for nonpreemptive scheduling on m machines, we define a
one-machine preemptive relaxation I1 as follows. I1 has the same set of jobs as those
of I and has one machine. The processing time of Jj in I1 is p′j = pj/m and release
date is r′j = rj .

Lemma 3.1. The value of an optimal solution to I1 is a lower bound on the value
of an optimal solution to I.

Proof. We show how to convert a feasible schedule N , for input I, to a feasible
schedule P1, for input I1, without increasing the average completion time. Take any
schedule N and consider a particular time unit t that is sufficiently small. Let the
k ≤ m jobs that are running during that time be J1, . . . , Jk. In P1, at time t, run
1/m units of each of jobs J1, . . . , Jk, in arbitrary order. The completion time of job
Jj in P1, CP1

j is clearly no greater than CN
j , the completion time of Jj in N .
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AVERAGE COMPLETION TIME SCHEDULING 157

Given an optimal preemptive schedule P1 for I1, we form a list schedule N
by ordering jobs by CP1

j and then scheduling them nonpreemptively in that order,
respecting release dates. Let C∗

j be the completion time of Jj in an optimal schedule

for I. I1 may be a bad relaxation in the sense that
∑

j C
P1
j may be much less than∑

j C
∗
j . However, we can still use this relaxation to obtain a good nonpreemptive

schedule.
Lemma 3.2. The nonpreemptive list schedule N satisfies

∑
j C

N
j ≤ (3− 1

m )
∑

j C
∗
j .

Proof. We focus on a particular job Jj . For convenience, we assume that the
jobs are ordered according to their completion times in P1. Thus Jj is the jth job to
complete in P1. We now derive three lower bounds on CP1

j . First, we have the trivial

bound CP1
j ≥ r′j + p′j . Further, C

P1
j is at least as big as the processing times of the

jobs that precede it. Therefore

CP1
j ≥

j∑
k=1

p′k =
j∑

k=1

pk
m

.(3.1)

Let rmax
j = max1≤k≤j r

′
k be the latest release date among jobs that complete before

j; then CP1
j ≥ rmax

j .
Now consider the list schedule N . Clearly by time rmax

j all jobs J1, . . . , Jj have
been released. Even if no job starts before time rmax

j , by standard makespan argu-
ments Jj will complete by

CN
j ≤ rmax

j +

j−1∑
k=1

pk
m
+ pj

≤ CP1
j + CP1

j + pj

(
1− 1

m

)
,(3.2)

where the second inequality follows from (3.1) and CP1
j ≥ rmax

j above. Summing (3.2)
over all jobs, we get a total completion time of

∑
j

CN
j ≤ 2

∑
j

CP1
j +

(
1− 1

m

)∑
j

pj .(3.3)

By Lemma 3.1,
∑

j C
P1
j ≤ ∑

j C
∗
j , and trivially the optimal solution to I must

have total completion time
∑

j C
∗
j ≥ ∑

pj ; therefore this algorithm is a (3 − 1
m )-

approximation.
The running time is just the time to run SRPT on the one-machine relaxation

and the time to list schedule for a total of O(n log n). This algorithm can be made
on-line by simulating the preemptive schedule and adding a job to the list when it
completes in the preemptive schedule.

4. A general conversion algorithm. In this section we develop a technique to
obtain parallel machine schedules from one-machine schedules that works even when
jobs have precedence constraints and release dates. Given an average weighted com-
pletion time scheduling problem, we show that if we can approximate the one-machine
preemptive variant, then we can also approximate them-machine nonpreemptive vari-
ant with a slight degradation in the quality of approximation.

Precedence constraints will be represented in the usual way by a directed acyclic
graph (DAG) whose vertices correspond to jobs and whose edges represent precedence
constraints.
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In this section, we use a slightly different one-machine relaxation from the previous
section; namely, we do not divide the processing times by m. We use the superscript
m to denote the number of machines; thus Sm denotes a schedule for m machines, Cm

denotes the sum of weighted completion time of Sm, and Cm
j denotes the completion

time of job Jj under schedule S
m. The subscript opt refers to an optimal schedule;

thus an optimal schedule is denoted by Sm
opt, and its weighted completion time is

denoted by Cm
opt. For a set of jobs A, p(A) denotes the sum of processing times of

jobs in A.
Definition 4.1. For any vertex j, recursively define the quantity κj as fol-

lows. For a vertex j with no predecessors κj = pj + rj. Otherwise define κj =
pj +max{maxi≺j κi, rj}. Any path Pij from i to j where p(Pij) = κj is referred to as
a critical path to j.

