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Lower and Upper Bounds on Internal-Wave Frequencies in Stratified Rotating Fluids

Benoit Cushman-Roisin

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000
(Received 25 July 1996

According to classical theories, the frequencies of internal-gravity waves in stratified rotating fluids
must lie between the Brunt-Vaisala frequency (a measure of the vertical density stratification) and the
Coriolis frequency (equal to twice the rotation rate about the vertical axis). It is shown here that, in
the case of the Earth’s rotation where the pole-to-pole axis of rotation is almost everywhere not parallel
to the local vertical, the range of realizable frequencies is broader. New formulas are derived for the
lower and upper bounds of the frequencies. [S0031-9007(96)01859-5]

PACS numbers: 47.32.Ff, 92.10.Ei

The classical theory of internal-gravity waves in a Ou  dv 9w _ 0, (1d)
stably stratified fluid [1—3] yields a dispersion relation ox dy 9z
that constrains the wave frequency not to exceed the so- ab )
called Brunt-Vaisala frequency, a direct measure of the s +Nw =0, (le)

fluid’s density stratification supporting the waves. Ap-\yhere the variables are, v, andw, the velocity com-
plication of this theory to geophysical fluids such as theponents along the (eastward)y (northward), and: (up-
atmosphere or the ocean requires _modificati(_)n to incorquard) Cartesian directiong, the pressure anomaly (equal
rate the effect of the Earth’s rotation. Traditionally, the 5 the total pressure minus the hydrostatic pressure of the
insertion of the Coriolis r_;lcceleranon is limited to one NeéWpasic state), andl, the buoyancy anomaly (equal to minus
term in each of the horizontal-momentum equations [34he gravitational acceleration times the relative density

5], and the dispersion relation is augmented by a t€rmynomaly caused by the motion). The coefficients are the
depending on the so-called Coriolis frequency, equal tQ,o Coriolis frequencies, defined as
twice the projection of the rotation vector onto the verti- £ — 20 sin ’ 7 20 cos @

= @, * = @,

cal direction. An elementary analysis of this dispersion
relation yields that the wave frequency is now constrainedvhere () is the rotation rate of the Earth (neardyr/
to lie between the Brunt-Vaisala frequency and the Corio24 hr) and¢ is the local latitude, a reference density,
lis frequency. Since in most geophysical fluids the formeand the square of the Brunt-Véisala frequency defined by
is larger than the latter, the Brunt-Vaisala frequency acts g dp(2)
as an upper bound, and the Coriolis frequency as a lower h % Cdz
bound. Almost everywhere on the Earth, however, the . . . .
pole-to-pole rotation axis is not parallel to the local ver-Wherepo + p(z) is the density profile of the basic state.
tical, and the Coriolis acceleration is not limited to theASS.umlng a.I.lmlt_ed range of latitudes and g.umform
horizontal plane. This casts doubt on the traditional Conyertlcal stratification, we may take all coefficients as
clusion regarding the range of internal-wave frequenciegonStant and seek wave solutions O.f the form|éxp +
in geophysical fluids. The purpose of this Letter is to re-™ + 72 ~ wr)]. Some algebra yields the following
formulate the theory of internal-gravity waves in the pres-OIISIoerSIOn relation between th_e frequencyand the wave
ence of the full, three-dimensional Coriolis accelerationnumber components m, andn:
and thereby to derive new bounds on the range of realiz- o? = N2(I> + m*) + (fn + fam)? @)
able frequencies. 12 + m?2 + n? '

Departing from the traditional theory of internal-gravity  Note that the groupingn + f.m represents the pro-
waves only by retaining the full, three-dimensional Cori-jection of the wave number onto the rotation axis.
olis acceleration, we state the linearized equations gov- To determine the range of realizable frequencies, we
erning the three-dimensional flow associated with a smakeek the extremal values af as/, m, andn assume any
perturbation to a basic state of motionless and hydrostatieal value betweer-~ and+. While this may be done

N? = , N>0, (3)

density stratification [3], immediately, it is instructive to consider first the particular

du 1 ap cases of existing theories.

ot fo+ fow == po dx (1a) The simplest of all cases is the one with no rotation
. 1 ap (f = f+« = 0) and under the assumption of hydrostatic
— 4 fu=—-— —"—, (1b)  balance [nodw/ar term on the left-hand side of (1c)].
at po Ay The dispersion relation is then reduced to
ow 1 dp 1?2 + m?
o7 feu = 0 02 + b, (1c) w? = NZT’ (5)
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and the frequency can take any value between zero andfirst case(/ = 0), »? reduces to
infinity. Reinstating the vertical acceleration /1 in the . N?m2 + (fn + fum)?
vertical-momentum equation (1c), we obtain the corrected = G
dispersion relation [1-3], 5 . 5
, , Pt m? _ N7 A O+ 2ff A+
W' =N (6) e :

12 + m? + n?’
which now limits w? to N? and thus places an upper where A = m/n is the single wave number variable on

bound on the frequency. [Note that higher frequencied/hich @ depends. Setting to zero the derivative wf
than N are permitted if the waves are evanescent in th&Vith respect tor yields
vertical (n> < 0), but such waves are no longer called ffed?2 = (N? = 2+ fHA — ff. =0, (11)
internal-gravity waves.]

