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PERTURBATIVE ANALYSIS OF THE METHOD OF PARTICULAR
SOLUTIONS FOR IMPROVED INCLUSION OF HIGH-LYING

DIRICHLET EIGENVALUES∗

A. H. BARNETT†

Abstract. The Dirichlet eigenvalue or “drum” problem in a domain Ω ⊂ R
2 becomes numerically

challenging at high eigenvalue (frequency) E. In this regime the method of particular solutions (MPS)
gives spectral accuracy for many domain shapes. It requires a number of degrees of freedom scaling
as

√
E, the number of wavelengths on the boundary, in contrast to direct discretization for which

this scaling is E. Our main result is an inclusion bound on eigenvalues that is a factor O(
√

E) tighter
than the classical bound of Moler–Payne and that is optimal in that it reflects the true slopes of
curves appearing in the MPS. We also present an MPS variant that cures a normalization problem in
the original method, while evaluating basis functions only on the boundary. This method is efficient
at high frequencies, where we show that, in practice, our inclusion bound can give three extra digits
of eigenvalue accuracy with no extra effort.

Key words. particular solutions, eigenvalue, Dirichlet, drum, Laplacian, inclusion

AMS subject classifications. 35P15, 47A55, 65N35, 65N15

DOI. 10.1137/080724022

1. Introduction and main results. Computing the eigenvalues and eigen-
modes of the Laplace operator with homogeneous boundary condition (BC) in a
bounded domain Ω ⊂ Rd for d = 2, 3, . . . is a classical problem with a 150-year-
long history; for reviews, see [30, 43]. It has a wealth of applications in physics and
engineering including the vibration of membranes (drums), resonances and modes of
acoustic, electromagnetic, and optical cavities and waveguides, energy states of quan-
tum particles, and data analysis [40]. We focus on the case of a Dirichlet BC, i.e.,
acoustically sound-soft walls. The spectrum σD := {Ej}∞j=1 and modes {φj}∞j=1 are
defined by

−Δφj = Ejφj in Ω,(1.1)
φj = 0 on ∂Ω .(1.2)

Physically the eigenvalues can be interpreted as frequencies; we order them (including
multiplicities) E1 < E2 ≤ E3 ≤ · · · . We may choose orthonormal modes, that is,
(φi, φj)Ω :=

∫
Ω
φiφj dx = δij for all i, j = 1, 2, . . . , where δ is the Kronecker delta.

There has been a growing interest in the computationally demanding case of high
eigenvalue (high mode number j), where many wavelengths span the domain. One
example is dielectric microcavity lasers, where the use of asymmetric shapes has led to
much higher output powers; to predict lasing [45], a large number of cavity resonances
(which can be approximated by Dirichlet modes) are needed at j > 103. More broadly,
the field of “quantum chaos” (short-wavelength asymptotic study of modes of systems
with chaotic ray dynamics) has blossomed in the last 20 years in both physics [22]
(with applications such as atomic physics and quantum dots) and mathematics (e.g.,
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PERTURBATIVE INCLUSION OF DIRICHLET EIGENVALUES 1953

quantum ergodicity [47] and arithmetic manifolds). Numerical investigation has been
a vital part of this endeavor [1, 4] and has led to discoveries such as “scars” of periodic
ray orbits in the modes [25].

The method of particular solutions (MPS), also known as collocation or “point
matching,” uses basis functions that satisfy the Helmholtz equation (1.1) but not
necessarily (1.2). It was originally used by Fox, Henrici, and Moler [16] to compute
low eigenvalues of an L-shaped domain to 8 digit accuracy, and has been improved by
many, including Kuttler and Sigillito [29], and recently by Betcke and Trefethen [5].
Much of the key early analysis of the MPS appeared in SINUM [16, 33, 41, 10]. For
geometries with many corners, a domain decomposition version was pioneered by
Descloux and Tolley [8], modified by Driscoll [9] to find eigenvalues of the well-known
pair of Gordon–Wolpert–Webb isospectral drums [21] to high accuracy, and further
improved by Betcke [6]. In physics, where the emphasis is on high frequencies, related
methods of Heller [25, 26] and the very efficient “scaling method” of Vergini and
Saraceno [46, 3, 4] have enjoyed unrivaled success. In this regime the advantage of
the MPS is that the basis size scales (in d = 2) as the wavenumber

√
E (e.g., see [2]),

rather than E as with finite difference or finite element methods. (This advantage is
shared by boundary integral methods [1]).

In the MPS a solution to (1.1) is approximated by a linear combination of ba-
sis functions {ξn}n=1,...,N , each of which satisfies −Δξn = Eξn in Ω at some trial
frequency parameter E but which do not individually satisfy the Dirichlet BC. Pop-
ular basis functions are plane waves [26], corner-adapted Fourier–Bessel functions
[16, 9, 5, 6], and fundamental solutions [12, 27, 4]. If a trial solution u ∈ Span{ξn}
satisfies u = 0 on ∂Ω while u �= 0 in Ω, then it must be a multiple of a mode φj
for some j, and we must have E = Ej . In practice, this is rarely achieved exactly.
However, by defining the boundary error measure (or “tension”)

(1.3) t = t[u] :=
‖u‖∂Ω

‖u‖Ω
,

where ‖u‖∂Ω and ‖u‖Ω are the usual L2-norms on the boundary and interior, respec-
tively, we have the following inclusion bound from a theorem of Moler–Payne [33, 29].
Let −Δu = Eu in Ω, then there exists an eigenvalue Ej satisfying

(1.4)
|E − Ej |
Ej

≤ C′
Ωt[u] ,

where C′
Ω is a constant depending only on the domain. (C′

Ω is an a priori upper
bound on ‖h‖Ω/‖h‖∂Ω for harmonic functions h [29], hence (1.4) is known as an a
priori-a posteriori inequality [30].) Eigenvalues may then be identified by searching
the frequency (E) axis for local minima of the function

(1.5) tm(E) := min
u∈Span{ξn}

t[u] ,

as shown in Figure 1.1. Similar curves appear in [5, 7, 11]. Equation (1.4) states
that the eigenvalue accuracy which may be claimed is controlled by the size of the
minimum found.

However, observations of the slopes of curves such as Figure 1.1 led the author
to notice that the Moler–Payne bounds are not optimal at high E. It turns out that,
for E in the neighborhood of each eigenvalue Ej , the bounds can be made a factor of√
E tighter, as follows.
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1954 A. H. BARNETT
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Theorem 1.1

Moler−Payne

Fig. 1.1. Graph of tm(E) versus E for the domain (S) shown and defined in Figure 1.2 and
weight w = 1. Dirichlet eigenvalues Ej are shown by vertical dotted lines labelled by j. At the
single frequency E = 86.8 (black dot), the inclusion bounds given by (1.4) (thin solid interval)
and Theorem 1.1 with the choice ε = 0.05 (thick solid interval) are shown. The latter bounds are√

E ≈ 10 times tighter and optimal in the sense that they just include E18 and correspond to the
true slope of the tm(E) curve.

