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Absence of Open Strings in a Lattice-Free Simulation of Cosmic String Formation

Julian Borrill
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755*
(Received 10 November 1995; revised manuscript received 22 February 1996)

Lattice-based string formation algorithms can, at least in principle, be reduced to the study of the
statistics of the corresponding aperiodic random walk. Since in three or more dimensions such walks
are transient, this approach necessarily generates a population of open strings. To investigate whether
open strings are an artifact of the lattice we develop an alternative lattice-free simulation of string
formation. Replacing the lattice with a graph generated by a minimal dynamical model of a first-order
phase transition we obtain results consistent with the hypothesis that the energy density in string is due
to a scale-invariant Brownian distribution of closed loops alone. [S0031-9007(96)00118-4]

PACS numbers: 98.80.Cq, 11.27.+d

Cosmic strings are the longest standing candidate for
a source of primordial cosmological perturbations arising
from particle physics beyond the standard model. First
described by Kibble almost two decades ago [1] they
have yet to be demonstrated to be incompatible with
any of the subsequent cosmological observations, from
the anisotropies in the cosmic microwave background to
the distribution of luminous matter on the largest scales.
The field theoretic requirements of the basic model are
simple: the spontaneous breaking of some symmetry
of our theory yielding a degenerate vacuum manifold
whose first homotopy group is nontrivial. The single free
parameter in the theory is then the energy scale of the,
typically grand unified theory, symmetry breaking. The
complexity of the ensuing cosmology (in part responsible
for the model’s longevity) lies in the need to track the
nonlinear evolution of the string-bearing field through the
symmetry breaking phase transition and on to the epoch
of any observable consequences.

The starting point for any analysis of string cosmology
is in the statistics of the strings’ initial distribution.
Unless terminating at a pair of monopoles or spatial
singularities, all strings must be either closed loops or
open (and hence infinite). Here we are interested in the
initial distribution of strings both between and within each
of these populations. We can trivially define a fraction
0 # fc # 1 of the string energy density to be in closed
loops, leavingfo ­ 1 2 fc in open string; this is the
quantity of most interest in this Letter. Further, it is easy
to show, under the assumption that the string loops are
Brownian and scale invariant, that the number density of
loops with lengths in the rangefl, l 1 dld must go as [2]

dn ~ l25y2 dl . (1)

Numerical simulations of string formation assign
phases taken from theS1 manifold of vacuum states to
the vertices of some three-dimensional lattice. (Note
that by “lattice” we mean a regular array of connected

vertices, while the oxymoron “random lattice” is termed
a graph.) Along the lattice edges the field is taken to
follow the shortest path on the manifold—the so-called
geodesic rule. Each face of the lattice is then inspected
to determine whether, in traversing its boundary, the field
covers the entire vacuum manifold. If so then a zero of
the field is necessarily present somewhere within the face,
and a string segment is located passing though it. Such
a segment connects the centers of the adjacent lattice
volume elements associated with the face, and taken
together all the segments join to form a population of
complete connected strings. If the lattice is periodic then
all the strings are closed loops; otherwise strings which
intersect the lattice boundaries simply terminate there.

The original simulation [2] took phases at random from
the minimal three-point discretization ofS1 on a cubic
lattice, resolving the ambiguity when four string segments
met in a single cube by chance. Later refinements to this
approach included the use of a tetrahedral lattice [3–5],
a continuous vacuum manifold [3,6], and a dynamical
allocation of the field phases [7,8]. However, the key
common feature of all these simulations is that the field
is set at the vertices of a lattice, and hence that the
strings form along the edges of its dual. In every case
such simulations do indeed generate strings which are
Brownian and scale invariant, with the majority of the
string energy density being in open strings. The exact
fraction depends on the details of the simulation, and in
particular on the geometry of the lattice and its dual. For
example, the simple cubic lattice with its simple cubic
dual givesfo , 0.8 [2], while the tetrahedral lattice with
tetrakaidekahedral dual givesfo , 0.63 [4,5].

Since such simulations construct strings as sequences
of vertices on a lattice, it is not surprising that they can
also be represented as random walks. Since there is
an excluded volume around the path of a single string,
giving a directional bias away from its origin, we might
naively expect the ensemble to have the statistics of
a self-avoiding random walk. However, if the strings
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are dense the associated ensemble of excluded volumes
removes this bias, and the statistics turn out to be those
of a Brownian random walk instead. Moreover, it is
known that in three or more dimensions an aperiodic
random walk on a lattice cannot be recurrent [9], and so
has a nonzero probability of not returning to the origin,
giving a nonzero fraction of open string. Exploiting
this representation, analyses of the statistics of Brownian
random walks on the appropriate lattices give similar
results, withfo $ 0.6 [3,10].

