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The zero-temperature effective equation of motion is derived for a scalar field interacting with other fields.
For a broad range of cases, involving interaction with as few as one or two fields, dissipative regimes are found
for the scalar field system. The zero-temperature limit constitutes a baseline effect that will be prevalent in any
general statistical state. Thus, the results found here provide strong evidence that dissipation is the norm not the
exception for an interacting scalar field system. For application to inflationary cosmology, this provides con-
vincing evidence that warm inflation could be a natural dynamics once proper treatment of the interactions is
done. The results found here also may have applicability to entropy production during the chiral phase tran-
sition in heavy-ion collision.

DOI: 10.1103/PhysRevD.63.103509 PACS number~s!: 98.80.Cq, 05.70.Ln, 11.10.Wx

I. INTRODUCTION

Statistical mechanics generally expects an interacting sys-
tem to equally distribute its energy among all the constituent
degrees of freedom. Efforts to understand this most basic
statement from quantum-field theory have focused on simple
dissipative systems. The most common example among
these is the case of a quantum scalar field that is interacting
with other fields and that has an amplitude that is initially
displaced from equilibrium. There has been considerable in-
terest in this kind of problem due to its many applications,
ranging from the dynamics of condensates in condensed-
matter physics to the evolution of an inflaton field in infla-
tionary cosmology~for a recent review see Ref.@1#!. Several
methods have been applied to this problem involving ana-
lytic and numerical analysis@2–14# as well as lattice simu-
lations @15,16#.

Among the variety of dissipative dynamics that can be
studied for such scalar field systems, the most tractable,
given the present state of understanding in quantum statisti-
cal mechanics, is the adiabatic regime, where the motion of
the scalar field amplitude is slow. One of the first implemen-
tations of this approximation was due to Caldeira and Leg-
gett @17# for the problem of interacting quantum-mechanical
harmonic oscillators. Since then, generalizations of this kind
of dynamics for the case of scalar fields have been imple-
mented by several authors@8–12#. In particular, in an earlier
work by us @12#, a specific consistent solution regime for
adiabatic dissipative dynamics was identified, in which the
motion of the scalar field amplitude is overdamped. Our
treatment in that work was restricted to the high-temperature
regime. The purpose of this paper is to extend those results
to zero temperature and to find valid parameter regions for

the adiabatic dissipative regime. The key step is the inclusion
of quasiparticle effects through the appropriate use of full
two-point Green’s functions at zero temperature. This plays a
central role in the dynamics, as will be reviewed later in this
paper.

A primary, but not singular, motivation for understanding
the overdamped regime is to realize the warm inflation sce-
narios from first principles. The extension of the overdamped
solution to zero temperature has important consequences for
this goal. A careful examination of the earlier work@12# as
well as Refs.@18,19# reveal that the high-temperature over-
damped solutions came very close to a full realization of
warm inflation from simple interacting models. Although ul-
timately what we found for that regime was that full warm
inflation solutions only could be constructed for certain com-
plicated models@18–20#, a foremost impediment to simpler
solutions was the limitation of the high-temperature approxi-
mation. The main accomplishment of this paper is to estab-
lish that the extension of the solution toT50 can be ad-
equately posed. Although only flat nonexpanding spacetime
is treated in this paper, these results provide a necessary step
towards the case of expanding space time. Furthermore, the
results in this paper already are suggestive that once exten-
sion to expanding space time is done, warm inflation solution
probably will be viable in most of the simple quantum-field-
theory models.

The calculation in this paper is incomplete in that dissi-
pation at zero temperature necessarily implies a nonequilib-
rium state, which immediately should be driven up to some
excited statistical state. As such, the results presented here
serve only as an indication for a nontrivial dissipative effect,
which requires a more general nonequilibrium treatment for
determining the precise nature of the excited statistical state.
In this respect, the results in this paper are as yet insufficient
for constructing completely consistent quantum-field-theory
warm inflation solutions. Nevertheless, these calculations es-
tablish an important point, that interacting scalar field sys-
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tems have an intrinsic and, in appropriate regimes, robust
affinity to dissipate their energy. This fact in turn could place
considerable doubt on a commonly followed, though un-
proven, assumption of inflationary cosmology, that dissipa-
tive effects of the scalar inflaton field can be ignored, thereby
leading to a supercooled regime of inflation with vanishing,
or negligible production of radiation.