(H)

(T)

(S)

Fig. 1.2. Three domains used in verifying the utility of the main theorem and (right) their
first ten eigenmodes (white is zero and darker represents larger absolute values |φj(x)|). (S) smooth
(in fact analytic) and strictly star-shaped, defined by the polar function r(θ) = 1 + 0.2 cos 2θ +
0.2 cos(3θ + π/3). (T) triangle, with angles π/4, π/3, and 5π/12. (H) horseshoe, not star-shaped
about any point, C1-continuous boundary, the union of a 3π/2 sector of the annulus of inner and
outer radii 0.7 and 1.3 with two semicircles. In (S) and (T) the origin is shown by a + sign.

Theorem 1.1. Let Ω ⊂ Rd, d ≥ 2, be a smooth bounded domain. Fix ε > 0, then
there is an open, possibly disconnected, set Σε ⊂ (0,∞) which contains the spectrum
σD and has the following property. For any E ∈ Σε\σD and any u obeying −Δu = Eu
in Ω, there exists an eigenvalue Ej satisfying

(1.6)
|E − Ej |√

Ej
≤ CΩ(1 + ε)t[u] ,

where CΩ is a constant depending on the domain but not on ε, Σε, E, or u.
Comparing (1.6) to (1.4), we see that for high-frequency applications, the MPS is,

in fact, more accurate, by a factor of the wavenumber, than has been realized before.
Although the theorem does not indicate how large the set Σε is (and therefore, how
useful the bound is), we will show that in practice the set fills almost all of (0,∞) even
for ε much smaller than 1. We explore this in section 4.2 for three example planar
(d = 2) domains, and we demonstrate in section 4.3 that at E ≈ 106 the bound on
eigenvalue accuracy is improved by 3 digits without extra effort.

Remark 1.1. The error measure (1.3), a Rayleigh quotient, was used by the author
in [3, Chapter 5] (as a special case, it is implicit in [29]) and cures a normalization
problem inherent in the original MPS formulation [16]. This problem, and a very

D
ow

nl
oa

de
d 

05
/0

8/
18

 to
 1

29
.1

70
.1

17
.1

86
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PERTURBATIVE INCLUSION OF DIRICHLET EIGENVALUES 1955

similar but independently found cure, is presented in [5]. Recently, Betcke [7] has
united the various approaches within a single framework.

One of the main goals of this paper is to prove Theorem 1.1, which we do in
sections 2 and 3. This will rely on the following: Lemma 2.1, which bounds t[u] by
a frequency (parameter) dependent eigenvalue of an operator A(E) defined by (2.3)
acting in L2(∂Ω); Theorem 2.2, which describes the quadratic parameter-dependence
of such eigenvalues in the neighborhood of each Ej ; and Lemma 2.3, an upper bound
on the norm of eigenmode normal derivatives on the boundary. A deeper purpose of
our work is to understand the structure of MPS curves such as Figures 1.1 and 5.1.
We believe this can lead to better numerical methods and are particularly motivated
by the variants of such curves which form the heart of the scaling method [46, 3, 4].
Section 3, where we apply perturbation theory in the frequency parameter to prove
Theorem 2.2, is a step in this direction. We actually do this for a more general
boundary norm

(1.7) ‖u‖w,∂Ω :=
(∫

∂Ω

w |u|2ds
)1/2

,

where w is some strictly positive bounded weight function on ∂Ω and ds is the usual
surface element. One point of introducing w is that it allows the following useful
special case, where x(s) ∈ ∂Ω is position vector and n(s) the outwards unit normal.

Proposition 1.2. Let Ω be strictly star-shaped about the origin, and let w =
(x · n)−1. If we replace the norm ‖u‖∂Ω by ‖u‖w,∂Ω in (1.3), then in Theorem 1.1 we
may choose the constant CΩ =

√
2, independent of Ω or d.

Note that this geometric restriction on Ω is needed if w is to be positive and
bounded. We demonstrate the utility of this explicit bound in section 4.

A secondary goal is to describe (in section 4.1) an implementation of the MPS,
in particular, how to compute tm(E) using a generalized matrix eigenvalue problem
and basis evaluations on the boundary alone. The latter makes our method more
efficient than existing MPS methods [29, 5] at high frequency. Finally, we conclude
in section 5.

2. Parameter-dependent boundary operator and proof of the theorem.
Consider the interior Dirichlet boundary-value problem (BVP) for the homogeneous
Helmholtz equation at frequency E,

(2.1)
(Δ + E)u = 0 in Ω ,

u = U on ∂Ω .

We use small letters to indicate functions on Ω and the corresponding capital letter for
their restriction to ∂Ω (boundary trace). Given E /∈ σD, the BVP (2.1) with boundary
data U ∈ L2(∂Ω) has a unique solution in L2(Ω) [32, Theorem 4.25]. Henceforth, we
work in a w-weighted inner product

(2.2) 〈U, V 〉 :=
∫
∂Ω

UV w ds ,

where 0 < c ≤ w(s) ≤ C, for all s ∈ ∂Ω for some constants c, C. Thus (1.7) may be
written

√〈U,U〉. The point of this weight is to allow choices such as that in Propo-
sition 1.2, which may be more useful than the case w = 1, which is common in the
literature.
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1956 A. H. BARNETT

The parameter-dependent operator A = A(E) is defined by

(2.3) 〈U,A(E)V 〉 = (u, v)Ω , for all U, V ∈ L2(∂Ω).

(By v we mean the unique interior solution to (2.1) with data V ). A unique such
operator in L2(∂Ω) exists by the Riesz representation theorem. By (2.3), it is positive
and self-adjoint (in the w-weighted norm) for real E. Treating (1.4) as an upper
bound on ‖u‖Ω, it follows that A(E) is bounded for all E /∈ σD. An interpretation
of A is that its sesquilinear form encodes the domain inner product of the interior
Helmholtz extensions of two given boundary functions.

An inverse eigenvalue λ(E) of A is defined at each E /∈ σD by

(2.4) A(E)X(E) =
1

λ(E)
X(E) ,

with corresponding eigenfunction 0 �= X(E) ∈ L2(∂Ω). We are interested in how
the (inverse) spectrum of A(E) depends on E. At this point we might stop to ask
whether A even possesses a point spectrum. (2.1) has a solution operator K which
maps U to u. For smooth domains (C∞ boundary), K is bounded from L2(∂Ω) to
H1/2(Ω) (e.g., see [31]), thus by standard Sobolev embedding theorems, is compact
from L2(∂Ω) to L2(Ω). Since A = K∗K, where K∗ is the adjoint with respect to the
appropriate inner products, A is compact. Thus A has pure point spectrum, and the
sequence {λi(A)}i=1,2,... has no accumulation point. If Ω has corners, we expect (and
have numerical evidence) that A remains compact but do not yet know a proof.

The w-weighted version of (1.3) is (we retain the same symbol)

(2.5) t[u] :=
‖u‖w,∂Ω

‖u‖Ω
.

For general w, we have the following simple lower bound on t[u] in terms of the
parameter-dependent spectrum of A(E).