If we further retain the Coriolis terms due to the

(10)

which always admits two real roots,

vertical component of the rotation vectoy # 0, f. = A=
0), we obtain the traditional dispersion relation for internal n
gravity waves in a stratified rotating fluid [4,5], 1
24 o2 n? = [(Nz—fz‘i'ff)
W =N 2 (1) 211
12 + m? + n? 12 + m? + n?
In this dispersion relationw? appears as a weighted + \/(N2 — ARt 4f2ff] (12)

average betweerV? and f2, and must therefore lie , _
between these values. Since in geophysical flows, théhe corresponding stationary valueswt are

Coriolis frequency is typically much smaller than the ’ | ’ ) )
Brunt-Vaisala frequencys acts as a lower bound (in RE 7[(1\] TS
magnitude sincg’ may be negative), antf as an upper
bound. In the hydrostatic limit [neglect @fw /a7 in (1c) + \/(NZ — 2+ f2)2 + 45272 } (13)
again], the denominatoi$ + m?> + »? reduce ta?, and
the dispersion relation becomes [6] for which it is relatively easy to show that the following
12 + m2 rankings hold:
0’ = N——— + f°, (8) 2 2 2 2 2 2
n 0< w2 <N <wi, and 0 < w: < f" < wi.

in which N no longer acts as an upper bound hut (14)
still acts as a lower bound. In sum, the traditional
theory concludes that the ambient rotation sets a low

:)houré:l o_nlt_heffrequency oflntelzrtnaltg.ravn%wave;, (r,:.ame|¥0f %, while N is an intermediate stationary value. It
the (tmt(') IS reqtuencyt, et?]ual 0 Ichet_ Ie progje‘;h'optﬁ also follows thatwmi, is lower than the minimum of
e rotation vector onto the local vertical), an at the | and N, and thatwmax is higher than the maximum

vertical acceleration sets an upper bound (namely, th f |f] and N. In other words, the range of realizable

Brunt-Vai_saIa frequency). . . . . frequencies is broader than the interval betwggnand
According to the generalized dispersion relation, (4),N on both low and high frequency sides. Fgrs Q

:Ee trr1ad.|t|onz’:llltheory Ieadn;)%(;(z) (Z) Isz)l?/%onSISter;.t' .bEI'therasymptotic expressions aweqin ~ f2(1 — f2/N?) and
€ horizontal wave numbe= -+ m IS negigibie 2~ N2 4+ £2. This may explain why internal-wave

compared to the vertical wave number or it is not. max . : -
. ; . . spectra derived from oceanographic data do indeed show
If it is, then (7) is not better than (8), and inclusion of P grap

X L . a range of frequencies slightly broader than the interval
the vertical acceleration is unnecessary. If it is not, the g g gty

. ) : from |/ andN [8], especially at low latitudes.
fam is most likely [7] Comparat_JIe tgn in the humerator This work was supported by Grant No. N00014-93-
of (4), and not only the vertical acceleration but also

the Coriolis acceleration must be retained in the vertical%:-c())lf’(:)ggle of the Office of Naval Research to Dartmouth

momentum equation.

We now seek the extremal values that the frequancy
can achieve under the most general dispersion relation (4).
First putting to zero the derivative @ with respect td, [1] J.S. Turner, Buoyancy Effects in FluidCambridge
we obtain University Press, Cambridge, 1973), Sec. 2.2.

: _ 2 ar2.2 2] J. Lighthill, Waves in FluidfCambridge University Press,
either [ =0 or (fn+ fum)"=N"n". (9 2 Camgbridge, 1978), Sec. 4.52. ’ /

In the second casey” becomesV?, and we conclude (3] B. Cushman-Roisin,introduction to Geophysical Fluid
that N is a stationary value ab. As we will shortly see, Dynamics (Prentice Hall, Englewood Cliffs, NJ, 1994),
this will be neither a maximum nor a minimum. In the Sec. 3-4 and 10-2.

In conclusion, the minimum value ab is the positive
oot of w2, and its maximum value is the positive root
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[4] A.E. Gill, Atmosphere-Ocean Dynami@scademic Press, [7] Exceptions to this rule are particular cases wher <«

New York, 1982), Sec. 8.4. |I] ~ |n] (wave numbers nearly confined to the zonal-
[5] P.K. Kundu, Fluid Mechanics (Academic Press, New vertical plane) and whely.| < |f| (near the poles).

York, 1990), Sec. 13-14. [8] C. Garrett and W. Munk, Annu. Rev. Fluid Mechl,
[6] J.R. Holton, An Introduction to Dynamic Meteorology 339-369 (1979), and references therein.

(Academic Press, New York, 1992), Sec. 7.5.2.
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