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Abstract

We investigate a class of models for dark matter and/or negative-pressure, dynamical dark energy consisting of
“spintessence”, a complex scalar fieldφ spinning in aU(1)-symmetric potentialV (φ) = V (|φ|). As the Universe expands,
the field spirals slowly toward the origin. The internal angular momentum plays an important role in the cosmic evolution
and fluctuation dynamics. We outline the constraints on a cosmic spintessence field, describing the properties of the potential
necessary to sustain a viable dark energy model, making connections with quintessence and self-interacting and fuzzy cold dark
matter. Possible implications for the coincidence problem, baryogenesis, and cosmological birefringence, and generalizations
of spintessence to models with higher global symmetry and models in which the symmetry is not exact are also discussed.
 2002 Published by Elsevier Science B.V.

PACS: 98.80.Cq; 95.35.+d; 98.65.Dx; 98.70.Vc

1. Introduction

Supernova evidence [1] for an accelerating Uni-
verse has been dramatically bolstered by the discrep-
ancy between the total cosmological densityΩtot � 1
indicated by the cosmic microwave background
(CMB) [2] and dynamical measurements of the non-
relativistic-matter densityΩm � 0.3. New and inde-
pendent evidence is provided by higher peaks in the
CMB power spectrum that also suggestΩm � 0.3 [2],
again leaving 70% of the density of the Universe unac-
counted for. As momentous as these results are for cos-
mology, they may be even more remarkable from the

E-mail address: robert.r.caldwell@dartmouth.edu
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vantage point of fundamental physics since they indi-
cate the existence of some form of negative-pressure
“dark energy”.

For this dark energy to accelerate the expansion,
its equation-of-state parameterw ≡ p/ρ must satisfy
w < −1/3, wherep andρ are the dark-energy pres-
sure and energy density, respectively. The simplest
guess for this dark energy is the spatially uniform,
time-independent cosmological constant for which
w = −1. Another possibility is quintessence [3], a cos-
mic scalar field [4] that is displaced from the minimum
of its potential. Negative pressure is achieved when the
kinetic energy of the rolling field is less than the po-
tential energy, so that−1 � w <−1/3 is possible.

This negative-pressure dark energy should not be
confused with the cold dark matter that has long been
known to be required to support flat galactic rota-
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tion curves and to provide the majority of the matter
in galaxy clusters. Leading candidates for this dark
matter include collisionless particles such as super-
symmetric particles [5] and the axion [6]. However,
numerical simulations of structure formation with
collisionless dark matter seem to indicate more galac-
tic substructure than is observed [7], a discrepancy that
has led some to postulate that the dark matter might
possess a self-interaction [8] or consist of extremely
low-mass particles (“fuzzy” dark matter) [9].

In this Letter, we consider a new class of models
for dark matter and dark energy. We investigate the
behavior of a complex scalar field that is spinning in a
circular orbit in aU(1)-symmetric potentialV (φ) =
V (|φ|), a monotonically increasing function of|φ|.
As the Universe expands, the radius of this orbit,
and thus the potential- and kinetic-energy densities
decrease. It is the internal-angular-momentum barrier,
not expansion friction, that prevents the field from
falling directly to the minimum of the potential.
Unlike quintessence models, spintessence allows|φ|
to change slowly even if the time derivative ofφ
is large. As well, the growth of perturbations in
spintessence differs from those in quintessence or cold
dark matter.

Below, we discuss the evolution of spintessence
and the growth of perturbations, working through
some simple illustrative examples. We conclude with
some remarks about the viability of spintessence
models with global symmetries other thanU(1) or
in the presence of broken global symmetry, and we
mention possible links to quintessence, baryogenesis,
and other areas of particle physics and early-Universe
cosmology.

2. Spintessence

We can decompose a complex scalar field into two
real fields:φ(x, t) = φ1(x, t) + iφ2(x, t) ≡ R(x, t)×
exp[iΘ(x, t)]. First suppose thatφ is homogeneous,
lives in Minkowski space, and has aU(1)-symmetric
potential-energy densityV = V (|φ|) that is a monoton-
ically increasing function of|φ|. Then its equations of
motion are equivalent to those of a classical particle
moving in a two-dimensional central potentialV (R).
The simplest non-trivial solutions are those in which
the field moves in a circular orbit,φ(t) = Reiωt , with

R andω constants that satisfyRω2 = V ′(R) so the
centripetal acceleration balances the radial force.

