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Arbitrarily Accurate Dynamical Control in Open Quantum Systems

Kaveh Khodjasteh,1 Daniel A. Lidar,2 and Lorenza Viola1

1Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA
2Departments of Chemistry, Electrical Engineering, and Physics, and

Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, CA 90089, USA

We show that open-loop dynamical control techniques may be used to synthesize unitary trans-
formations in open quantum systems in such a way that decoherence is perturbatively compensated
for to a desired (in principle arbitrarily high) level of accuracy, which depends only on the strength
of the relevant errors and the achievable rate of control modulation. Our constructive and fully ana-
lytical solution employs concatenated dynamically corrected gates, and is applicable independently
of detailed knowledge of the system-environment interactions and environment dynamics. Explicit
implications for boosting quantum gate fidelities in realistic scenarios are addressed.

PACS numbers: 03.67.Pp, 03.67.Lx, 03.65Yz, 07.05.Dz

The demand for an exquisite degree of control over
the dynamics of open quantum systems is widespread
across quantum physics and engineering, ranging from
high-resolution spectroscopy and chemical reaction con-
trol [1], to quantum-limited metrology [2] and quantum
information processing (QIP) [3]. Achieving a sufficiently
small ‘error per gate’ (EPG) is, in particular, an essen-
tial ingredient to ensuring that fault-tolerant quantum
computation is possible in spite of the decoherence that
inevitably plagues real-world devices. While closed-loop
techniques, in the form of fault-tolerant quantum error
correction (QEC) [4, 5], offer thus far the only complete
prescription to meet this challenge, open-loop dynamical

QEC is emerging as a promising alternative. Inspired
by coherent averaging in magnetic resonance [6] and ex-
emplified in its simplest form by dynamical decoupling
(DD) [7–9], dynamical QEC aims to suppress the interac-
tion between the system and its quantitatively unspecified

environment through suitable sequences of unitary oper-
ations. Recently, DD has enabled decoherence-protected
storage in QIP platforms as diverse as electron-nuclear
systems [10], photonics qubits [11], and trapped ions [12],
as well as found application in suppressing collisional de-
coherence in cold atoms [13].

As the gap between theory and implementations
shrinks, and a growing experimental effort is devoted
to robust manipulation of quantum states, it is imper-
ative that realistic constraints be accommodated from
the outset in dynamical QEC design. In practice, con-
trol resources always entail finite power and bandwidth,
thus precluding instantaneous (‘bang-bang’ [7]) pulses.
A path toward decoherence-protected unitary operations
was recently proposed based on dynamically corrected

gates (DCGs) [14]. A DCG may be viewed as a com-
posite quantum gate constructed from individual (‘prim-
itive’) building blocks whose errors combine non-linearly
to achieve a substantially smaller net error. If τmin is
the minimum duration over which each primitive gate is
effected (‘switching time’) and ‖He‖ the strength of the
error-inducing Hamiltonian, DCGs remove the effect of

He to the leading (first) order, that is, the resulting EPG
scales as O[(τmin‖He‖)

2]. This prompts the following key
question: Can one make DCGs as accurate as desired,
using realistic control resources? The answer is not obvi-
ous. Schemes capable of arbitrarily suppressing decoher-
ence during storage have been identified – notably, con-
catenated DD [8] and recent optimized protocols [9, 15] –
but, thus far, only in the bang-bang limit. With bounded
controls, decoherence suppression up to the second or-
der (with leading corrections O[(τmin‖He‖)

3]) may be
achieved by using a time-symmetrized Euler DD (EDD)
protocol [16] (see also [17]) – however, this procedure ex-
tends neither to generic quantum gates nor to generic
open quantum systems [14, 18].

Here we show that decoherence suppression can in
principle be pushed to an order limited only by the
strength of the relevant errors and the achievable rate
of control modulation. We do this by combining DCG
constructions with recursive design – resulting in con-

catenated DCGs. While perturbative in nature, our so-
lution is fully analytical, laying the foundation for rigor-
ous complexity analysis and optimization in dynamical
QEC. Not only do concatenated DCGs exist for arbi-
trary finite-dimensional open quantum systems with a
bounded ‖He‖, but they are also highly portable, in the
sense that no quantitative knowledge of the underlying
interaction Hamiltonian is assumed, beyond its algebraic
form. Since arbitrarily accurate open-loop compensation
techniques for classical (static) control errors are known
[19], our results imply that no fundamental limitation
arises due to a quantum (dynamic) bath. From a practi-
cal standpoint, concatenated DCGs offer the first system-
atic feedback-free framework for designing quantum gates
which can achieve the arbitrarily high levels of protection
against decoherence demanded by high-fidelity quantum
control, and in particular QIP.

