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Absence of Open Strings in a Lattice-Free Simulation of Cosmic String Formation

Julian Borrill
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshir& 03755
(Received 10 November 1995; revised manuscript received 22 February 1996

Lattice-based string formation algorithms can, at least in principle, be reduced to the study of the
statistics of the corresponding aperiodic random walk. Since in three or more dimensions such walks
are transient, this approach necessarily generates a population of open strings. To investigate whether
open strings are an artifact of the lattice we develop an alternative lattice-free simulation of string
formation. Replacing the lattice with a graph generated by a minimal dynamical model of a first-order
phase transition we obtain results consistent with the hypothesis that the energy density in string is due
to a scale-invariant Brownian distribution of closed loops alone. [S0031-9007(96)00118-4]

PACS numbers: 98.80.Cq, 11.27.+d

Cosmic strings are the longest standing candidate fovertices, while the oxymoron “random lattice” is termed
a source of primordial cosmological perturbations arisinga graph.) Along the lattice edges the field is taken to
from particle physics beyond the standard model. Firsfollow the shortest path on the manifold—the so-called
described by Kibble almost two decades ago [1] theygeodesic rule. Each face of the lattice is then inspected
have yet to be demonstrated to be incompatible witlto determine whether, in traversing its boundary, the field
any of the subsequent cosmological observations, fromovers the entire vacuum manifold. If so then a zero of
the anisotropies in the cosmic microwave background tahe field is necessarily present somewhere within the face,
the distribution of luminous matter on the largest scalesand a string segment is located passing though it. Such
The field theoretic requirements of the basic model ar@a segment connects the centers of the adjacent lattice
simple: the spontaneous breaking of some symmetryolume elements associated with the face, and taken
of our theory yielding a degenerate vacuum manifoldtogether all the segments join to form a population of
whose first homotopy group is nontrivial. The single freecomplete connected strings. If the lattice is periodic then
parameter in the theory is then the energy scale of theall the strings are closed loops; otherwise strings which
typically grand unified theory, symmetry breaking. Theintersect the lattice boundaries simply terminate there.
complexity of the ensuing cosmology (in part responsible The original simulation [2] took phases at random from
for the model's longevity) lies in the need to track thethe minimal three-point discretization ¢f, on a cubic
nonlinear evolution of the string-bearing field through thelattice, resolving the ambiguity when four string segments
symmetry breaking phase transition and on to the epoctnet in a single cube by chance. Later refinements to this
of any observable consequences. approach included the use of a tetrahedral lattice [3—5],
The starting point for any analysis of string cosmologya continuous vacuum manifold [3,6], and a dynamical
is in the statistics of the strings’ initial distribution. allocation of the field phases [7,8]. However, the key
Unless terminating at a pair of monopoles or spatiacommon feature of all these simulations is that the field
singularities, all strings must be either closed loops oiis set at the vertices of a lattice, and hence that the
open (and hence infinite). Here we are interested in thetrings form along the edges of its dual. In every case
initial distribution of strings both between and within eachsuch simulations do indeed generate strings which are
of these populations. We can trivially define a fractionBrownian and scale invariant, with the majority of the
0 = f. = 1 of the string energy density to be in closed string energy density being in open strings. The exact
loops, leavingf, = 1 — f. in open string; this is the fraction depends on the details of the simulation, and in
guantity of most interest in this Letter. Further, it is easyparticular on the geometry of the lattice and its dual. For
to show, under the assumption that the string loops arexample, the simple cubic lattice with its simple cubic
Brownian and scale invariant, that the number density oflual givesf, ~ 0.8 [2], while the tetrahedral lattice with
loops with lengths in the randé, [ + 81) must go as [2] tetrakaidekahedral dual givgs ~ 0.63 [4,5].
Since such simulations construct strings as sequences
dn o 1792 81, (1)  of vertices on a lattice, it is not surprising that they can
also be represented as random walks. Since there is
Numerical simulations of string formation assign an excluded volume around the path of a single string,
phases taken from th& manifold of vacuum states to giving a directional bias away from its origin, we might
the vertices of some three-dimensional lattice. (Notenaively expect the ensemble to have the statistics of
that by “lattice” we mean a regular array of connecteda self-avoiding random walk. However, if the strings