In an expanding Universe, conservation of the
global-charge current meanṡΘ =Q/a3R2 whereQ is
a constant associated with the total charge, anda(t) is
the cosmological scale factor. With regards to the field
dynamics, the charge introduces a secular driving-term
into the equation-of-motion forR,

(1)R̈ + 3HṘ + V ′(R)= Q2

a6R3 ,

whereH = ȧ/a. If the spin frequency is high,̇Θ 
 H ,
we may expect the rotation to dominate, supporting
the field against radial infall. In this rapidly-spinning
approximation, the time evolution ofR is then deter-
mined fromV ′(R) = Q2a−6R−3. From this we find
that the potential must satisfy(d/dR)[R3V ′(R)] > 0
if it is to be steep enough to confine the field to a circu-
lar orbit as the Universe expands. For instance, with a
quadratic potential,R ∝ a−3/2 in a matter-dominated
epoch so that the radial kinetic energy rapidly decays
Ṙ2 ∝ a−6, leaving energy density and pressure

ρ = 1

2

(
Ṙ2 +R2Θ̇2) + V,

(2)p = 1

2

(
Ṙ2 +R2Θ̇2) − V,

with R2Θ̇2 = 2V ∝ a−3, and an equation-of-state
w = 0. For such rapidly spinning fields, the equation-
of-state parameter is

(3)w(R) ≈ RV ′(R)− 2V (R)

RV ′(R)+ 2V (R)
.

However, solutions with an arbitrary constant equation-
of-state, for which each term inρ,p above decays as
∝ a−3(1+w), are not possible owing to the conserved
charge.

3. Growth of perturbations

We now consider the growth of perturbations in
spintessence. While the perturbations in a spinning
field have been considered (for different purposes) in
Refs. [10,11] for the special case of quadratic and
quartic potentials, here we generalize their analysis to
arbitrary potentials. We start with the spacetime line
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element

(4)ds2 = (1+ 2Φ)dt2 − (1− 2Φ)a2(t) dx2,

whereΦ(x, t) is the Newtonian potential arising from
fluctuations in the spinning field,R(t) + δR(x, t)
and Θ(t) + δΘ(x, t), and surrounding matter. The
evolution equations for the perturbations,δR andδΘ,
obtained from the linearized Einstein equations are

¨δR + 3
ȧ

a
˙δR +

(
V ′′ − Θ̇2 − 1

a2∇2
)
δR

(5)= 4ṘΦ̇ − 2ΦV ′ + 2RΘ̇ ˙δΘ,

¨δΘ + 3
ȧ

a
˙δΘ − 1

a2∇2δΘ

(6)= 4Θ̇Φ̇ − 2
˙δR
R

Θ̇ + 2
Ṙ

R

(
δR

R
Θ̇ − ˙δΘ

)
,

∇2Φ − 3HΦ̇ − 3H 2Φ

(7)

= 4πG
[
Ṙ ˙δR + V ′δR +R2Θ̇ ˙δΘ
+RΘ̇2δR −Φ

(
Ṙ2 +R2Θ̇2)].

The final line gives the constraint equation to the
gravitational potential. The stability of a real scalar
field depends on the effective mass,V ′′. But here we
see that the stability criteria for the spinning field must
differ since not only is the effective mass different,
V ′′ − Θ̇2, but also theδR and δΘ equations are
coupled. Before proceeding to a full-blown relativistic
calculation, we can infer essential information about
the behavior of perturbations for the rapidly spinning
field with a Newtonian analysis set in Minkowski
spacetime. There, perturbations to the gravitational
potential of the form

(8)Φ(x, t) =Φ1e
Ωt+i�k·�x

will be generated through the Poisson equation (7)
by small amplitude perturbations to the amplitude and
phase of the scalar field,

(9)
δR(x, t) =R1e

Ωt+i�k·�x, δΘ(x, t) =Θ1e
Ωt+i�k·�x.

Leaving out terms that are small fork2 � Gρ, corre-
sponding to wavelengths inside the horizon, we ob-
tain the wavenumberkJ at whichΩ2 = 0. Fork < kJ ,
wherekJ is the Jeans wavenumber

(10)

k2
J = 1

2

[
V ′

R
− V ′′ +

√(
V ′
R

− V ′′
)2

+ 64πGV ′2
]

then Ω2 > 0, and the perturbations grow exponen-
tially. For k > kJ thenΩ2 < 0, and the perturbations
oscillate in time. Note that these instabilities will be
effective in an expanding Universe as long as we con-
sider the following: (1) The physical wavelength as-
sociated with a given comoving wavelength changes
with time. (2) Perturbations on scales larger than the
horizon will be stabilized. (3) The time dependence of
unstable perturbations inside the horizon will be power
law rather than exponential.