Since open strings appear to be an inevitable conse-
quence of the lattice-based formation algorithms, it is de-
sirable to consider formulations which do not involve a
lattice, and use them to test the alternative hypothesis that
the string energy density may be accounted for solely in
terms of a scale-invariant Brownian population of closed
loops. The results of one such algorithm are presented in
this Letter.

Algorithm.—The use of a lattice in string formation
simulations allows us to know in advance where the
strings may be found, and hence to bypass the dynam-
ics of the phase transition. Without a lattice we must
therefore include the dynamics explicitly, and for compu-
tational tractability we adopt the simplest possible dynam-
ical model of a first-order phase transition. Spherically
symmetric bubbles of the true vacuum (with phases cho-
sen at random from the minimally discretized manifold)
are nucleated at random space-time events in a periodic
false vacuum background. They are then taken to expand
uniformly at the speed of light for the duration of the simu-
lation, colliding with one another, trapping regions of false
vacuum, and generating strings.

The exterior (i.e., outside of any other bubble, and
so in the false vacuum) intersection of the surfaces of
any three bubbles of differing phases generates a string
segment with open ends. As the bubbles continue to
expand this segment traces the locus of intersection of
their surfaces, lengthening, and, except in the case where
the three bubbles are the same size, bending (cf. lattice-
based simulations where the bubbles are always the same
size, and the string segments are necessarily straight).
As the bubbles continue to expand they eventually meet
a fourth bubble. One and only one of the collisions
between this bubble and each pair of the original triplet
also generates a string segment. The final four-bubble
intersection event then sees the joining of one of the ends
of each segment to form a new extended segment. The
exterior intersection of the surfaces of any four bubbles
can therefore also be viewed as the meeting of four three-
bubble intersection loci, and hence of the joining of either
zero or two string segments.

The key to this algorithm is the location of the points of
intersection of all bubble triplets and quadruplets. How-
ever, since the bubbles are spheres of known centers and
predictably time-dependent radii these points of intersec-
tion can be determined analytically. Having calculated

the location of all the three- and four-bubble intersections
in the simulation space-time we can then construct the
corresponding string distribution and determine its statis-
tics. Taking the four-bubble intersection points as nodes,
and their four constituent three-bubble intersection loci as
connections, it is clear that we are generating a graph with
fourfold connectivity. Note also that the precise location
of the strings on this graph is determined by the particu-
lar phase realization, enabling us to use the same graph to
generate many different string sets.

This algorithm is the natural extension of that employed
in two dimensions to assess the effect of bubble wall
speed on vortex formation [11]. Its three-dimensional
realization, including the formation of both strings and
monopoles, is described in full detail elsewhere [12].

Implementation.—This algorithm is clearly much more
complex (and computationally intensive) than its lattice-
based counterparts; indeed the limiting factor in its
application will time and again prove to be its CPU time.

In a finite simulation we can never hope to represent the
longest strings—for a string bearing field with correlation
length j in a box of side L any string longer than
OsL2yjd is likely to cross the boundary. If we leave
the boundaries open, we can estimate the open string
energy density by seeing whether the number density of
boundary crossings reaches a nonzero asymptote as the
box size increases [2]. If instead we impose periodic
boundaries, forcing all strings to be loops, we can use
the theoretical scarcity of long closed loops to identify
any excess as representing the open strings. We adopt
the second approach for a number of reasons. Since the
hypothesis under consideration is that the string energy
density is due to loops alone, we are looking for exactly
the excess that might occur in a periodic simulation.
Moreover, the open boundary approach requires runs on
a wide range of box sizes to test for an asymptotic limit,
and hence falls foul of our CPU-time constraints. Finally,
the requirement that all strings be closed provides a useful
check that the phase transition has completed and that the
bubbles have indeed filled the entire simulation volume
by the end of the run, as well as an overall test of the
robustness of the code.

Since we wish to calculate many-bubble intersection
points, periodicity is implemented by incorporating 26
copies of the simulation volume to surround it. For a
simulation of box sizeL and durationT we then consider
only those bubbles withinT of the central volume, and
only those intersections that occur inside it. We therefore
have to balance the wish to maximize the ratioLyT so as
to minimize the periodic copies, and the increased number
of bubbles necessary to fill a larger volume in a shorter
time. Again the final constraint is CPU time. Note that
the simulation size and time are dimensionless parameters
and that the physical scale of the system is set by the
bubble nucleation rate, and hence by varying the number
of bubbles nucleated.
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We determine the graphs associated with five simula-
tions each starting with 5000 bubbles in a periodic box of
size53 with a simulation run time of 1 in units of the box
length, each graph requiring approximately 250 h of CPU
time on a twin-processor Sun SPARC 10. We then gener-
ate the associated string populations from 1000 different
random phase realizations in each case, giving someNs ,
300 000 strings. Figure 1 shows the normalized number
densityNsld of all these strings binned by length against
the lengthl.