0031-900796/76(18)/3255(4)$10.00 © 1996 The American Physical Society 3255



VOLUME 76, NUMBER 18 PHYSICAL REVIEW LETTERS 29 ARIL 1996

are dense the associated ensemble of excluded volum#e location of all the three- and four-bubble intersections
removes this bias, and the statistics turn out to be thos@ the simulation space-time we can then construct the
of a Brownian random walk instead. Moreover, it is corresponding string distribution and determine its statis-
known that in three or more dimensions an aperiodidics. Taking the four-bubble intersection points as nodes,
random walk on a lattice cannot be recurrent [9], and s@nd their four constituent three-bubble intersection loci as
has a nonzero probability of not returning to the origin,connections, it is clear that we are generating a graph with
giving a nonzero fraction of open string. Exploiting fourfold connectivity. Note also that the precise location
this representation, analyses of the statistics of Brownianf the strings on this graph is determined by the particu-
random walks on the appropriate lattices give similarar phase realization, enabling us to use the same graph to
results, withf, = 0.6 [3,10]. generate many different string sets.

Since open strings appear to be an inevitable conse- This algorithm is the natural extension of that employed
guence of the lattice-based formation algorithms, it is dein two dimensions to assess the effect of bubble wall
sirable to consider formulations which do not involve aspeed on vortex formation [11]. Its three-dimensional
lattice, and use them to test the alternative hypothesis thatalization, including the formation of both strings and
the string energy density may be accounted for solely itmonopoles, is described in full detail elsewhere [12].
terms of a scale-invariant Brownian population of closed Implementatior—This algorithm is clearly much more
loops. The results of one such algorithm are presented ioomplex (and computationally intensive) than its lattice-
this Letter. based counterparts; indeed the limiting factor in its

Algorithm—The use of a lattice in string formation application will time and again prove to be its CPU time.
simulations allows us to know in advance where the In afinite simulation we can never hope to represent the
strings may be found, and hence to bypass the dynantengest strings—for a string bearing field with correlation
ics of the phase transition. Without a lattice we mustlength ¢ in a box of sideL any string longer than
therefore include the dynamics explicitly, and for compu-O(L?/¢) is likely to cross the boundary. If we leave
tational tractability we adopt the simplest possible dynamthe boundaries open, we can estimate the open string
ical model of a first-order phase transition. Sphericallyenergy density by seeing whether the number density of
symmetric bubbles of the true vacuum (with phases choboundary crossings reaches a nonzero asymptote as the
sen at random from the minimally discretized manifold)box size increases [2]. If instead we impose periodic
are nucleated at random space-time events in a periodmundaries, forcing all strings to be loops, we can use
false vacuum background. They are then taken to expanitie theoretical scarcity of long closed loops to identify
uniformly at the speed of light for the duration of the simu-any excess as representing the open strings. We adopt
lation, colliding with one another, trapping regions of falsethe second approach for a number of reasons. Since the
vacuum, and generating strings. hypothesis under consideration is that the string energy

The exterior (i.e., outside of any other bubble, anddensity is due to loops alone, we are looking for exactly
so in the false vacuum) intersection of the surfaces ofhe excess that might occur in a periodic simulation.
any three bubbles of differing phases generates a stringloreover, the open boundary approach requires runs on
segment with open ends. As the bubbles continue ta wide range of box sizes to test for an asymptotic limit,
expand this segment traces the locus of intersection and hence falls foul of our CPU-time constraints. Finally,
their surfaces, lengthening, and, except in the case whethe requirement that all strings be closed provides a useful
the three bubbles are the same size, bending (cf. latticeheck that the phase transition has completed and that the
based simulations where the bubbles are always the sarhebbles have indeed filled the entire simulation volume
size, and the string segments are necessarily straight)y the end of the run, as well as an overall test of the
As the bubbles continue to expand they eventually meetobustness of the code.

