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Lower and Upper Bounds on Internal-Wave Frequencies in Stratified Rotating Fluids

Benoit Cushman-Roisin
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000

(Received 25 July 1996)

According to classical theories, the frequencies of internal-gravity waves in stratified rotating fluids
must lie between the Brunt-Väisälä frequency (a measure of the vertical density stratification) and the
Coriolis frequency (equal to twice the rotation rate about the vertical axis). It is shown here that, in
the case of the Earth’s rotation where the pole-to-pole axis of rotation is almost everywhere not parallel
to the local vertical, the range of realizable frequencies is broader. New formulas are derived for the
lower and upper bounds of the frequencies. [S0031-9007(96)01859-5]

PACS numbers: 47.32.Ff, 92.10.Ei

The classical theory of internal-gravity waves in a
stably stratified fluid [1–3] yields a dispersion relation
that constrains the wave frequency not to exceed the so-
called Brunt-Väisälä frequency, a direct measure of the
fluid’s density stratification supporting the waves. Ap-
plication of this theory to geophysical fluids such as the
atmosphere or the ocean requires modification to incorpo-
rate the effect of the Earth’s rotation. Traditionally, the
insertion of the Coriolis acceleration is limited to one new
term in each of the horizontal-momentum equations [3–
5], and the dispersion relation is augmented by a term
depending on the so-called Coriolis frequency, equal to
twice the projection of the rotation vector onto the verti-
cal direction. An elementary analysis of this dispersion
relation yields that the wave frequency is now constrained
to lie between the Brunt-Väisälä frequency and the Corio-
lis frequency. Since in most geophysical fluids the former
is larger than the latter, the Brunt-Väisälä frequency acts
as an upper bound, and the Coriolis frequency as a lower
bound. Almost everywhere on the Earth, however, the
pole-to-pole rotation axis is not parallel to the local ver-
tical, and the Coriolis acceleration is not limited to the
horizontal plane. This casts doubt on the traditional con-
clusion regarding the range of internal-wave frequencies
in geophysical fluids. The purpose of this Letter is to re-
formulate the theory of internal-gravity waves in the pres-
ence of the full, three-dimensional Coriolis acceleration
and thereby to derive new bounds on the range of realiz-
able frequencies.

Departing from the traditional theory of internal-gravity
waves only by retaining the full, three-dimensional Cori-
olis acceleration, we state the linearized equations gov-
erning the three-dimensional flow associated with a small
perturbation to a basic state of motionless and hydrostatic
density stratification [3],
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where the variables areu, y, and w, the velocity com-
ponents along thex (eastward),y (northward), andz (up-
ward) Cartesian directions,p, the pressure anomaly (equal
to the total pressure minus the hydrostatic pressure of the
basic state), andb, the buoyancy anomaly (equal to minus
the gravitational accelerationg times the relative density
anomaly caused by the motion). The coefficients are the
two Coriolis frequencies, defined as

f  2V sinw, fp  2V cosw , (2)

where V is the rotation rate of the Earth (nearly2py
24 hr) andw is the local latitude, a reference densityr0,
and the square of the Brunt-Väisälä frequency defined by

N2  2
g
r0

drszd
dz

, N . 0 , (3)

wherer0 1 rszd is the density profile of the basic state.
Assuming a limited range of latitudes and a uniform
vertical stratification, we may take all coefficients as
constant and seek wave solutions of the form expfislx 1

my 1 nz 2 vtdg. Some algebra yields the following
dispersion relation between the frequencyv and the wave
number componentsl, m, andn:

v2 
N2sl2 1 m2d 1 s fn 1 fpmd2

l2 1 m2 1 n2 . (4)

Note that the groupingfn 1 fpm represents the pro-
jection of the wave number onto the rotation axis.

To determine the range of realizable frequencies, we
seek the extremal values ofv as l, m, andn assume any
real value between2` and1`. While this may be done
immediately, it is instructive to consider first the particular
cases of existing theories.