We can immediately see that there are three phases
present: (i) A low-end tail population of loops withl , lo,
with lo , e0.5 here. Clearly the loop distribution cannot
follow Eq. (1) down to arbitrary short lengths, since this
would generate an infinite energy density. This population
has never been explicitly identified before, since lattice-
based simulations automatically impose a low-end cutoff
of the order of a few lattice spacings; it is worth noting that
in this simulation the range of loop lengths covers more
than 6 orders of magnitude. (ii) A population of scale-
invariant Brownian loops with number density falling as
l25y2. (iii) A high-end tail population of loops with
l1 , l , lmax, with l1 , e3.5 here (note thate3.5 , 52,
as expected). The truncation of the longest strings (both
long finite closed loops and infinite open strings) by the
periodic boundaries generates an excess of strings longer
thanl1, so that in this region the loop number density falls
more slowly, asl2a with a , 25y2.

The final feature to note is that since we have a finite
total number of loopsNs in our simulation there is a
minimum measurable nonzero normalized bin number
density of1yNs, clearly identifiable as the extreme high-
end plateau in Fig. 1. As the string number density
approaches this the relative error in the measurements can

FIG. 1. A log-log plot of the normalized number densityNsld
of strings binned by length against their lengthl. The solid
line is the simulation data, the dashed line is the best fit to the
Brownian regimeNsld ­ 0.67l22.5, and the dotted line is the
best fit to the periodicity-distorted regimeNsld ­ 0.082l21.9.

be seen to increase dramatically. These extreme high-
end points then correspond to those bins which happen to
contain one or more strings, despite having a theoretical
dnsld , 1yNs.

This is in many ways a familiar picture, quantitatively
giving the predicted behavior of the midrange loops and
at least qualitatively the deviations at either extreme. The
first indication of significant differences comes with the
value of a. Analytic estimates for random walks on a
periodic cubic lattice givea ­ 1 [10], whereas we find
a , 1.9. The fact that our long loop distribution falls
off much faster than a random walk model would predict
indicates that the amount of long string is much less than
in such models.

The periodicity of our simulation forces any open string
back into the box, where it would appear in the high-
end tail. We can now estimate its energy density as
the difference between the observed energy density in all
strings longer thanl1, Eobssl $ l1d, and the theoretical
energy density in loops longer thanl1 alone,

Eth
l sl $ l1d ­ k

Z `

l1

l23y2dl

­ 2 kl
21y2
1 . (2)

To determine the normalizationk we can use the con-
vergence of the observed and theoretical loop distributions
in the regionlo # l # l1, giving

k ­
Eobsslo # l # l1d

2sl21y2
o 2 l

21y2
1 d

. (3)

The remarkable result when we do so for each of the
five runs is that

fo ­
Eobssl $ l1d 2 Eth

l sl $ l1d
Eobssl $ 0d

­ 0.0062 (4)

(with a variance of 0.0050) compared to the0.66 0.8 we
might expect. We can account forall the energy density
in the strings as being due to a single population of scale-
invariant Brownian loops.

In conclusion, we have used a minimal dynamical
model of a first-order phase transition to generate an
initial string distribution whose statistics are significantly
different from the standard lore. We find that the loops
short enough to be unaffected by the box size are scale
invariant and Brownian (except at the very shortest
lengths) as before, but that now the energy density in
the longer loops can also be accounted for simply by
this distribution continued out to infinity. The absence
of an energy excess in the long loops means that we find
no need to include a second population of open strings.
Moreover, we can readily see why all lattice-based work
necessarily generates open strings, whether or not they
should be present, while graph-based work need not.
Intriguingly, however, recent lattice simulations show that
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it is also possible to achieve a very significant reduction
in the fraction of open strings either by increasing the
variance of the sizes of the initial phase domains [13]
or by decreasing the index of the power spectrum of the
string-bearing field [14,15].

Our simulations are certainly constrained by their CPU-
time demands. The range of the central, scale-invariant
Brownian loop, distribution is narrower than we might
like. However, this is an extremely difficult problem
to address; the number of bubbles required to fill the
simulation increases with the volumeL3, and the number
of four nodes to calculate then increases asN4. Since
the runs presented here are already taking around 250
h, even an order of magnitude increase inL2 would be
prohibitively expensive.

We can expect the consequences of our results for
string cosmologies to be profound. Simulations of string
evolution with all the open string removed suggest that
such distributions may reach a different scaling solution
from the usual one [16]. Furthermore, current models of
string-induced density perturbations focus on the wakes
of long strings, and if we remove the open string
such models will require a much higher string number
density to have sufficient large loops to generate the
required perturbations. However, this number density is
independently bounded from above by the millisecond
pulsar limits on gravitational wave production in the
decay of small loops. Whether cosmic string scenarios
can be made to fit these new constraints remains an open
question.
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