Control-theoretic setting.—Let S be the target quan-
tum system, coupled to its quantum bath B via an inter-
action Hamiltonian HSB, with respective Hilbert space
HS and HB . We assume that the total error Hamilto-

http://arxiv.org/abs/0908.1526v3
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nian He may be described by a joint time-independent
operator of the following form:

He = HS,e +HSB +HB ≡
∑

α

Sα ⊗Bα, (1)

where the contributionHS,e accounts for undesired ‘drift’
terms possibly present in the system’s internal Hamilto-
nian, {Sα} is a Hermitian basis of operators acting on
HS , and Bα are bounded (potentially unknown) oper-
ators acting on HB. The vector space Ωe spanned by
{Sα ⊗ Bα}, with non-zero Bα, defines the error model

and is uniquely determined by the system components
{Sα} appearing in the expansion of He in Eq. (1). In
dynamical QEC, a classical controller is adjoined to S
through a time-dependent Hamiltonian Hctrl(t). Several
constraints may restrict, in reality, the degree of con-
trol that is available through Hctrl(t). In particular, we
account for realistic control modulations to be bounded
in amplitude and spectral bandwidth by requiring that
‖Hctrl(t)‖ < ∞ and τmin > 0, respectively. In an ideal
situation where HSB = 0 = HS,e, the errors arise from
imperfections in the controller only. Our goal here is to
present a proof-of-concept for robustness against decoher-
ence errors during gates, thus we ignore such contribu-
tions henceforth. We furthermore assume that universal
control over S is achievable [3] (see [14] for departures
from this ‘minimal’ setting).
Consider a unitary operation (gate) Q on S, which is

ideally realized by letting Hctrl(t) = HQ(t) over an inter-
val [t1, t1 + τ ]. We use Q[τ ] or Q to denote this imple-
mentation of Q when there is no ambiguity. If He 6= 0,
the joint propagator is UQ[τ ] = T exp[−i

∫ t1+τ

t1
(HQ(t) +

He)dt] (~ = 1 and T denotes time-ordering). The effect
of He may be isolated through a Hermitian ‘error action
operator’ EQ[τ ] [14], where UQ[τ ] = Q exp(−iEQ[τ ]). Let
the initial states of S and B be ρ0S = |ψ〉〈ψ| and ρB. Ide-
ally, the action of Q would result in ρ0S(τ) = Qρ0SQ

†,
while B evolves independently. In contrast, the ac-
tual evolution is coupled and ρS(τ) = TrB(UQ[τ ]ρ

0
S ⊗

ρBU
†

Q[τ ]). An appropriate performance measure for con-

trol is the trace-norm distance ∆ ≡ ‖ρS(τ)−ρ
0
S(τ)‖1 [3].

One can show that ∆ ≤ ‖modB(EQ[τ ])‖, independently of

the initial state, where modB(E) ≡ E− 1
Tr(IS)IS⊗TrS(E)

is a projector that removes the pure-bath terms in E
[20, 21]. Thus, η ≡ ‖modB(EQ[τ ])‖ may be taken to
quantify the resulting EPG.
Given a desired unitary gate Q, our task is to syn-

thesize a control modulation that approximates Q with
an EPG scaling as O(τ ℓ+1

min ), for an arbitrary positive
integer ℓ and compatible with the stated control con-
straints. Any such construction defines an ℓ-th order
DCG, DCG[ℓ]. “Näıve” implementations that simply cor-
respond to turning on, say, a constant Hctrl(t) for a dura-
tion τ yield an EPG that scales (approximately) linearly
with τ in the presence of He and are included as ℓ = 0.