The simplest of all cases is the one with no rotation
s f  fp  0d and under the assumption of hydrostatic
balance [no≠wy≠t term on the left-hand side of (1c)].
The dispersion relation is then reduced to

v2  N2 l2 1 m2

n2
, (5)
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and the frequencyv can take any value between zero and
infinity. Reinstating the vertical acceleration≠wy≠t in the
vertical-momentum equation (1c), we obtain the corrected
dispersion relation [1–3],

v2  N2 l2 1 m2

l2 1 m2 1 n2
, (6)

which now limits v2 to N2 and thus places an upper
bound on the frequency. [Note that higher frequencies
than N are permitted if the waves are evanescent in the
vertical sn2 , 0d, but such waves are no longer called
internal-gravity waves.]

If we further retain the Coriolis terms due to the
vertical component of the rotation vectors f fi 0, fp 
0d, we obtain the traditional dispersion relation for internal
gravity waves in a stratified rotating fluid [4,5],

v2  N2 l2 1 m2

l2 1 m2 1 n2 1 f2 n2

l2 1 m2 1 n2 . (7)

In this dispersion relation,v2 appears as a weighted
average betweenN2 and f2, and must therefore lie
between these values. Since in geophysical flows, the
Coriolis frequency is typically much smaller than the
Brunt-Väisälä frequency,f acts as a lower bound (in
magnitude sincef may be negative), andN as an upper
bound. In the hydrostatic limit [neglect of≠wy≠t in (1c)
again], the denominatorsl2 1 m2 1 n2 reduce ton2, and
the dispersion relation becomes [6]

v2  N2 l2 1 m2

n2
1 f2, (8)

in which N no longer acts as an upper bound butf
still acts as a lower bound. In sum, the traditional
theory concludes that the ambient rotation sets a lower
bound on the frequency of internal gravity waves (namely,
the Coriolis frequency, equal to twice the projection of
the rotation vector onto the local vertical), and that the
vertical acceleration sets an upper bound (namely, the
Brunt-Väisälä frequency).

According to the generalized dispersion relation, (4),
the traditional theory leading to (7) is inconsistent. Either
the horizontal wave numbersl2 1 m2d1y2 is negligible
compared to the vertical wave numbern, or it is not.
If it is, then (7) is not better than (8), and inclusion of
the vertical acceleration is unnecessary. If it is not, then
fpm is most likely [7] comparable tofn in the numerator
of (4), and not only the vertical acceleration but also
the Coriolis acceleration must be retained in the vertical-
momentum equation.

We now seek the extremal values that the frequencyv

can achieve under the most general dispersion relation (4).
First putting to zero the derivative ofv with respect tol,
we obtain

either l  0 or s fn 1 fpmd2  N2n2. (9)

In the second case,v2 becomesN2, and we conclude
that N is a stationary value ofv. As we will shortly see,
this will be neither a maximum nor a minimum. In the

first casesl  0d, v2 reduces to

v2 
N2m2 1 s fn 1 fpmd2

m2 1 n2


sN2 1 f2

p dl2 1 2ffpl 1 f2

l2 1 1
, (10)

where l  myn is the single wave number variable on
which v depends. Setting to zero the derivative ofv

with respect tol yields

ffpl2 2 sN2 2 f2 1 f2
p dl 2 ffp  0 , (11)

which always admits two real roots,
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The corresponding stationary values ofv2 are
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for which it is relatively easy to show that the following
rankings hold:

0 , v2
2 , N2 , v2

1 and 0 , v2
2 , f2 , v2

1 .

(14)
In conclusion, the minimum value ofv is the positive
root of v2

2, and its maximum value is the positive root
of v2

1, while N is an intermediate stationary value. It
also follows thatvmin is lower than the minimum of
jfj and N , and thatvmax is higher than the maximum
of jfj and N. In other words, the range of realizable
frequencies is broader than the interval betweenjfj and
N on both low and high frequency sides. ForN ¿ V,
asymptotic expressions arev2

min ø f2s1 2 f2
p yN2d and

v2
max ø N2 1 f2

p . This may explain why internal-wave
spectra derived from oceanographic data do indeed show
a range of frequencies slightly broader than the interval
from jfj andN [8], especially at low latitudes.
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