Lemma 2.1. Let λ1(E) be the lowest inverse eigenvalue of A(E) defined by (2.4).
Fix E > 0, then for all u obeying −Δu = Eu in Ω, it holds that

(2.6) t[u] ≥
√
λ1(E) ,

where t[u] is defined by (2.5).
Proof. Since A is self-adjoint and bounded,

(2.7) ‖u‖2
Ω = 〈U,AU〉 ≤ 1

λ1
‖U‖2

w,∂Ω ,

and the proof follows from the definition (2.5).
We now describe the behavior of this lowest inverse eigenvalue for parameter

values E in the neighborhood of the Dirichlet spectrum of Ω. We will make frequent
use of the weighted eigenmode boundary functions

(2.8) ψj :=
1
w
∂nφj ,

where ∂nφj := n · ∇φj |∂Ω is the usual normal derivative. These turn out to be the
natural boundary representation of modes associated with the norm (1.7). We also
need the infinite matrix Q = (Qij) whose entries are the weighted mode boundary
inner products

(2.9) Qij := 〈ψi, ψj〉 , i, j = 1, 2, . . . .

The proof of the following theorem is more involved and is the purpose of section 3.
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Theorem 2.2. Fix j ∈ N, and let p be the (finite) multiplicity of Ej. Without
loss of generality choose j to be the first in the list of degenerate eigenvalues, that is,
Ej = Ej+1 = · · · = Ej+p−1. Then in the limit as E tends to Ej , precisely p inverse
eigenvalues of A(E) vanish in the following fashion:

(2.10) λi(E) = c
(i)
j (E − Ej)2 +O

(
(E − Ej)4

)
, i = 1, . . . , p,

where the curvature coefficients c
(1)
j ≤ c

(2)
j ≤ · · · ≤ c

(p)
j are given by the inverse

eigenvalues of the p × p submatrix Q̃ := (Qik)i,k=j,...,j+p−1. The smallest coefficient
satisfies

(2.11)
1

c
(1)
j

= sup
φ∈Φ,‖φ‖Ω=1

∫
∂Ω

1
w
|∂nφ|2ds ,

where Φ := Span{φj , . . . , φj+p−1} is the Ej-eigenspace.
This locally quadratic behavior of the smallest inverse eigenvalue λ1(E) versus

frequency E is visible in Figure 1.1: tm(E) is a good approximation to
√
λ1(E) and

appears locally linear. Note that when Ej is a simple eigenvalue (p = 1), this gives

(2.12)
1

c
(1)
j

= ‖ψj‖2
w,∂Ω =

∫
∂Ω

1
w
|∂nφj |2ds .

The right-most expressions in (2.11) and (2.12) are now bounded above because of
the following, which puts a limit on how “shallow” the parabola λ1(E) may be.

Lemma 2.3 (Rellich). Given a bounded Lipschitz domain Ω ⊂ Rd, there are
constants Cw,Ω ≥ cw,Ω > 0 depending only on Ω and the weight w, such that

(2.13) c2w,ΩEj ≤
∫
∂Ω

1
w
|∂nφj |2ds ≤ C2

w,ΩEj for all j = 1, 2, . . . .

For the special case w = (x · n)−1, one may choose cw,Ω = Cw,Ω =
√

2, independent
of Ω, in which case the inequalities become an equality.

The inequalities are proved in Hassell–Tao [24, section 2] in the case w = 1 and
∂Ω smooth but carry over trivially to strictly positive bounded w. The lower bound
uses (2.14) below, thus holds for Lipschitz domains. They derived the upper bound
using commutator estimates involving a smooth vector field which points normally
outwards on ∂Ω. (Also see [19, Lemma 2.1] for the case of domains with a Lipschitz
normal vector field.) A simple generalization of this vector field construction to be
smooth with merely positive normal component on ∂Ω allows the upper bound to
carry over to Lipschitz domains. For instance, the vector field x works for strictly
star-shaped Lipschitz domains [23]. The special-weight case in Lemma 2.3 is due to
Rellich [38], who proved

(2.14)
∫
∂Ω

x · n |∂nφ|2ds = 2Ej

for any bounded Ω and dimension d (regardless of whether Ω is star-shaped).
Remark 2.1. The argument and Remark of [24, section 2] carries over to the case

of Ω possessing a boundary of only C1 continuity, since the first derivatives of the
constructed vector field remain bounded. Therefore, with w = 1, we get that Cw,Ω is
the inverse of the largest δ such that the function r(x) = dist(x, ∂Ω), x ∈ Ω, is C1

continuous wherever r ∈ [0, δ]. For domain (H) of Figure 1.2, this gives Cw,Ω = 10/3,
the inverse of the minimum radius of curvature.
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2.1. Proof of main theorem. We now have all the pieces to prove Theorem 1.1,
more precisely, its generalization to general strictly positive bounded weight w. For a
given eigenmode number j, Theorem 2.2 implies that limE→Ej c

(1)
j (E−Ej)2/λ1(E) =

1, thus there is a δj > 0 such that

(2.15)

√
c
(1)
j

λ1(E)
|E − Ej | ≤ 1 + ε

holds for all E in the punctured interval 0 < |E − Ej | < δj . By choosing Σε =⋃∞
j=1{E : |E −Ej | < δj}, then for each E ∈ Σε \ σD, there exists a j such that (2.15)

holds. Substituting into (2.15), the bound from Lemma 2.1 and the upper bound in
Lemma 2.3 completes the proof of Theorem 1.1, with the constant CΩ being equal to
the upper constant Cw,Ω in Lemma 2.3.

Remark 2.2. Theorem 2.2 is stronger than necessary for this proof, since only
the existence of limE→Ej c

(1)
j (E − Ej)2/λ1(E) is needed. In fact, the full analyticity

of λ1(E) will be proved in section 3.

3. Proof of quadratic behavior of inverse eigenvalues of A. Here (with
Appendices A and B) we prove Theorem 2.2. The first part involves a modal expan-
sion, which allows us to split the operator A(E) into a finite-rank part associated with
the jth eigenspace, and a remainder, which we show is analytic in the parameter E in
the neighborhood of Ej . We then apply Rellich–Kato analytic operator perturbation
theory to show that the inverse eigenvalues {λi(E)}i=1,...,p have quadratic behavior
about Ej . However, there is a twist: the needed eigenvalue(s) of A(E) have poles at
E = Ej . This we may cancel by scalar multiplication, but the price to pay is that an-
alytic perturbation theory is no longer applicable to the resulting infinite multiplicity
zero eigenvalue. Nevertheless, the Cauchy interlacing property will recover what is
needed.

3.1. Mode expansion of the boundary operator. The key to our proof is
to express our boundary operator A as an infinite sum of rank-1 operators associated
with each eigenmode boundary function.

Lemma 3.1.

(3.1) A(E) =
∞∑
j=1

ψj〈ψj , ·〉
(E − Ej)2

.

Remark 3.1. A similar formula (for the casew = 1) is known [34] for the Dirichlet-
to-Neumann map for (2.1). In fact, when w = 1 it can be shown directly that −A(E)
is the E-derivative of the Dirichlet-to-Neumann map [17, equation (2.5)].

Proof. The Helmholtz equation Green’s function G in the domain Ω is defined by
[18]:

(3.2)
(−Δx − E)G(x,y) = δ(x − y) for x,y ∈ Ω,

G(x,y) = 0 for x ∈ ∂Ω or y ∈ ∂Ω.