4.1. Conversion algorithm DELAY LIST. We now describe the Delay List
algorithm. Given a one-machine schedule which is a ρ-approximation, Delay List
produces a schedule form ≥ 2 machines whose value is within a factor (k1ρ+k2) of the
optimal m-machine schedule, where k1 and k2 are small constants. We will describe
a variant of this scheduling algorithm which yields k1 = (1 + β) and k2 = (1 + 1/β)
for any β > 0. Therefore, for cases where we can find optimal one-machine schedules
(trees and series-parallel without release dates), we obtain a 4-approximation for m
machines by setting β = 1. To our knowledge, these are the best results for these
special cases.

The main idea is as follows. The one-machine schedule taken as a list (jobs in
order of their completion times in the schedule) provides some priority information
on which jobs to schedule earlier.2 Unlike with makespan, the completion time of
every job is important for weighted completion time. When trying to convert the
one-machine schedule into an m-machine one, precedence constraints prevent com-
plete parallelization. Thus we may have to execute jobs out-of-order from the list to
benefit from parallelism. If all pi are identical (say 1), we can afford to use naive list
scheduling.3 If there is an idle machine and we schedule some available job on it, it is
not going to delay jobs which become available soon, since it completes in one time
unit. On the other hand, if not all pi’s are the same, a job could keep a machine
busy, delaying more profitable jobs that become available soon. At the same time, we
cannot afford to keep machines idle. We strike a balance between the two extremes:
schedule a job out-of-order only if there has been enough idle time already to justify
scheduling it. To measure whether there has been enough idle time, we introduce a
charging scheme.

Assume, for ease of exposition, that all processing times are integers and that
time is discrete. This restriction can be removed without much difficulty and we use
it only in the interests of clarity and intuition. A job is ready if it has been released
and all its predecessors are done.

Definition 4.2. The time at which job Ji is ready in a schedule S is denoted by
qSi and the time at which it starts is denoted by sSi .

We use Sm to denote the m-machine schedule that our algorithm constructs and
for ease of notation the superscript m will be used in place of Sm to refer to quantities

2In the rest of the paper we assume without loss of generality that a list obeys the precedence
constraints; that is, if i ≺ j, then i comes earlier in the list than j.

3In this section, by list scheduling we mean the algorithm which schedules the first available job
in the list if a machine is free. This is in contrast to another variant considered in earlier sections in
which jobs are scheduled strictly in the order of the list.
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AVERAGE COMPLETION TIME SCHEDULING 159

of interest in this schedule. Let β > 0 be some constant. At each discrete time step
t, the algorithm applies one of the following three cases:

1. There is an idle machineM and the first job Jj on the list is ready at time t—
schedule Jj on M and charge all uncharged idle time in the interval (qmj , smj )
to Jj .

2. There is an idle machine and the first job Jj in the list is not ready at t, but
there is another ready job on the list—focusing on the job Jk which is the first
in the list among the ready jobs, schedule it if there is at least βpk uncharged
idle time among all machines and charge βpk idle time to Jk.

3. There is no idle time or the above two cases do not apply—do not schedule
any job; merely increment t.

Definition 4.3. A job is said to be scheduled in order if it is scheduled when it
is at the head of the list. Otherwise it is said to be scheduled out of order. The set
of jobs which are scheduled before a job Ji but which come later in the list than Ji is
denoted by Oi. The set of jobs which come after Ji in the list is denoted by Ai and
those which come before Ji by Bi (includes Ji).

Definition 4.4. For each job Ji, define a path P ′
i = Jj1 , Jj2 , . . . , Jj� , with Jj� =

Ji with respect to the schedule S
m as follows. The job Jjk is the predecessor of Jjk+1

with the largest completion time (in Sm) among all the predecessors of Jjk+1
such that

Cm
jk

≥ rjk+1
; ties are broken arbitrarily. Jj1 is the job where this process terminates

when there are no predecessors which satisfy the above condition. The jobs in P ′
i

define a disjoint set of time intervals (0, rj1 ], (s
m
j1
, Cm

j1
], . . . , (smj� , C

m
j�
] in the schedule.