a fourth bubble. One and only one of the collisions Since we wish to calculate many-bubble intersection
between this bubble and each pair of the original triplefpoints, periodicity is implemented by incorporating 26
also generates a string segment. The final four-bubbleopies of the simulation volume to surround it. For a
intersection event then sees the joining of one of the endsimulation of box sizd. and duratior?” we then consider

of each segment to form a new extended segment. Thenly those bubbles withif of the central volume, and
exterior intersection of the surfaces of any four bubblesnly those intersections that occur inside it. We therefore
can therefore also be viewed as the meeting of four thrediave to balance the wish to maximize the rdtiI" so as
bubble intersection loci, and hence of the joining of eitherto minimize the periodic copies, and the increased number
zero or two string segments. of bubbles necessary to fill a larger volume in a shorter

The key to this algorithm is the location of the points of time. Again the final constraint is CPU time. Note that
intersection of all bubble triplets and quadruplets. How-the simulation size and time are dimensionless parameters
ever, since the bubbles are spheres of known centers aadid that the physical scale of the system is set by the
predictably time-dependent radii these points of intersecbubble nucleation rate, and hence by varying the number
tion can be determined analytically. Having calculatedof bubbles nucleated.
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We determine the graphs associated with five simulabe seen to increase dramatically. These extreme high-
tions each starting with 5000 bubbles in a periodic box ofend points then correspond to those bins which happen to
size5? with a simulation run time of 1 in units of the box contain one or more strings, despite having a theoretical
length, each graph requiring approximately 250 h of CPUsn(l) < 1/N;.
time on a twin-processor Sun SPARC 10. We then gener- This is in many ways a familiar picture, quantitatively
ate the associated string populations from 1000 differengiving the predicted behavior of the midrange loops and
random phase realizations in each case, giving s§me  at least qualitatively the deviations at either extreme. The
300000 strings. Figure 1 shows the normalized numbeffirst indication of significant differences comes with the
densityN(/) of all these strings binned by length againstvalue of «. Analytic estimates for random walks on a
the lengthi. periodic cubic lattice givex = 1 [10], whereas we find

We can immediately see that there are three phases ~ 1.9. The fact that our long loop distribution falls
present: (i) A low-end tail population of loops with< /,,  off much faster than a random walk model would predict
with I, ~ €% here. Clearly the loop distribution cannot indicates that the amount of long string is much less than
follow Eqg. (1) down to arbitrary short lengths, since thisin such models.
would generate an infinite energy density. This population The periodicity of our simulation forces any open string
has never been explicitly identified before, since latticeback into the box, where it would appear in the high-
based simulations automatically impose a low-end cutofénd tail. We can now estimate its energy density as
of the order of a few lattice spacings; it is worth noting thatthe difference between the observed energy density in all
in this simulation the range of loop lengths covers morestrings longer thari;, E°*(I = I;), and the theoretical
than 6 orders of magnitude. (ii) A population of scale-energy density in loops longer thanalone,
invariant Brownian loops with number density falling as

[75/2. (iii) A high-end tail population of loops with EMI = 1)) = kf 173241
I} <1< lpax, With I} ~ ¢33 here (note thae®> ~ 52, I
as expected). The truncation of the longest strings (both ) klfl/z. )

long finite closed loops and infinite open strings) by the ) o
periodic boundaries generates an excess of strings longer T0 determine the normalization we can use the con-
than!;, so that in this region the loop number density fallsvergence of the observed and theoretical loop distributions

more slowly, agd~* with « < —5/2. in the regionl, = | = [y, giving
The final feature to note is that since we have a finite obs(] — ] <
; . . . E®>(, =1=1)
total number of loopsV, in our simulation there is a k= =y =N 3
minimum measurable nonzero normalized bin number 2(lo -0

density of1/Ny, clearly identifiable as the extreme high-
end plateau in Fig. 1. As the string number density, The remarkable result when we do so for each of the

approaches this the relative error in the measurements ch{e runs is that
f oo B =1) - BN =10)
1, 1, Eobs(l = 0)
0 QUL