G depends on E, although we shall not indicate this explicitly. δ is the Dirac delta
distribution in Rd. Then the solution operator K for the BVP (2.1) is

(3.3) u(x) = (KU)(x) =
∫
∂Ω

K(x, s)U(s) ds for x ∈ Ω ,
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PERTURBATIVE INCLUSION OF DIRICHLET EIGENVALUES 1959

where s ∈ ∂Ω is a boundary coordinate and the Poisson kernel for the Helmholtz
equation is

(3.4) K(x, s) = ∂n(s)G(x, s),

where here ∂n(s) indicates the normal derivative with respect to the second argument,
evaluated at the boundary point s. From (3.3) we get

(3.5) (u, v)Ω =
∫
∂Ω

∫
∂Ω

U(s)V (s′)
∫

Ω

∂n(s)G(x, s)∂n(s′)G(x, s′) dx dsds′ .

Since (2.3) holds for arbitrary U, V ∈ L2(∂Ω), we may write the action of A on any
V ∈ L2(∂Ω) as the integral operator (AV )(s) =

∫
∂Ω
A(s, s′)V (s′) ds′ whose kernel is

(3.6) A(s, s′) =
1

w(s)

∫
Ω

∂n(s)G(x, s)∂n(s′)G(x, s′) dx.

Inserting the usual eigenfunction expansion [18]

(3.7) G(x,y) =
∞∑
j=1

φj(x)φj(y)
E − Ej

into (3.6), orthonormality on Ω kills the domain integral and one of the sums, leaving

(3.8) A(s, s′) =
1

w(s)

∞∑
j=1

∂nφj(s) ∂nφj(s′)
(E − Ej)2

.

The apparent lack of symmetry of the kernel is deceptive and is merely a result of
the weighted inner product (2.2). It is simple to check that this kernel is equivalent
to the desired symmetric formula (3.1).

Remark 3.2. Despite its suggestive form, (3.1) is not a sum of orthogonal pro-
jections, nor a spectral representation, since {ψj} are not unit norm and, although
complete in L2(∂Ω), they are generally not orthogonal.

Remark 3.3. Although each term in (3.1) is a bounded operator, with bound
C2
w,ΩEj/(E − Ej)2 following from Lemma 2.3, the sum of these bounds is divergent

for all d ≥ 2. This follows from Weyl’s law [18, Chapter 11], which states that asymp-
totically, the number of Laplacian eigenvalues below E grows like Ed/2. Therefore,
(3.1) cannot directly be used to show that A is the norm limit of finite-rank operators
and hence compact.

3.2. Perturbation theory for inverse eigenvalues. From now on we fix the
mode number j, with multiplicity p. Recall if p > 1, then for convenience, j is chosen
to be the lowest in the degenerate set j, . . . , j + p− 1. It is a standard result that p
is finite, since the Laplacian has compact inverse [13, section 6.5.1]. We separate the
terms in the sum (3.1) associated with this set, giving

(3.9) (E − Ej)2A(E) = Bj + (E − Ej)2Aj(E) ,

where the fixed rank-p operator associated with the Ej-eigenspace is

(3.10) Bj :=
p∑

m=1

ψj+m−1〈ψj+m−1, ·〉
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and the remainder is a scalar multiple of the bounded operator

(3.11) Aj(E) :=
∑

m∈N,m/∈[j,j+p−1]

ψm〈ψm, ·〉
(E − Em)2

.

With respect to the parameter E, the latter operator has second-order poles at all
eigenvalues not equal to Ej . It is also analytic near Ej (the proof is in Appendix A).

Lemma 3.2. Aj(E) is a bounded regular (analytic) operator in the sense of Rellich
[39, p. 55] for E in a neighborhood of Ej. That is, for each f ∈ L2(∂Ω), the element
Aj(E)f exists as a power series f0 + (E − Ej)f1 + (E − Ej)2f2 + · · · convergent in
L2(∂Ω) for E in a neighborhood of Ej.

Now define {μi(E)} to be the set of parameter-dependent eigenvalues of the op-
erator (E −Ej)2A(E). We wish to understand their behavior when E is close to Ej ,
since from them we can simply recover the desired λ(E) as defined in (2.4). We first
characterize the eigenvalues of Bj in terms of Q̃, the mode boundary inner product
matrix for the eigenspace.

Lemma 3.3. Bj has (counting multiplicity) precisely p nonzero eigenvalues ν1 ≥
ν2 ≥ · · · ≥ νp, which are identical to the set of eigenvalues (counting multiplicity)
of the matrix Q̃ defined by Theorem 2.2 and (2.9). Bj also has a zero eigenvalue of
infinite multiplicity.

Proof. Given β := (β1, . . . , βp)T , define φ =
∑p

m=1 βmφj+m−1, then by orthonor-
mality ‖φ‖Ω = |β|, the usual Euclidean norm in Cp. Thus φ is an L2(Ω)-normalized
eigenmode whenever |β| = 1. Its weighted normal derivative is ψ = 1

w∂nφ. Then,
using (2.9) and (2.13) we have

(3.12) inf
|β|=1

βHQ̃β = inf
|β|=1

p∑
m,n=1

βmβn〈ψj+m−1, ψj+n−1〉 = ‖ψ‖2
w,∂Ω ≥ c2w,ΩEj > 0.

Thus all eigenvalues of Q̃ are positive, and also the vectors {ψj+m−1}m=1,...,p are
linearly independent. From the definition (3.10) any eigenvector of Bj with nonzero
eigenvalue must lie in Span{ψj+m−1}m=1,...,p. Suppose

∑p
m=1 βmψj+m−1 is such an

eigenvector with eigenvalue ν. Using (2.9), this is equivalent to the statement

(3.13)
p∑

m,n=1

βmψnQ̃mn = ν

p∑
n=1

βnψn .

By linear independence, we equate coefficients of ψn, so (3.13) is equivalent to Q̃β =
νβ, and these two problems have the same set of nonzero eigenvalues. The infinite
multiplicity zero eigenvalue exists, since Bj has finite rank (degenerate kernel).

We would like to apply perturbation theory in the small parameter (E − Ej) to
(3.9). Unfortunately, its infinite multiplicity prevents the results of analytic perturba-
tion theory from being applied directly to the zero eigenvalue of Bj . We circumvent
this problem1 by appealing to the following classical property of the point spectrum
under a rank-1 perturbation (for convenience, we include a proof in this operator
setting in Appendix B).

Lemma 3.4 (Cauchy interlacing). Let S be a self-adjoint operator in a Hilbert
space, bounded from below, with eigenvalues σ1 ≤ σ2 ≤ · · · . Let ψ〈ψ, ·〉 define a

1The author is indebted to Percy Deift for this argument.
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E Ej−1 j+p

R Re E

Ej

(b)

E

1

2Im E

(a) iμ (Ε)

eigenvalues
pexactly

ν
ν

E =E    = ... =Ej j+1 j+p−1

Fig. 3.1. (a) Complex E plane showing disc around the current eigenvalue Ej used in the
proof of Lemma 3.2. The operator A(E) has second-order poles at each of the Ej. (b) Sketch of the
spectrum {μi(E)} of the operator (E − Ej)

2A(E) used to prove Theorem 2.2.