Let κ′
i denote the sum of the lengths of the intervals.
Fact 4.5. κ′

i ≤ κi.
Fact 4.6. The idle time charged to each job Ji is less than or equal to βpi.
Proof. The fact is clear if idle time is charged to Ji according to case 2 in the

description of our algorithm. Suppose case 1 applies to Ji. Since Ji was ready at
qmi and was not scheduled according to case 2 earlier, the idle time in the interval
(qmi , smi ) that is charged to Ji is less than βpi. We remark that the algorithm with
discrete time units might charge more idle time due to integrality of the time unit.
However, that is easily fixed in the continuous case where we schedule Ji at the first
time instant when at least βpi units of uncharged idle time have accumulated.

A crucial feature of the algorithm is that when it schedules jobs, it considers only
the first job in the list that is ready, even if there is enough idle time for other ready
jobs that are later in the list. The proof of the following lemma makes use of this
feature.

Lemma 4.7. For every job Ji, there is no uncharged idle time in the time interval
(qmi , smi ), and furthermore all the idle time is charged only to jobs in Bi.

Proof. By the preceding remarks, it is clear that no job in Ai is started in the
time interval (qmi , smi ) since Ji was ready at q

m
i . From this we can conclude that there

is no idle time charged to jobs in Ai in that time interval. Since Ji is ready at q
m
i and

was not scheduled before smi , from cases 1 and 2 in the description of our algorithm
there cannot be any uncharged idle time.

The following lemma shows that for any job Ji, the algorithm does not schedule
too many jobs from Ai before scheduling Ji itself.

Lemma 4.8. For every job Ji, the total idle time charged to jobs in Ai, in the
interval (0, smi ), is bounded by m(κ′

i − pi). It follows that p(Oi) ≤ m(κ′
i − pi)/β ≤

m(κi − pi)/β.
Proof. Consider a job Jjk in P ′

i . The job Jjk+1
is ready to be scheduled at the
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160 C. CHEKURI, R. MOTWANI, B. NATARAJAN, AND C. STEIN

completion of Jjk , that is, q
m
jk+1

= Cm
jk
. From Lemma 4.7, it follows that in the time

interval between (Cm
jk
, smjk+1

) there is no idle time charged to jobs in Ajk+1
. Since

Ajk+1
⊃ Ai it follows that all the idle time for jobs in Ai has to be accumulated in

the intersection between (0, smi ) and the time intervals defined by P ′
i . This quantity

is clearly bounded by m(κ′
i − pi). The second part follows since the total processing

time of the jobs in Oi is bounded by 1/β times the total idle time that can be charged
to jobs in Ai (recall that Oi ⊆ Ai).

Theorem 4.9. Let Sm be the schedule produced by the algorithm Delay List
using a list S1. Then for each job Ji, C

m
i ≤ (1 + β)p(Bi)/m+ (1 + 1/β)κ

′
i − pi/β.

Proof. Consider a job Ji. We can split the time interval (0, C
m
i ) into two disjoint

sets of time intervals T1 and T2 as follows. The set T1 consists of all the disjoint time
intervals defined by P ′

i . The set T2 consists of the time intervals obtained by removing
the intervals in T1 from (0, C

m
i ). Let t1 and t2 be the sum of the times of the intervals

in T1 and T2, respectively. From the definition of T1, it follows that t1 = κ′
i ≤ κi.

From Lemma 4.7, in the time intervals of T2, all the idle time is either charged to
jobs in Bi, and the only jobs which run are from Bi ∪ Oi. From Fact 4.6, the idle
time charged to jobs in Bi is bounded by βp(Bi). Therefore the time t2 is bounded
by (βp(Bi) + p(Bi) + p(Oi))/m. Using Lemma 4.8 we see that t1 + t2 is bounded by
(1 + β)p(Bi)/m+ (1 + 1/β)κ

′
i − pi/β.

4.2. One-machine relaxation. In order to use Delay List, we will need to
start with a one-machine schedule. The following two lemmas provide lower bounds
on the optimal m-machine schedule in terms of the optimal one-machine schedule.
This one-machine schedule can be either preemptive or nonpreemptive; the bounds
hold in either case.