Primitive gates are correspondingly denoted by {Q[0]}.
Free evolution underHe [Hctrl(t) ≡ 0] may be viewed also
as a zeroth order ‘no-operation’ (noop) gate. Consider
a combined gate (Q1 · · ·QN)[

∑

τi] formed as a sequence

of N primitive gates Q
[0]
N [τN ] · · ·Q

[0]
2 [τ2]Q

[0]
1 [τ1] applied

back to back. We may compute the total error for the
combined gate using

E(Q1···QN )[
∑

τi] = EQ1[τ1] + (2)

+ P †
1EQ2[τ2]P1 + · · ·+ P †

N−1EQN [τN ]PN−1 + E2+,

where Pj = Qj · · ·Q1, j = 1, . . . , N − 1, is the ‘partial’
control propagator at the end of the jth segment [22] and
‖E2+‖ = O(

∑

i,j

∥

∥[EQi[τi], EQj [τj]

∥

∥) includes the leading
second-order corrections. Note that individual EPGs do
not simply add up, but are ‘modulated’ by the control tra-

jectory: in dynamical QEC, this provides the basic mech-
anism enabling the effect of He to be perturbatively can-
celed, without quantitative knowledge of the bath.

Concatenated DCGs: Construction and performance

bound.— Our strategy to achieve an arbitrary order of
cancellation is to invoke a recursive construction, that
generates (ℓ + 1)th-order gates using ℓth-order building
blocks, close in spirit to concatenated DD [8]. In what
follows, given a target gate Q, we shall term an ℓ-th or-

der balance pair as any pair of gates (I
[ℓ]
Q , Q

[ℓ]
∗ ) whose

errors coincide up to the leading (ℓ+ 1)th-order, that is,
modB(EIQ) = modB(EQ∗

) +O(τ ℓ+2
min ).

The first step in the recursion requires demonstrat-
ing that, given Q, a corresponding DCG[1] can be con-
structed out of the available universal set of primi-
tive gates. As established in [14], this necessitates two
main ingredients: (i) An EDD protocol for generating a
DCG[1]-implementation of noop; (ii) A zeroth-order bal-

ance pair (I
[0]
Q , Q

[0]
∗ ), with the same leading order error

EQ∗
belonging to a ‘correctable error space’ ΩD ⊇ Ωe. In

order to achieve (i), a set of unitary gates D = {Di}
d
i=1

is identified, such that the map ΠD[E] ≡ 1
d

∑d
i=1D

†
iEDi

‘decouples’ all errors E in ΩD: modB(ΠD[E]) = 0 [7]. In
EDD [16], D represents a group G (faithfully and pro-
jectively), with order |G| = d and a set of mℓ genera-
tors Γ = {Fj}. Let G(G,Γ) denote the Cayley graph of
G with respect to Γ. The required EDD sequence (of
length N1 = dm) is constructed by consecutively apply-
ing the generators Fj as gates, in the order determined
by an Eulerian cycle on G(G,Γ), starting (and ending)
at the identity vertex, IS . Suppose that each Fj is im-
plemented as a zeroth order gate with EFj

∈ ΩD. Then,
using Eq. (2) and the decoupling property of G, the net
error ηEDD = O(maxj ‖EFj

‖2) = O(τ2min), as desired.

In order to extend the EDD construction to a gate Q
other than noop, some information about how primitive
gates are implemented is required, due to a NoGo theo-
rem for ‘control-oblivious’ design proved in [14]; balance
pairs are required as ingredient (ii) precisely for this pur-
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pose. Once such a balance pair (I
[0]
Q , Q

[0]
∗ ) is found, a

DCG[1] sequence for Q is obtained by ‘augmenting’ the

Cayley graph for noop: I
[0]
Q gates are inserted in the

EDD sequence at points where the corresponding Eule-
rian path visits each non-identity vertex for the first time,

and finally Q
[0]
∗ is applied after the last IS vertex. The

resulting error for the combined sequence is then given by
‖modB(EQ[1])‖ = ‖modB(EEDD + ΠD(EQ∗

))‖ = 0 plus

corrections given by error η
[1]
DCG = O(τ2min), as desired.