(nonnegative) rank-1 operator, and let the eigenvalues of S−ψ〈ψ, ·〉 be τ1 ≤ τ2 ≤ · · · .
Then τ1 ≤ σ1 ≤ τ2 ≤ σ2 ≤ τ3 ≤ · · · .

For real E �= Ej in the domain of analyticity of Aj(E), we proceed inductively
as follows. If p = 1, this lemma applies with S = −(E − Ej)2Aj(E) and ψ = ψj .
The result is that at most one eigenvalue μ1(E) may exceed the largest eigenvalue of
(E−Ej)2Aj(E). For p > 1, we may apply the interlacing lemma p times and conclude
that at most p eigenvalues μ1, μ2, . . . exceed the largest eigenvalue of (E−Ej)2Aj(E).
The eigenvalues of Aj(E) are analytic by the theorem of Rellich [39, Theorem II.2.1],
which applies due to Lemma 3.2. Therefore, the eigenvalues of (E −Ej)2Aj(E) have
convergent power series beginning with (E−Ej)2 and hence vanish as E → Ej . This
leaves a set of at most p eigenvalues μi(E), which may have nonzero limits as E → Ej .
This behavior is illustrated in Figure 3.1b. So we have proved that there is, after all,
no complication introduced by the infinite multiplicity of the zero eigenvalue. Since
by (3.9), (E−Ej)2A(E) is also bounded analytic in a neighborhood of Ej , the Rellich
theorem tells us that members of the above-mentioned set μi(E) are analytic in a
neighborhood of Ej , so at E = Ej their limits must coincide with the set {νi}i=1,...,p

of nonzero eigenvalues of Bj . Thus we have proved that there are p eigenvalues of the
operator (E − Ej)2A(E) behaving as

(3.14) μi(E) = νi +O
(
(E − Ej)2

)
, i = 1, . . . , p.

Note that there is no first-order term in (E − Ej) because the perturbation term in
(3.9) has a power series beginning with (E − Ej)2.

Eigenvalues μi(E) and λi(E) are connected for E �= Ej via (2.4) and (3.9), so

(3.15) λi(E) =
(E − Ej)2

μi(E)
.

Combining this with (3.14) shows that there are precisely p inverse eigenvalues of
A(E) which vanish as E → Ej , proving the first part of Theorem 2.2:

(3.16) λi(E) =
1
νi

(E − Ej)2 +O
(
(E − Ej)4

)
, i = 1, . . . , p.

Finally, we now place a lower bound on the curvature coefficient of the asymp-
totically smallest eigenvalue λ1(E). Comparing the above to (2.10) and using Lemma
3.3 yields c(1)j = ν−1

1 = (sup|β|=1 βHQ̃β)−1. Noticing that βHQ̃β = ‖ψ‖2
w,∂Ω =∫

∂Ω
1
w |∂nφ|2ds, where φ and ψ are defined as in the proof of Lemma 3.3, completes

the proof.
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4. Implementation and performance of eigenvalue inclusion. Here we
discuss an efficient two-dimensional (d = 2) implementation of the MPS, then show
that, in practice, Theorem 1.1 gives useful eigenvalue inclusion bounds even for ε
much smaller than 1. As illustrated in Figure 1.1, these supercede the Moler–Payne
bounds.

4.1. Computation of minimum boundary error tm(E). At each given fre-
quency E, inserting the basis representation u =

∑N
n=1 αnξn converts the minimum

boundary error (1.5) into the Rayleigh quotient (here, α := (α1, . . . , αN )T and H

indicates conjugate transpose)

(4.1) tm(E) = min
u∈Span{ξn}

‖u‖w,∂Ω

‖u‖Ω
= min

α	=0

√
αHF (E)α
αHG(E)α

=
√
λ̂1(E) ,

where λ̂1(E) is the smallest generalized eigenvalue of the matrix pencil defined by

(4.2) Fα = λ̂Gα .

Note that here, and from now on, we use the weighted boundary norm (1.7) in place
of ‖u‖∂Ω. The matrix elements are (for m,n = 1, . . . , N)

(4.3) Fmn(E) :=
∫
∂Ω

w(s)ξm(s)ξn(s) ds , Gmn(E) := (ξm, ξn)Ω .

With a good choice of basis set (e.g., see section 4.2), λ̂1(E) is very close to its
minimum achievable value λ1(E).

We now discuss how we fill F and G efficiently, which is not trivial at high
frequency. Naively, we might expect that N2 separate boundary integrals are required
to fill F , where N is the basis size. As we discuss below (and in [2]) to achieve
reasonable approximations of eigenmodes, N must scale like

√
E at high frequency.

Each such integral must be approximated using a set of M quadrature points xi ∈ ∂Ω.
Since integrands oscillate on the wavelength scale, it turns out that M must also scale
like

√
E, so M is the same order as N . Thus O(N3) basis function evaluations would

be required to fill F . However, we can reduce this to O(N2) by writing F ≈ AHWA,
where the M × N rectangular matrix A has elements Ain(E) := ξn(xi) and W is a
diagonal matrix containing the products of w(xi) and the quadrature weights. The
dense matrix-matrix product remains O(N3), but now the prefactor is much smaller
(since basis functions are typically trigonometric or Bessels and may require 102 flops
or more per evaluation).

The naive cost of filling G is worse: each domain integral would require O(N2)
quadrature points to handle the oscillatory integrand; even using the factorization
above would bring this only down to O(N3) basis evaluations. However, we may
make use of the following identity [4, Lemma 3.1] (also see [3, Appendix H]). Let
−Δu = Eu and −Δv = Ev hold in any Lipschitz domain Ω ∈ R2, then

(4.4) (u, v)Ω =
1

2E

∫
∂Ω

(x ·n)(Euv−∇u ·∇v)+ (x ·∇u)(n ·∇v)+ (n ·∇u)(x ·∇v) ds

expresses the domain inner product as a sum of four boundary inner products. Sub-
stituting this into (4.3) using u = ξm and v = ξn, we see that G can be written as
a sum of four boundary integral matrices of similar form to F . By computing each
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of the four terms using a product of rectangular matrices as with F , we may, there-
fore, fill G using only O(N2) basis (and first-derivative) evaluations plus a few dense
matrix-matrix products which are O(N3) with a small prefactor.