If the spintessence field is to supply a dark mat-
ter component, then the existence of a gravitational
instability, whether exponential or power-law, is wel-
come. As a dark energy candidate, however, we re-
quire stability against the growth of perturbations on
scales at least as large as clusters. As a complex field
with a conserved charge,Q, the spintessence field
is susceptible to the formation ofQ-balls—a non-
topological soliton [12]. In order to avoid the forma-
tion of Q-balls from the spinning field, however, it is
necessary that the field does not have an instability
that drivesR → Rqb, the non-zero value of the field
amplitude at which the quantityV (R)/R2 has a min-
imum. Checking with (3), we note whenw = 0, and
providedV ′′(Rqb) > 0, the conditions are ripe for the
formation ofQ-balls. This means that a rapidly spin-
ning field cannot safely pass through aw = 0 phase.
This consideration places a further constraint on the
behavior of a viable spintessence model of dark en-
ergy. Note that if the spinning field does not entirely
decay intoQ-balls, there is the interesting possibility
that both dark energy and dark matter might consist of
the spinning field, which would provide an interesting
possibility for solving the coincidence problem.

We now consider specific examples of spintessence
potentials.

4. Power-law

A rapidly spinning field in a potentialV (R) =
V0(R/R0)

n has a constant equation-of-state parameter
w = (n − 2)/(n + 2). The quadraticU(1) potential
leads to a matter density that decays as cold dark
matter, as the dynamics ofφ1 and φ2 are those for
two decoupled harmonic oscillators. SinceV ′/R −
V ′′ = 0 we find k2

J � 4
√
πGV ′, and the instability

is driven by gravity. Perturbations on smaller scales
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are stabilized by scalar-field dynamics. Such a field
is unstable to the formation ofQ-balls, which may
provide for an interesting dark matter component.
On the other hand, potentials withn > 2 are stable
againstQ-ball formation. The Jeans scale isk2

J �
16πGRV ′/(n − 2), providedGR2 � 1. However,
w > 0 so that these are less interesting from the dark
matter/dark energy perspective.

A dark energy component with an < 1 power-law
potential is plagued by an instability which leads to
the formation ofQ-balls. Since a dominant component
necessarily hasV ∼ (mplH)2, we find the Jeans
wavenumber iskJ ∼Hmpl/R. AlthoughR might start
out with an amplitude comparable to the Planck mass,
sinceR necessarily decays as the Universe expands,
it is inevitable that the wavenumber will eventually
be well within the Hubble horizon. The behavior
dkJ /dR < 0 asR decays disqualifies a wide class of
potentials as dark energy.

5. Self-interacting and fuzzy cold dark matter

SupposeV (R) = 1
2m

2R2 + λ
4R

4. If λ > 0, then
w = 1/3 at early times whenλR4/4 
 m2R2/2,
but approachesw = 0 at later times. Forλ < 0
we consider only values of the scalar fieldR <

m/
√−λ, and in this case, there is a negative pressure

that approachesw = 0 at late times as the quartic
term becomes small. If the quartic term is small,
then this describes a gas of cold massive particles
that self-interact via a repulsive (λ > 0) or attractive
(λ < 0) potential. After collapse and virialization
of halos, either type of interaction would give rise
to a plausible self-interacting dark-matter candidate.
The homogeneous and perturbation analysis above
can be used to determine how the mean density and
perturbations to this type of dark matter would evolve
with time.

Now consider the fuzzy cold dark matter of Ref. [9].
They suppose that halo dark matter consists of a
quadratic potential of massm. They adopt a valuem∼
10−22 eV to smooth galactic halos and since this dark
matter must contribute a densityρ ∼ (10−3 eV)4 ∼
m2R2, they must haveR ∼ 1016 eV. This gives rise to
a wavenumberkJ ∼ 10−28 eV. More generally, how-
ever, there should be a non-zero quartic term in the

potential, but if the dark matter is to be cold, the quar-
tic term must be small compared with the quadratic
term. This leads to a constraint|λ| � 10−76. As small
as this is, the condition of validity[(V ′/R)− V ′′]2 �
64πGV ′2 for their estimate of the Jeans scale is even
more restrictive; it leads to|λ| � 10−87. Thus, if
10−87 � |λ| � 10−76, then the Jeans wavenumber is
10−28 � kJ � 10−22 eV for λ < 0, or 10−34 � kJ �
10−28 eV forλ > 0. Thus, the inclusion of a small non-
zero quartic interactions can spread the Jeans length
over 11 orders of magnitude.

6. Dark energy

A spintessence field must meet a number of con-
straints in order to be considered as a viable dark
energy candidate. All together, these conditions may
be summarized as: 0< RV ′ < V to ensure the ex-
istence of circular orbits (lower bound) and equa-
tion of statew < −1/3 (upper bound);−1