Lemma 4.10. Cm
opt ≥ C1

opt/m.
Proof. Given a schedule Sm on m machines with total weighted completion time

Cm, we will construct a one-machine schedule S1 with total weighted completion time
at most mCm as follows. Order the jobs according to their completion times in Sm

with the jobs completing early coming earlier in the ordering. This ordering is our
schedule S1. Note that there could be idle time in the schedule due to release dates. If
i

�≺ j, then Cm
i ≤ smj ≤ Cm

j which implies that there will be no precedence violations

in S1. We claim that C1
i ≤ mCm

i for every job Ji. Let P be the sum of the processing
times of all the jobs which finish before Ji (including Ji) in Sm. Let I be the total
idle time in the schedule Sm before Cm

i . It is easy to see that mCm
i ≥ P + I. We

claim that C1
i ≤ P + I. The idle time in the schedule S1 can be charged to idle time

in the schedule Sm and P is the sum of all jobs which come before Ji in S1. This
implies the desired result.

Lemma 4.11. Cm
opt ≥∑i wiκi = C∞

opt.
Proof. The length of the critical path κi is an obvious lower bound on the com-

pletion time Cm
i of job Ji. Summing up over all jobs gives the first inequality. It

is also easy to see that if the number of machines is unbounded, every job Ji can
be scheduled at the earliest time it is available and will finish by κi yielding the
equality.

4.3. Obtaining generic m-machine schedules. In this section we derive our
main theorem relating m-machine schedules to one-machine schedules.

We begin with a corollary to Theorem 4.9.
Corollary 4.12. Let Sm be the schedule produced by the algorithm Delay

List using a one-machine schedule S1 as the list. Then for each job Ji, Cm
i ≤
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AVERAGE COMPLETION TIME SCHEDULING 161

(1 + β)C1
i /m+ (1 + 1/β)κi.

Proof. Since all jobs in Bi come before Ji in the one-machine schedule, it follows
that p(Bi) ≤ C1

i . Plugging this and Fact 4.5 into the bound in Theorem 4.9, we
conclude that Cm

i ≤ (1 + β)C1
i /m+ (1 + 1/β)κi.

Theorem 4.13. Given an instance I of scheduling to minimize sum of weighted
completion times and a one-machine schedule for I that is within a factor ρ of an
optimal one-machine schedule, Delay List gives an m-machine schedule for I that
is within a factor (1 + β)ρ+ (1 + 1/β) of an optimal m-machine schedule.

Proof. Let S1 be a schedule which is within a factor ρ of the optimal one-machine
schedule. Then C1 =

∑
i wiC

1
i ≤ ρC1

opt. By Corollary 4.12, the schedule created by
the algorithm Delay List satisfies

Cm =
∑
i

wiC
m
i

≤
∑
i

wi

(
(1 + β)

C1
i

m
+

(
1 +

1

β

)
κi

)

=
1 + β

m

∑
i

wiC
1
i +

(
1 +

1

β

)∑
i

wiκi.

From Lemmas 4.10 and 4.11 it follows that

Cm ≤ (1 + β)ρC1
opt

m
+

(
1 +

1

β

)
C∞
opt

≤
(
(1 + β)ρ+

(
1 +

1

β

))
Cm
opt.

Corollary 4.14. There is an O(n log n) time 4-approximation algorithm for
weighted completion time on parallel machines when the precedence graphs are re-
stricted to be series-parallel graphs.

Proof. The optimal single machine schedule with release dates ignored can be
computed in O(n log n) time for series-parallel graphs [1]. Applying the Delay List
algorithm with β = 1 to this schedule gives the desired result.

Remark 4.15. Since the bounds in our conversion algorithm are job-by-job, the
algorithm is applicable to a more general class of metrics as well.

There is an interesting property of the conversion algorithm that is useful in
its applications and worth pointing out explicitly. We explain it via an example.
Suppose we want to compute an m-machine schedule with release dates and prece-
dence constraints. From Theorem 4.13 it would appear that we need to compute
a one-machine schedule for the problem that has both precedence constraints and
release dates. However, we can completely ignore the release dates in computing
the one-machine schedule S1! This follows from a careful examination of the upper
bound proved in Theorem 4.9 and the proof of Theorem 4.13. This is useful since
the approximation ratio for the problem 1| prec |∑j wjCj is 2 [16] while it is 3 for
1 | prec, rj |

∑
j wjCj [16]. In another example, the problem 1 | | ∑j wjCj has a very

simple polynomial-time algorithm using Smith’s ratio rule while 1 | rj |
∑

j wjCj is
NP-hard. Thus release dates play a role only in the conversion algorithm and not
in the single machine schedule. A similar claim can be made when there are de-
lays between jobs. In this setting a positive delay dij between jobs i and j indicates
that i is a predecessor of j and that j cannot start until dij time units after i com-
pletes. We can generalize our conversion algorithm and its analysis to handle delays
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162 C. CHEKURI, R. MOTWANI, B. NATARAJAN, AND C. STEIN

and obtain the same results as those in Theorems 4.9 and 4.13. The only change
required is in the definition of ready time of a job which now depends also on the
delay after a predecessor finishes. As with release dates we can ignore the delay val-
ues (not the precedence constraints implied by them though) in computing the single
machine schedule. Munier, Queyranne, and Schulz [24] use linear programming ideas
to generalize results for problems with precedence constraints to those with delay
constraints.