Solving the generalized eigenvalue problem (4.2) has an interesting twist: it turns
out to become numerically singular, with F and G effectively acquiring a common
nullspace whenever N is chosen large enough to achieve high accuracy. This is due to
the fact that as N increases, there arise unit-norm linear combinations of basis func-
tions which have exponentially small values in the closure of Ω; this ill-conditioning of
the basis appears to be a general feature of MPS type methods [12, 5, 2]. As a conse-
quence, standard methods, such as Cholesky factorization of the (formally) positive-
definite matrix G [20, section 8.7] or QZ decomposition [20, section 7.7], do not
produce reliable eigenvalues of (4.2).2 However, by using the following regularization
method, we project out the numerical nullspace and accurately compute the remaining
“stable” (in the sense of [15]) eigenvalues. We diagonalize the Hermitian matrix G =
V DV H (where V is unitary), then define D̃ to be the diagonal matrix containing only
the subset of entries of D which exceed a cutoff εreg (typically 10−15) times D’s largest
entry. Defining Ṽ to contain as columns the corresponding subset of eigenvectors and

(4.5) F̃ := D̃−1/2Ṽ HFṼ D̃−1/2 ,

we diagonalize F̃ = UΛUH . The diagonal matrix Λ contains approximations to the
stable eigenvalues λ̂ of the pencil (4.2), with eigenvectors as the columns of Ṽ D̃−1/2U .

The above method was used by Vergini–Saraceno [46] and is similar to a more
general procedure of Fix–Heiberger [15], who show that the error introduced into the
stable eigenvalues is O(εreg). In practice, we find that the errors are bounded by
roughly 103εreg. We believe that this prefactor reflects the closeness of the nullspaces
of F and G; however, this method deserves a full analysis, which we will not attempt
here. We also find (by extrapolating in εreg) that the approximate λ̂1 overestimates
the true value. Note that Betcke’s recent GSVD method [7] includes a regularization
similar to the above and can give higher accuracy; we discuss this in comment 2 of
section 5. Finally, since only the lowest (or lowest few) eigenvalues are needed, one
might expect that an iterative method could improve upon the above O(N3) effort.

4.2. Testing the applicability of the main theorem. Theorem 1.1 is an
asymptotic result: given an ε > 0, it does not tell us in how large a (punctured)
neighborhood of each Ej the inequality (1.6) holds, only that some neighborhood
exists. We now show that, in practice, for a small choice of ε, the valid neighborhoods
around each Ej coalesce so that the theorem may be applied to essentially the whole
positive real axis, i.e., Σε = [a,∞) for some small a. Our three test domains are
defined and shown in Figure 1.2 and represent three classes of interest: (S) is smooth,
(T) is a triangle with one singular (5π/12) corner, and (H) is a “horseshoe” with C1

continuous boundary. Recall that a singular corner is a corner with angle not equal
to π/n for some n ∈ N [5]. (S) and (T) are strictly star-shaped, but (H) is not.

Before presenting results, we discuss implementation details. To compute tm(E),
we used the method of the previous section. For (S) and (H), we use as basis functions
ξn fundamental solutions with origins (source points) placed along an exterior curve
a distance of order one wavelength from Ω. Such bases are efficient in many domains
[14, 12] and show spectral convergence in analytic domains [2]. For (T), we use a
cylindrical wave expansion (generalized harmonic polynomials), in polar coordinates

2We implement these with the eig command of MATLAB version 2007b.
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Fig. 4.1. (a) Relative slope measure f(E) defined by (4.6), for the smooth domain (S) with
weight w = (x · n)−1, plotted at E = 5, 6, 7, . . . , 1000. (b) Logarithmic plot of f(E) − 1 (no point is
plotted if f(E) < 1). The value f(E)−1 is the smallest value of ε in Theorem 1.1 such that E ∈ Σε.

ξn(r, θ) = einθJn(
√
Er) for −N/2 ≤ n < N/2 and N even. This basis is convergent

in any bounded Ω with a finite number of corners [41, Corollary to Theorem I6.1]. It
is extremely fast to evaluate (at each r, all n values may be computed via a single
Miller’s downward recurrence [35, section 5.4]), and we found that it produced values
of tm(E) for E = Ej , j < 103, no larger than 10−3, adequate for our needs. (Note
that this could be improved upon by adding functions adapted to the singular corner
[10, 5].) In all three domains the scaling of basis size with wavenumber was linear: we
typically chose between 3 to 6 degrees of freedom per wavelength on the boundary.
Boundary quadrature was equispaced in angle for (S), and Clenshaw–Curtis [44] on
each side of (T) and each arc of (H). In all cases, the number of quadrature points M
was chosen to be large enough to make the results insensitive to M (as discussed in
[2]); generally, M was between N and 2N . For (S) and (T), Dirichlet eigenvalues Ej
were independently located with the scaling method [46, 3, 4] to an absolute error of
roughly 10−3; for (H), these were located by finding minima of tm(E). In all cases,
the first two terms of Weyl’s law for the asymptotics of eigenvalues [22] was used to
eliminate the possibility of missing eigenvalues.

Motivated by (1.6), given some constant CΩ, we will study the “relative slope
measure”

(4.6) f(E) :=
1

CΩtm(E)
min
j

|E − Ej |√
Ej

.

The interpretation is that f(E)− 1 gives a strict lower bound on ε such that E ∈ Σε.
A value of f close to 1 shows that the perturbative result Theorem 2.2 that we used
to prove Theorem 1.1 is accurately predicting the slopes in curves such as Figure 1.1.

We start with domain (S), and choose w = (x · n)−1, thus use CΩ =
√

2. In
Figure 4.1 we show f(E) computed at E = 5, 6, 7, . . . , 1000. Note that the lowest 242
Dirichlet eigenvalues Ej lie in the interval [5, 1000] and have no known correlation with
the integers (we have checked that random sampling of E gives the same behavior).
It is clear that f is almost always close to 1, in fact, the largest value is f(9) = 1.0335.
Panel (b) shows the overall tendency that f values approach 1 from above as E grows.
Occasionally, f values are significantly smaller than 1: this happens only when E is
very close to Ej for some j and limitations of the basis set prevent tm(E) from reaching
its theoretical minimum. Occasionally there is an anomalously large f value at higher
E: in all cases these spikes in f(E) occur for E very close to Ej for some j and are
due to the errors in the computed Ej . For instance, the largest such value shown is
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Fig. 4.2. (a,b) Same as Figure 4.1 except for the nonsmooth triangle domain (T) with weight
w = (x · n)−1, plotted at E = 15, 18, . . . , 6999. (c) Same as (a) except for horseshoe domain (H)
with weight w = 1, plotted at E = 20, 20.3, . . . , 599.9.

f(530) = 1.0198, where E is very close to Ej = 530.023. The same tendency persists
at higher frequencies: computing 285 samples of f(E) at E = 10007, 10014, . . . , 11995,
with N = 662, M = 1277, and using the 517 eigenvalues Ej lying in [10000, 12000],
we found that the largest value was f(10511) = 1.030. This again was traced to error
in the nearby eigenvalue Ej = 10510.768, and all exact f values are smaller than this.
Thus for domain (S), there is strong evidence that a small value such as ε = 0.05 is
sufficient for the theorem to hold for all parameter values E > 5.

For the triangle (T), we use the same weight and CΩ. We compute f(E) at 2329
values in the interval E = [15, 6999], which includes the lowest 625 Dirichlet eigen-
values. As Figure 4.2(a) and (b) show, the results are essentially identical to the
smooth domain: f values tend to decrease towards 1 with increasing E. The largest
value found was f(468) = 1.0840. Finally, for the horseshoe (H), which is not star-
shaped, we choose w = 1 and CΩ = 10/3 (see Remark 2.1). Figure 4.2(c) shows f(E)
computed at 1934 values in the interval E = [20, 600], which includes the lowest 137
Dirichlet eigenvalues. Other than the value f(113) = 1.065, f is always less than 1.
Periodicity in slope is evident, due to transverse mode cutoffs in the radial direction.