3R
2V ′′ <

RV ′ < R2V ′′ requiring steep orbits (lower) and sta-
ble perturbations in the absence of gravity (upper).
In the presence of gravity, of course, we usekJ �
H with Eq. (10) in order to assess stability. Re-
call thatV (R) need not satisfy these conditions for
all R, just in the rangeRmax > R > Rmin, the val-
ues at which field evolution begins at early times, and
the value today. Potentials which satisfy the above
criteria includeV (R) = M2R2(A + (R/B)−r )e−1/R2

with 1 < r < 2, or V (R) = (M2R2 − A)e−BR2 + A

both with A,B > 0, as suggested by Kasuya [13].
Along the same lines, a potential of the formV =
M4 exp[m2/(R2

max − R2)] can give rise to a sta-
ble, dark energy component. In the regimeR <

min(Rmax,Rqb) whereRqb = −m/2+√
R2

max+m2/4,
the field can evolve for a long time withw < 0, be-
fore it is necessary to patch on a different functional
form for V at some small value of the field ampli-
tude, sayRmin, to ensureV (0)= 0. A stability analysis
reveals that the quantityV ′/R − V ′′ is negative, un-
like the power-law potential, which immediately tells
us from Eq. (10) that gravity will play the dominant
role in determining the Jeans wavenumber. Plugging in
our potential, we findkJ ∼ M2

√
R/(mplRmax). Since

a dominant component hasV ∼ (mplH)2, then the
Jeans wavenumber reduces tokJ ∼ H

√
mplR/Rmax



L.A. Boyle et al. / Physics Letters B 545 (2002) 17–22 21

which is substantially outside the Hubble horizon for
R � Rmax. The perturbations are stable. Lastly, there
is a novel twist to a dark energy scenario based on the
above potentials. When the field passes toR < Rmin,
the accelerated expansion ends. If the potential in this
regime possesses a minimum inV/R2, then the dark
energy field will ultimately decay intoQ-balls.

7. Discussion

We have considered a class of models for dark
energy and dark matter that consists of a complex
scalar field spinning in aU(1) potential. Specification
of V (R) determines the scaling of the equation-of-
state and density as a function of red shift, and it also
determines how density perturbations grow. These
solutions are valid if the spin frequency iṡΘ 
 H . If
the spin period is small,̇Θ � H , then the field will act
like quintessence and will undergo friction-dominated
slow rolling toward the minimum of the potential.
Thus, depending on the potential, a model may begin
as quintessence and wind up like spintessence, or vice
versa. Fluctuations in spintessence will differ from
a real scalar field, nevertheless, due to the greater
number of excitable degrees of freedom. Spintessence
could conceivably be used to drive inflation [11],
although it is difficult to see how the large global
charge density, or alternatively high spin frequency,
could be maintained during the manye-folds of
expansion required for inflation. Perhaps a greater
difficulty is how to set up a homogeneous, spinning
field at the end of inflation.

If the dark energy is due to spintessence, then the
Universe is in an unstable state that breaksT and
C invariance. This suggests interesting connections
between the dark-energy problem and other ques-
tions in cosmology and particle physics. For exam-
ple, if the global charge of the spintessence field
is identified with baryon number, then spintessence
may be the vacuum that hides the antibaryons in a
baryon-symmetric baryogenesis model [14]. Alterna-
tively, spintessence could conceivably drive baryoge-
nesis in an Affleck–Dine or spontaneous-baryogenesis
model [15]. If the field is coupled to the pseudoscalar
of electromagnetism, it could give rise toP - and
T -violating rotations of polarization of cosmological
sources [16].

Spintessence should work for higher global sym-
metries (e.g.,O(N) with N > 2), as orbits are still
confined to a surface in the internal space in such mod-
els. Although heuristic arguments suggest that quan-
tum gravity should violate global symmetries at least
to some degree [17], the basic idea of spintessence
should still work. As a simple example, suppose that
V (φ1, φ2) = c1φ

n
1 + c2φ

n
2 with c1 �= c2. Although or-

bits in this potential are not circular and there is no
conserved internal angular momentum, the virial the-
orem guarantees that when averaged over an orbit,
the potential-energy densityT and kinetic-energy den-
sity V will still be related byT = (n/2)V . Thus, as
long as the dynamical time for the potential is small
compared with the expansion time, the equation-of-
state should still behave like that for spintessence.

In summary, spintessence is the simplest exam-
ple of a cosmological field with a non-trivial inter-
nal symmetry group. We have outlined the constraints
which must be satisfied to obtain a viable cosmologi-
cal model, making connections with quintessence and
varieties of fuzzy- and self-interacting dark matter. We
have shown that adding the internal symmetry gives
rise to a rich collection of new phenomena: differ-
ent clustering properties, an instability toQ-balls, and
a new way to drive the acceleration, via the angular
momentum barrier as opposed to Hubble friction. If
Q-balls or similar objects are an inevitable by-product
of a cosmological field with a non-trivial internal sym-
metry group, then it would seem that the viability
of spintessence relies on the compatibility ofQ-balls
with cosmology.

Note added

During the preparation of this Letter, several other
papers [13,18–21] appeared that also consider a spin-
ning complex scalar field with respect to dark matter
and dark energy.
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