= 0.0062 (4)

i (with a variance of 0.0050) compared to 166-0.8 we
1 might expect. We can account fall the energy density
in the strings as being due to a single population of scale-
invariant Brownian loops.
i In conclusion, we have used a minimal dynamical
. model of a first-order phase transition to generate an
1 initial string distribution whose statistics are significantly
different from the standard lore. We find that the loops
short enough to be unaffected by the box size are scale
i invariant and Brownian (except at the very shortest
q lengths) as before, but that now the energy density in
the longer loops can also be accounted for simply by
this distribution continued out to infinity. The absence
In(1) of an energy excess in the long loops means that we find
_ no need to include a second population of open strings.
FIG. 1. A log-log plot of the normalized number densNy!) - \oreover, we can readily see why all lattice-based work
of strings binned by length against their length The solid . .
line is the simulation data, the dashed line is the best fit to th@ecessarlly generates open strings, whether or not they
Brownian regimeN(/) = 0.671"23, and the dotted line is the Should be present, while graph-based work need not.
best fit to the periodicity-distorted reginié(l) = 0.0821 . Intriguingly, however, recent lattice simulations show that
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it is also possible to achieve a very significant reductiorEd Copeland, Pedro Ferreira, Mark Hindmarsh, Tom
in the fraction of open strings either by increasing theKibble, James Robinson, Paul Shellard, Karl Strobl, Alex
variance of the sizes of the initial phase domains [13)Vilenkin, and Andrew Yates for useful discussions.
or by decreasing the index of the power spectrum of the
string-bearing field [14,15].
Our simulations are certainly constrained by their CPU-
time demands. The range of the central, scale-invariant
Brownian loop, distribution is narrower than we might
like. However, this is an extremely difficult problem *Present address.
to address; the number of bubbles required to fill the [1] T.W.B. Kibble, J. Phys. A9, 1387 (1976).
simulation increases with the volunig, and the number [2] T. Vachaspati and A. Vilenkin, Phys. Rev. B0, 2036

of four nodes to calculate then increasesNds Since (1984). .
the runs presented here are already taking around 25@3] R.J. Scherrer and J.A. Frieman, Phys. Rev3®) 3556
h, even an order of magnitude increaseLih would be (1986).

prohibitively expensive [4] R.M. Bradley, P.N. Strenski, and J.-M. Debierre, Phys.

We can expect the consequences of our results for Rev. A45, 8513 (1992).
p q [5] M. Hindmarsh and K. Strobl, Nucl. PhysB437, 471

string cosmologies to be profound. Simulations of string 1995).
evolution with all the open string removed suggest that (g] R. | eese and T. Prokopec, Phys. Rev4®) 3749 (1991).
such distributions may reach a different scaling solution [7] H. Hodges, Phys. Rev. B9, 3557 (1989).
from the usual one [16]. Furthermore, current models of [8] P. Shellard (private communication).
string-induced density perturbations focus on the wakes[9] F. Spitzer,Principles of Random WalD. Van Nostrand,
of long strings, and if we remove the open string New York, 1964).
such models will require a much higher string numberl10] D. Austin, E.J. Copeland, and R. Rivers, Phys. Reu®
density to have sufficient large loops to generate the 4089 (1994). . , o
required perturbations. However, this number density i¢11] J. Borrill, T.W. B. Kibble, T. Vachaspati, and A. Vilenkin,
independently bounded from above by the millisecon Phys. Rev. 62, 1934 (1995).

o N . ; 12] J. Borrill (to be published).
pulsar limits on gravitational wave produgtlon o th.e£13] A. Yates and T.W.B. Kibble, Imperial College Report
decay of small loops. Whether cosmic string scenario

' \ _ No. IMPERIAL/TP/94-95/49.
can be made to fit these new constraints remains an OP§{Y] Alex Vilenkin (private communication).

question. [15] J. Robinson and A. Yates, Imperial College Report No.
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