In conclusion, ε may be chosen much less than 1, thus its exact value is inconse-
quential for the number of significant digits which may be claimed using Theorem 1.1.

4.3. Application to accurate inclusion of high eigenvalues. Taking do-
main (S) as an example, we now show how, at high eigenvalue, the bounds achievable
via Theorem 1.1 improve upon those of Moler–Payne (1.4). For the constant in the
latter, one has C′

Ω = q
−1/2
1 , where q1 is the lowest eigenvalue of a Stekloff eigenprob-

lem for the domain [28, (2.11)]. In star-shaped domains q1 ≥ E
1/2
1 r/2R, where r

and R are, respectively, the minimum and maximum of x · n on ∂Ω [28, Table I].
For domain (S), this gives C′

Ω = 1.43. One could improve this by an O(1) factor by
solving the Stekloff problem, however, this would scarcely affect our conclusions.

In Figure 4.3, we show an approximate mode of domain (S) with approximate
eigenvalue E = 100005.2660, computed using N = 1666 and M = 3690. (Note that
this and the following trial eigenvalue were found via the scaling method, although
this is not relevant for our results.) Its boundary error t ≈ 1.8 × 10−7 enables the
following claims: via the Moler–Payne theorem, we have an inclusion interval for
some true eigenvalue Ej ∈ [100005.24, 100005.29], whereas via Theorem 1.1, we get
Ej ∈ [100005.2659, 100005.2661], i.e., a relative error of 10−9 and an improvement by
2.5 digits over Moler–Payne.

At higher frequency still E = 1000019.50, about 300 wavelengths across the
domain, we find an approximate mode with boundary error t ≈ 3 × 10−5, using
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1966 A. H. BARNETT

Fig. 4.3. High-lying approximate eigenmode of domain (S) with eigenvalue Ej lying in the
interval [100005.2659, 100005.2661] whose bounds were computed from Theorem 1.1 with ε = 0.
These bounds are 2.5 digits (320 times) better than the Moler–Payne Theorem 1.4. The intensity
|φj(x)|2 is shown on a greyscale of 0 (white) to 2 (black). The mode number is j ≈ 25823 (estimated
to within O(1) error using 2 terms of Weyl’s asymptotic expansion [22]). There are about 100
wavelengths across the domain.

N = M = 4372, which corresponds to only three degrees of freedom per wavelength
on the boundary. (To give the reader an idea of CPU time, computation of λ̂1 at a sin-
gle E value took 33 minutes.) By Moler–Payne, we have that there is some eigenvalue
Ej ∈ [999978, 1000061]; note that this bound is scarcely useful, since it is much wider
than the domain’s mean eigenvalue spacing of 3.8. From our theorem we get Ej ∈
[1000019.45, 1000019.54], a factor 103 improvement in accuracy without extra effort.

How high in E may one go? We note the following limitation. At E ≈ 106,
we found that the lowest eigenvalue λ̂1 was sensitive to εreg, hence we independently
verified the boundary error t by direct evaluation of u using the generalized eigen-
vector coefficients. This shows that we are starting to reach the useful limit of our
regularization method; see comment 2 of section 5 for a possible solution.

5. Conclusion and discussion. By analyzing the slopes of the MPS curves,
we have proved a new bound (Theorem 1.1) on Dirichlet eigenvalues Ej of smooth do-
mains in terms of the boundary L2 norm (1.5) of trial functions (Helmholtz solutions).
This bound has better scaling at high frequency than existing bounds, improving upon
them by a factor of O(

√
E), i.e., the wavenumber. Our main tool was analytic pertur-

bation theory of the frequency-dependent spectrum of the natural L2(∂Ω) operator
associated with (1.3) (or (2.5)); this gave us parabolic behavior at the bottom of the
spectrum but limited the theorem to a (possibly small) neighborhood of each Ej .
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w = ( x.n)−1

Fig. 5.1. Higher generalized eigenvalues of (4.2) (the lowest λ̂1(E) is shown as a thick line) in
domain (S), with weight function (a) constant w = 1, (b) special weight w = (x ·n)−1. Observe that
the slight mode-to-mode variations in slope and “avoided crossings” in (a) nearly vanish in (b).

We provided strong numerical evidence that, in fact, these neighborhoods are large;
thus we believe that, in practice, the theorem may be used with confidence for all
E ∈ [a,∞) for some a < E1, given a small choice of ε such as 10−1. This we checked
at thousands of E values for smooth, polygonal and C1 domains. We also presented
an efficient implementation of the MPS, which involves boundary evaluations alone,
and we demonstrated a 3-digit accuracy gain via our theorem at very high frequencies.

We end with several open questions and research directions of interest.
1. We suspect Theorem 1.1 could be extended to Lipschitz domains (either via

proving compactness of A(E) or by taking into account a possible essential
spectrum in section 3.2). Another natural next step is to seek corresponding
bounds on eigenfunction error ‖u− φj‖L2(Ω) (as in [33, 29]).

2. Since the boundary error norm tm(E) is the square-root of a generalized
eigenvalue, our method cannot access t values below roughly √

εreg, which
must exceed

√
εmach ≈ 10−8 in double-precision. Betcke’s GSVD method [7],

by working directly with A from section 4.1, avoids matrix squaring so is able
to reach t of order εmach, but requires estimation via interior points. It would
be valuable to seek an efficient way to construct a “square-root” of G using
the boundary alone, possibly via (4.4).

3. Still [42, Theorem 4] has applied the Kato–Temple inequality to the MPS,
effectively replacing t[u] in (1.4) by t[u]2, which is clearly advantageous at
small t. The disadvantage is that a PDE must be solved; however, its utility
should be compared to that of Theorem 1.1.

4. To understand why the quadratic approximation (2.10) predicts MPS eigen-
values so well, we need the 4th- and higher-order terms, via a perturbation
expansion. In a similar vein, the higher generalized eigenvalues, shown by
Figure 5.1, contain much tantalizing and potentially useful structure and so
should be analyzed. This might lead to bounds on multiple close eigenvalues,
as in recent work of Eisenstat [11].

5. Given a Lipschitz domain, how should an optimal value for Cw,Ω be computed
for Lemma 2.3?

6. We have shown that the MPS is a powerful tool for high-lying Dirichlet eigen-
values. However, locating eigenvalues one by one by minimizing tm(E) is cum-
bersome, needing many evaluations of this function, each of effort O(N3), per
eigenvalue found. The scaling method [46, 3, 4] for star-shaped domains is
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O(N) times more efficient but has no rigorous error analysis. We intend to
apply tools of this paper to the scaling method.