Despite the unconventional implications our results sug-
gest for inflationary cosmology, the argument for supercool-
ing in scalar field driven inflation deserves a reexamination
for the following reason. The basic statement of supercooled
inflation is that a single degree of freedom, the zero mode of
the inflaton, maintains all the energy of the universe during
the entire duration of inflation in the form of potential, or
equivalently vacuum, energy. However, the curious point is,
even if this single degree were to allow a minuscule fraction
of the energy to be released, say one part in 1020, it still
would constitute a significant radiation energy density com-
ponent in the universe. For example, for inflation with
vacuum energy at the grand unified theory~GUT! scale
;101521016 GeV, leaking one part in 1020 of this energy
into radiation corresponds to a temperature of 1011 GeV,
which is nonnegligible. In fact, the most relevant lower
bound that cosmology places on the temperature after infla-
tion comes from the success of hot big-bang nucleosynthesis,
which thus requires the universe to be within the radiation
dominated regime byT*1 GeV. This limit can be met in the
above example by dissipating as little as one part in 1060 of
the vacuum energy into radiation. Thus, from the perspective
of both interacting field theory and basic notions of
equipartition, it appears to be a highly tuned requirement of
supercooled inflation to prohibit the inflaton from even such
tiny amounts of dissipation. On the flip side, the warm infla-
tion picture demonstrates@21# that by relaxing this require-
ment, the most unnatural and technically intractable aspect of
supercooled inflation, reheating, becomes unnecessary. As
such, despite the technical complications in computing dissi-
pative effects, as exemplified by this and the earlier papers,
on general grounds their presence should be a natural expec-
tation.

The paper is organized as follows. Our real-time dissipa-
tive formalism is reviewed in Sec. II. Explicit expressions
are given here for the real-time, fully dressed Bose and
Fermi two-point Green’s functions, which are valid in the
entire temperature range, includingT50. This formalism
then is applied in Secs. II and III to obtain the effective
equation of motion of the system, here a scalar field that has
a classical amplitude out of equilibrium atT50, which is
coupled to fields that act as a reservoir bath for dissipative
energy exchange. Two types of models are treated in Secs. II
and III, which we have denoted, respectively, as direct decay
models, where the system field directly decays to light par-
ticles that are part of the environment, and indirect decay
models, where this process is mediated by intermediate
fields. In Sec. IV, we apply the effective equations of motion
to estimate the magnitude of radiation energy production.
Finally in Sec. V, we give concluding remarks and comment
on the implication of our results for the case of an expanding
space time, which is relevant for inflationary cosmology. An

Appendix is also included in which the computations are
given of the zero-temperature decay widths that are used in
the paper.

II. DIRECT DECAY MODELS

In this section, models will be studied where the system,
here a scalar fieldF, is coupled to bath fields of lighter mass
than itself, thus allowingF to directly decay into the bath
fields. In the first model the scalar field interacts with a set of
Nc fermion fields with Lagrangian density

L@F,c̄k ,ck#5
1

2
~]mF!22

mf
2

2
F22

l

4!
F4

1 (
k51

Nc

c̄k@ i ]”2mck
2hkF#ck . ~2.1!

TheF field is decomposed into a classical background com-
ponentw and a quantum fluctuation part asF5w1f, with

^F&5w, ^f&50,

and where the background component is assumed to be ho-
mogeneousw[w(t). Using the tadpole method,1 where we
impose^f&50 at all orders in perturbation theory, leads to
the condition that the sum of all tadpole terms vanish. The
effective equation of motion~EOM! for w(t) then becomes

ẅ~ t !1mf
2 w~ t !1

l

6
w3~ t !1

l

2
w~ t !^f2&1

l

6
^f3&

1 (
k51

Nc

hk^c̄kck&50, ~2.2!

where ^f2&, ^f3&, and ^c̄kck& are given in terms of the
coincidence limit of the~causal! two-point Green’s functions
Gf

11(x,x8) andSc
11(x,x8). These Green’s functions are ob-

tained from the (1,1) component of the real-time matrix of
full propagators that satisfy the appropriate Schwinger-
Dyson equations~see, e.g., Refs.@10,12# for further details!:

Fh1mf
2 1

l

2
w2GGf~x,x8!1E d4zSf~x,z!Gf~z,x8!