Our balance pair construction “strikes a balance” by
stretching control profiles. Not only does this ensure a
fully portable recipe in terms of control inputs (note that
previous DCG constructions [14], required access to sign-
reversed control profiles), but it is in fact crucial for pro-
ducing balance pairs of high-order gates. In practice,
a stretched control input results in slower gates. More
concretely, for a gate stretched by a factor r, the gat-
ing Hamiltonian is “stretched” by a factor r: HQ(t) 7→
HQ[t1 + r(t − t1)]/r; thus the same target gate Q is ap-
proximated, but with a different EPG. The stretched gate
is symbolically indicated by Q[rτ ] but all gate construc-
tions are still subject to the original bandwidth/power
constraints. The general recipe for balance pairs of any
order ℓ is given in terms of Q[ℓ] and Q−1,[ℓ] (ℓth order
implementations of Q and its inverse) by the following
pair of composite gates [21]:

I
[ℓ]
Q = Q−1,[ℓ][τ ]Q[ℓ][21/(ℓ+1)τ ],

Q
[ℓ]
∗ [τ ] = Q[ℓ][τ ]Q−1,[ℓ][τ ]Q[ℓ][τ ]. (3)

Note that I
[ℓ]
Q implements the noop gate (IS) over a du-

ration of τ +21/(ℓ+1)τ , while Q
[ℓ]
∗ implements Q over 3τ .

Setting ℓ = 0 thus completes the construction of 1st-order
gates using 0th-order building blocks.

A (universal) set of gates {Q[ℓ][τℓ]} with EPG =
O(τ ℓ+1

min ) can be constructed recursively for arbitrary

ℓ ≥ 1 at this point. Let Ω
[ℓ]
e denote the error model for

all ℓth-order gates: EQ[ℓ] ∈ Ω
[ℓ]
e [23]. We can then iden-

tify the smallest DD group G[ℓ] that decouples Ω
[ℓ]
e , with

mℓ group generators Γ[ℓ] = {F
[ℓ]
j }, and a correspond-

ing Cayley graph G(G[ℓ],Γ[ℓ]). We modify this graph

by attaching self-directed edges representing I
[ℓ]
Q to all

vertexes except IS , and add a new vertex Q by con-
necting it to the IS-vertex through an edge representing

Q
[ℓ]
∗ . By construction, every edge in this graph repre-

sents a DCG[ℓ]. We now proceed as in first-order DCGs,
and implement the sequence Q[ℓ+1][τℓ+1] by following the
Nℓ = dℓmℓ + dℓ edges of an Eulerian path on the mod-
ified graph for G(G[ℓ],Γ[ℓ]), starting at IS and stopping

at Q, and applying the corresponding Q
[ℓ]
i gates back to

back. If the latter are implemented with duration τℓ (be-
fore stretching), then the combined total duration τℓ+1

satisfies:

τℓ+1 = [dℓmℓ + (dℓ − 1)(1 + 21/(ℓ+1)) + 3]τℓ.

By iterating, we obtain a cascade of stretched primitive
control profiles of duration τℓ . (χℓ)

ℓτ0, where χℓ =
dℓ(mℓ +3) [24]. Starting with the primitive gates [ℓ = 0]
of duration τ0, the above construction generates a DCG[ℓ]

for any Q and ℓ, with a net error upper bounded by:

η
[ℓ]
DCG < c (χℓ)

ℓ2τ0 ‖HSB+HS,e‖ (4χℓτ0 ‖He‖)
ℓ , (4)

where c = O(1). While a detailed proof will be presented
elsewhere [21], two main steps are involved. First, we
prove that for any gate Q[ℓ][τ ], owing to the recursive
design of the sequence, the Magnus expansion of the error
EQ[ℓ] in terms of the toggling frame error Hamiltonian

He(t) = U †
ctrl(t)HeUctrl(t) contains only terms that start

at O(τ ℓ+1) (modulo the pure bath terms). Second, we
bound these higher order terms (hence ‖modB(EQ[ℓ]‖))
using standard operator inequalities.
Concatenated DCGs: Analysis and applications.—

From a practical perspective, our result above shows
that concatenated DCGs offer concrete error reduc-
tion over primitive gates and DCG[1]: for any fixed
achievable switching time τ0, minimizing the bound in
Eq. (4) yields an optimal concatenation level ℓopt =
⌊− 1