Appendix A. Proof of analyticity of Aj(E), Lemma 3.2. Each term in
(3.11) is analytic in the neighborhood of Ej , but we need to show that their infinite
sum is also analytic. Let R := 1

2 minm/∈[j,j+p−1] |Em − Ej | be the radius of a closed
disc in the complex E plane centered at Ej . Its radius is half the distance to the
nearest neighboring eigenvalue; see Figure 3.1(a). Then for each m /∈ [j, j+p−1] and
E with |E − Ej | ≤ R, we have |E − Em| ≥ 1

3 |R + Ej − Em|. Using this we have for
any f ∈ L2(∂Ω) and |E − Ej | ≤ R,

|〈f,Aj(E)f〉| =

∣∣∣∣∣∣
∑

m/∈[j,j+p−1]

|〈f, ψm〉|2
(E − Em)2

∣∣∣∣∣∣ ≤ 9
∑

m/∈[j,j+p−1]

|〈f, ψm〉|2
(R+ Ej − Em)2

= 9〈f,Aj(Ej +R)f〉 ≤ C‖f‖2
L2(∂Ω) ,(A.1)

since Ej +R /∈ σD, thus A is bounded and from (3.9), Aj differs from A by a bounded
operator. For each integer N ≥ j + p, we may define the sum

(A.2) A
(N)
j (E) :=

⎛
⎝ j−1∑
m=1

+
N∑

m=j+p

⎞
⎠ ψm〈ψm, ·〉

(E − Em)2

so that Aj(E) = limN→∞A
(N)
j (E). For each f ∈ L2(∂Ω) and each N , since this sum

is finite and its poles lie a distance at least 2R from Ej , the Cauchy integral formula
holds inside the disc:

(A.3)
〈
f,A

(N)
j (E)f

〉
=

1
2πi

∮
|z−Ej|=R

〈
f,A

(N)
j (z)f

〉
z − E

dz for |E − Ej | < R .

Taking the limit N → ∞, we may apply the dominated convergence theorem to the
right-hand side since the integrand is bounded by |〈f,Aj(z)f〉|/(R − |E − Ej |) and
(A.1) holds. This gives, for each f ∈ L2(∂Ω),

(A.4) 〈f,Aj(E)f〉 =
1

2πi

∮
|z−Ej|=R

〈f,Aj(z)f〉
z − E

dz for |E − Ej | < R ,

which proves that 〈f,Aj(E)f〉 is an analytic function of E with a radius of convergence
about Ej of at least R. Using the polarization identity in complex Hilbert space
(A.5)
4〈f,Ajg〉 = 〈f+g,Aj(f+g)〉−〈f−g,Aj(f−g)〉−i〈f+ig, Aj(f+ig)〉+i〈f−ig, Aj(f−ig)〉,

we see that 〈f,Aj(E)g〉 is analytic for all f, g ∈ L2(∂Ω) (weak analyticity). By [37,
Theorem VI.4, p. 189], this implies Aj(E)f is analytic for each f ∈ L2(∂Ω), which is
the condition required to prove the lemma.

Appendix B. Proof of Cauchy interlacing, Lemma 3.4.
The nth eigenvalue of S has the max-min characterization [36, Theorem XIII.1]

(B.1) σn = sup
U1,...,Un−1

inf
V⊥Span{U1,...,Un−1}

‖V ‖=1

〈V, SV 〉 ,D
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where the sup is over all possible sets of n − 1 vectors in the Hilbert space. The
analogous formula for τn is found by replacing S with R := S − ψ〈ψ, ·〉. Since for all
V ∈ L2(∂Ω) it holds that 〈V,RV 〉 = 〈V, SV 〉 − |〈V, ψ〉|2 ≤ 〈V, SV 〉, the same holds
for the max-min values, hence for each n = 1, 2, . . . , we have τn ≤ σn. In addition,
using (B.1) we have the inequalities

σn ≤ sup
U1,...,Un−1

inf
V⊥Span{U1,...,Un−1,ψ}

‖V ‖=1

〈V, SV 〉

= sup
U1,...,Un−1

inf
V⊥Span{U1,...,Un−1,ψ}

‖V ‖=1

〈V,RV 〉

≤ sup
U1,...,Un

inf
V⊥Span{U1,...,Un}

‖V ‖=1

〈V,RV 〉 = τn+1 .

The middle equality follows since V is orthogonal to ψ; the inequalities are standard
linear subspace arguments. Thus the interlacing τn ≤ σn ≤ τn+1 is proved.
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[31] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 3,

Dunod, Paris, 1970. Travaux et Recherches Mathématiques, 20.
[32] W. C. H. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge

University Press, London, 2000.
[33] C. B. Moler and L. E. Payne, Bounds for eigenvalues and eigenvectors of symmetric opera-

tors, SIAM J. Numer. Anal., 5 (1968), pp. 64–70.
[34] A. Nachman, J. Sylvester, and G. Uhlmann, An n-dimensional Borg-Levinson theorem,

Comm. Math. Phys., 115 (1988), pp. 595–605.
[35] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in C, 2nd ed., Cambridge University Press, Cambridge, 2002.
[36] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators,

Academic Press, New York, 1978.
[37] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis,

2nd ed., Academic Press, New York, 1980.
[38] F. Rellich, Darstellung der Eigenwerte von Δu + λu = 0 durch ein Randintegral, Math. Z.,

46 (1940), pp. 635–636.
[39] F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach, New York,

1969.
[40] N. Saito, Data analysis and representation on a general domain using eigenfunctions of Lapla-

cian, Appl. Comput. Harmon. Anal., 25 (2008), pp. 68–97.
[41] N. L. Schryer, Constructive approximation of solutions to linear elliptic boundary value prob-

lems, SIAM J. Numer. Anal., 9 (1972), pp. 546–572.
[42] G. Still, Computable bounds for eigenvalues and eigenfunctions of elliptic differential opera-

tors, Numer. Math., 54 (1988), pp. 201–223.
[43] L. N. Trefethen and T. Betcke, Computed eigenmodes of planar regions, Contemp. Math.,

412 (2006), pp. 297–314.
[44] L. N. Trefethen, Spectral Methods in MATLAB, Vol. 10, Software, Environments, and Tools,

SIAM, Philadelphia, PA, 2000.
[45] H. E. Tureci, H. G. L. Schwefel, P. Jacquod, and A. D. Stone, Modes of wave-chaotic

dielectric resonators, Prog. Optics, 47 (2005), pp. 75–137.
[46] E. Vergini and M. Saraceno, Calculation by scaling of highly excited states of billiards, Phys.

Rev. E, 52 (1995), pp. 2204–2207.
[47] S. Zelditch, Quantum ergodicity and mixing of eigenfunctions, in Elsevier Encyclopedia of

Mathematical Physics, Vol. 1, Academic Press/Elsevier Science, Oxford, 2006, pp. 183–196,
arXiv:math-ph/0503026.

D
ow

nl
oa

de
d 

05
/0

8/
18

 to
 1

29
.1

70
.1

17
.1

86
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Perturbative Analysis of the Method of Particular Solutions for Improved Inclusion of High-Lying Dirichlet Eigenvalues
	Dartmouth Digital Commons Citation

	Perturbative Analysis of the Method of Particular Solutions for Improved Inclusion of High-Lying Dirichlet Eigenvalues | SIAM Journal on Numerical Analysis | Vol. 47, No. 3 | Society for Industrial and Applied Mathematics