4.4. Applying conversion to in-tree precedence. We obtain stronger results
for in-tree precedence without release dates. The problem is strongly NP-hard even
for this case. We analyze the standard list scheduling algorithm which starts with an
ordering on the jobs (the list) and greedily schedules each successive job in the list at
the earliest possible time. We use the optimal one-machine schedule for trees as the
list. We show that this algorithm gives a 2-approximation for in-trees. Recall that
smi is the start time of Ji in the schedule S

m.
Lemma 4.16. If Sm is the list schedule using a one-machine schedule S1 as the

list, then for any job Ji, C
m
i ≤ κi + C1

i /m.
Proof. Since there are no release dates, we can assume that the schedule S1 has

no idle time. Without loss of generality assume that J1, . . . , Jn is the ordering of the
jobs ordered according to their start times smi in Sm (we break ties arbitrarily). We
will prove the lemma by induction on i. We strengthen the hypothesis by adding the
following invariant. If Cm

i > Cm
j + pi, where Jj is the last predecessor of Ji to finish

in Sm, then all the jobs scheduled before smi in Sm are ahead of Ji in the list S
1

and there is no idle time in the schedule before time smi . In this case it follows that
Cm

i ≤ pi + C1
i /m. The base case is trivial since κ1 = p1 and the first job finishes at

time p1. Suppose that the hypothesis holds for all jobs Jk, k < i; we will prove it
holds for Ji. If Ji has no predecessor it is easily seen that there is no idle time before
Ji is scheduled and that C

m
i ≤ pi +C1

i /m. Among the predecessors of i, let Jj , j < i
be the last to finish in the schedule Sm (ties are broken arbitrarily). We consider two
cases.

1. Cm
i = Cm

j + pi. By the hypothesis, Cm
j ≤ κj + C1

j /m. It follows that

Cm
i ≤ κi + C1

i /m since κi ≥ κj + pi and C1
j < C1

i .
2. Cm

i > Cm
j + pi. Let t = Cm

j . Let P be the set of jobs which finish exactly
at time t and P ′ be the set of jobs which had their last predecessor running
until time t. Note that Ji ∈ P ′, Jj ∈ P , and all the jobs in P ′ are ready to
be run at time t. In an in-tree a node has at most one immediate successor;
therefore |P ′| ≤ |P |. Therefore the number of jobs that are ready at t but
were not ready at t− is at most |P |. If Ji was not scheduled at t there must
exist a job Jl /∈ P ′ which is scheduled at t. This implies that Jl occurs
before Ji in the list S

1. Since no immediate predecessor of Jl finished at t,
by the induction hypothesis we conclude that there was no idle time and no
job which comes later than Jl in S1 is scheduled before time t. Since Ji was
ready at time t, it follows that there is no idle time and no job later than
Ji in S1 is scheduled between time t and the smi . From these observations it
follows that Cm

i ≤ pi + C1
i /m ≤ κi + C1

i /m.
In both cases we see that the induction hypothesis is established for Ji and this finishes
the proof.

Theorem 4.17. There is an O(n log n)-time algorithm with approximation ra-
tio 2 for minimizing weighted completion time on m machines for in-tree precedence
without release dates.
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AVERAGE COMPLETION TIME SCHEDULING 163

Proof. The proof is similar to that of Theorem 4.13 except that we use the stronger
bounds from Lemma 4.16. The running time is dominated by the time to compute
the optimal one-machine schedule which can be done in O(n log n) time [1].

4.5. A 2.83-approximation for scheduling without precedence con-
straints. We now improve the approximation bound for parallel machine schedul-
ing with release dates to 2.83 which improves the earlier ratio of 2.89 + ε [3]. We
combine ideas of the one-machine relaxation developed in section 3 and the idea of
using delay based list scheduling to derive an alternate algorithm which has worse
ratio than the algorithm in section 3. However, we observe that the bounds we get
from the analysis of these two algorithms can be combined to get an improved lower
bound on the optimal which leads to the improvement.