2 (logχ(4‖He‖τ0) + 1)⌋, where ⌊x⌋ is the largest in-
teger ≤ x, and χ ≡ χℓopt . Substituting ℓopt into Eq. (4)
yields an EPG bound that may enable scalable QIP even
if primitive gates, whose EPG is given by ‖HSB+HS,e‖τ0,
are above the accuracy threshold of (non-Markovian)
fault-tolerant QEC [25]. Ultimately, the viability of a
concatenated DCG will be dictated by system-dependent
implementation trade-offs, based on both the total gate
duration and minimum switching time.
To illustrate our general construction, consider the

paradigmatic case of a single qubit undergoing arbitrary

decoherence, whereby Ω
[ℓ]
e ≡ Ω(1) = span{σα ⊗ Bα}, and

σα = {I,X, Y, Z} are the identity and the Pauli matri-
ces. The corresponding DD group G = Z2×Z2 is (projec-
tively) represented as {I,X, Y, Z}, and is generated by,
e.g., Γ = {X,Y }. EDD is given by XYXY YXYX [16].
Starting with a Q[ℓ][τℓ] gate, we have:

Q[ℓ+1] = Q
[ℓ]
∗ X

[ℓ]Y [ℓ]X [ℓ]Y [ℓ]Y [ℓ]I
[ℓ]
Q X [ℓ]I

[ℓ]
Q Y [ℓ]I

[ℓ]
Q X [ℓ],

in which I
[ℓ]
Q and Q

[ℓ]
∗ are defined in Eq. (3), and are

themselves combinations of stretched Q[ℓ] and Q−1,[ℓ].
The length of the combined new sequence is given by
τℓ+1 = [14 + 3 × 21/(ℓ+1)]τℓ ≤ 20τℓ ≡ χτℓ. Representa-
tive simulation results are presented in Fig. 1. Param-
eters have been chosen to mimic a high-quality silicon
(Si) quantum dot, where the electron spin qubit under-
goes hyperfine-induced decoherence due to a fraction ≈ 1
ppm of non-zero spin 29Si nuclei (about one order of mag-
nitude larger than currently achieved isotopically purified
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DCG[0]: min

DCG[1]: 20 min

DCG[2]: 365 min

DCG[3]: 6487 min

FIG. 1: Fidelity of increasing DCG orders for Q =
exp[−i(π/3)X] applied to |ψ〉 = (|0〉 + |1〉)/

√
2, and ρB fully

mixed. The fidelity is f ≡ Tr
√√

ρaρt
√
ρa, where ρt (ρa) is

the target (actual) final qubit state, and satisfies 1−∆ ≤ f ≤√
1−∆2 [28]. The bath spins couple to the central system

spin S via a Heisenberg interaction HSB =
∑5

i=1 jiS · I(i),
with ji randomly picked in [0, J ], J ≡ 10 (arbitrary units).

The bath spins I(j) evolve under a dipolar interaction HB =
∑

i,j
bij(I

(i)
X I

(j)
X +I

(i)
Y I

(j)
Y −2I

(i)
Z I

(j)
Z ), with bij randomly picked

in [0, 10−2]. Primitive gates were implemented using rectan-
gular pulse shapes to allow for numerically exact simulations.
For fixed J , reducing τmin may be understood in terms of a
finer temporal resolution of the resulting ‘digitized pulse pro-
file’. Note that at log10(τminJ) = −5.5 the fidelity for DCG[3]

is 13 orders of magnitude better than for DCG[0], in spite of
the gate taking nearly 6500 times longer.

Si [26]). Consistent with the perturbative nature of the
error cancellation in dynamical QEC, the improvement
due to the recursive design is manifested in the increasing
slopes associated with higher concatenation levels once
the gating time τmin is sufficiently short. Concatenated
DCGs may also prove instrumental in reducing gating
errors on a recently proposed logical qubit encoded in
the singlet/triplet spin manifold of a Si double quantum
dot [27], in particular to protect exchange-based logical
Z rotations against magnetic field noise. Finally, we ex-
pect the same control sequences to be effective for non-
Markovian decoherence induced by unbounded environ-
ments with a sufficiently ‘hard’ spectral cutoff [9].
Conclusion.—We have presented a general construc-

tive solution to the problem of generating arbitrarily ac-
curate quantum gates with finite control resources in an
open-loop setting. In addition to settling a fundamental
question, our results point to several venues for further
investigation. On the theory side, improved construc-
tions should incorporate more realistic local baths and
combinatorial Eulerian design [29]. From an implemen-
tation perspective, making contact with optimal-control
formulations [30] may allow to boost efficiency in exper-
imentally available control platforms.
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