Recall from section 3 that I1 is the one-machine relaxation for a given instance
I and P1 is an optimal preemptive schedule for I1.

Lemma 4.18. If we apply Delay List to P1 with parameter β, the resulting
schedule D has total completion time∑

CD
j ≤ (2 + β)C∗

j +
1

β

∑
j

rj .

Proof. We focus on a particular job Jj . From Theorem 4.9 and Fact 4.5 we
conclude that CD

j ≤ (1 + β)p(Bj)/m + (1 + 1/β)κj − pj/β. Since we do not have
precedence constraints on the jobs, κj = rj+pj . From the definition of Bj and the fact
that the list is the order in which jobs finish in P1, it follows that p(Bj)/m ≤ CP1

j .

We therefore conclude that CD
j ≤ (1+β)CP1

j +pj + rj/β. Summing this over all jobs
we obtain ∑

j

CD
j ≤ (1 + β)

∑
j

CP1
j +

∑
j

pj +
1

β

∑
j

rj .

Since both
∑

j C
P1
j and

∑
j pj are lower bounds on the optimal schedule value, it

follows that ∑
j

CD
j ≤ (2 + β)

∑
j

C∗
j +

1

β

∑
j

rj .

We now balance the two algorithms, list scheduling and Delay List, to achieve
an approximation ratio of 2.83.

Lemma 4.19. For any input I, either list scheduling from P1 or using De-
lay List on P1 for an appropriate choice of β produces a schedule with

∑
j Cj ≤

2.83
∑

j C
∗
j and runs in O(n log n) time.

Proof. By (3.3), we know that∑
j

CN
j ≤ 2

∑
j

CP1
j +

∑
j

pj .(4.1)

If, for some α, we know that
∑

j pj ≤ α
∑

j C
∗
j , then the list scheduling algorithm is

a (2 + α)-approximation algorithm.
Now consider the case when

∑
j pj > α

∑
j C

∗
j . If we combine this equation with

the simple bound that
∑

j C
∗
j ≥∑j(pj + rj), we get∑

j

rj ≤ (1− α)
∑
j

C∗
j .(4.2)
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We can now plug (4.2) into the upper bound on CD
j from Lemma 4.18 to get

∑
j

CD
j ≤

(
2 + β +

1− α

β

)∑
j

C∗
j .

We do not know the value of α, but for each possible α we can choose the β that
minimizes the two terms. Simple algebra and calculus show that given α, we can
choose β to be

√
(1− α). The expression min{2+α, 2+2

√
1− α} is minimized when

α = 2
√
2− 2 thus yielding a ratio of 2√2 � 2.83.

To obtain the guaranteed approximation the algorithm runs both the list schedul-

ing algorithm and the Delay List algorithm with β =
√
3− 2√2 and chooses

the better of the two schedules. The schedules can be computed in O(n log n) time
each.

5. Conclusions. As mentioned earlier, many variants of the problem of mini-
mizing average weighted completion time were shown to have constant factor approx-
imations. Hoogeveen, Schuurman, and Woeginger [18] investigated the hardness of
approximation of average completion time scheduling and in particular showed that
the problems P |prec, pj = 1|

∑
j Cj and R|rj |

∑
j Cj are APX-hard; in other words,

they do not admit a polynomial-time approximation scheme (PTAS) unless P = NP .
Recently, much progress was made in obtained improved upper bounds as well. Sev-
eral groups of authors obtained efficient PTASs for problems involving only release
dates. A preliminary version describing these results is [2]. The maximal cases that
were shown to have a PTAS are P |rj |

∑
j wjCj , Rm|rj |

∑
j wjCj , and their preemp-

tive versions. An interesting open problem is the complexity of 1|prec|∑j wjCj . A
2-approximation for this problem is known but no APX-hardness has been established.
Subsequent to the linear programming based methods [16], simple combinatorial algo-
rithms [6, 8] were developed for this problem matching the approximation ratio of 2.
By coupling these algorithms with the Delay List algorithm in this paper we obtain
the first efficient and combinatorial approximation algorithms even with precedence
constraints and delays. The ratio achieved for P |rj , prec|

∑
j wjCj is 5.83 and is worse

than the currently best known ratio of 4 [24]. However, the algorithm in [24] is based
on solving a linear program via the ellipsoid method.
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