5 id~x,x8! ~2.3!

and

@ i ]”2mck
2hkw#Sck

~x,x8!1E d4zSck
~x,z!Sck

~z,x8!

5 id~x,x8!. ~2.4!

1For earlier references on the tadpole method applied to determin-
ing the equation of motion of a scalar field in the real-time formal-
ism, see, for instance, Ref.@22#.
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The momentum-space Fourier transform ofGf(x,x8) ~for
the scalar field! can be expressed in the form

Gf~x,x8!5 i E d3q

~2p!3
eiq.(x2x8)

3S Gf
11~q,t2t8! Gf

12~q,t2t8!

Gf
21~q,t2t8! Gf

22~q,t2t8!
D ,

~2.5!

where

Gf
11~q,t2t8!5Gf

.~q,t2t8!u~ t2t8!

1Gf
,~q,t2t8!u~ t82t !,

Gf
22~q,t2t8!5Gf

.~q,t2t8!u~ t82t !

1Gf
,~q,t2t8!u~ t2t8!,

Gf
12~q,t2t8!5Gf

,~q,t2t8!,

Gf
21~q,t2t8!5Gf

.~q,t2t8!. ~2.6!

In these expressions the fully dressed~field independent!
two-point functions, at finite temperatureT51/b, under the
approximation that the spectral function for the scalar field
has the standard Breit-Wigner form, are given by2

Gf
.~q,t2t8!5

1

2vf
$@11nf~vf2 iGf!#exp@2 i ~vf2 iGf!

3~ t2t8!#1nf~vf1 iGf!

3exp@ i ~vf1 iGf!~ t2t8!#%u~ t2t8!

1
1

2vf
$@11nf~vf1 iGf!#

3exp@2 i ~vf1 iGf!~ t2t8!#

1nf~vf2 iGf!exp@ i ~vf2 iGf!

3~ t2t8!#%u~ t82t !,

Gf
,~q,t2t8!5Gf

.~q,t82t !, ~2.7!

wherenf is the Bose distribution function,vf[vf(q) is the
particle’s dispersion relation andGf is the f decay width,
defined as usual in terms of the field self-energy by

Gf~q!5
Im Sf~q,vf!

2vf
. ~2.8!

For the fermion fields we have instead that

Sc
11~q,t2t8!5Sc

.~q,t2t8!u~ t2t8!

1Sc
,~q,t2t8!u~ t82t !,

Sc
22~k,t2t8!5Sc

.~q,t2t8!u~ t82t !

1Sc
,~q,t2t8!u~ t2t8!,

Sc
12~q,t2t8!5Sc

,~q,t2t8!,

Sc
21~q,t2t8!5Sc

.~q,t2t8!. ~2.9!

In this caseSc
.,, are given by3

Sc
.~q,t2t8!52

1

2vc
H exp@2 i ~vc2 iGc!~ t2t8!#F ~vc2 iGc!g02q”1mc,r2 i

Gc~vc2 iGc!

mc,r
G

3@12nc~vc2 iGc!#2exp@ i ~vc1 iGc!~ t2t8!#F2~vc1 iGc!g02q”1mc,r1 i
Gc~vc1 iGc!

mc,r
G

3nc~vc1 iGc!J u~ t2t8!2
1

2vc
H exp@2 i ~vc1 iGc!~ t2t8!#

3F ~vc1 iGc!g02q”1mc,r1 i
Gc~vc1 iGc!

mc,r
G@12nc~vc1 iGc!#2exp@ i ~vc2 iGc!

3~ t2t8!#F2~vc2 iGc!g02q”1mc,r2 i
Gc~vc2 iGc!

mc,r
Gnc~vc2 iGc!J u~ t82t ! ~2.10!

and

2We thank Ian Lawrie for pointing out the correct form of these equations.
3Analogous expressions for the general nonequilibrium case are given in Ref.@23#.
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Sc
,~q,t2t8!5

1

2vc
H exp@ i ~vc1 iGc!~ t2t8!#F2~vc1 iGc!g02q”1mc,r1 i

Gc~vc1 iGc!

mc,r
G@12nc~vc1 iGc!#

2exp@2 i ~vc2 iGc!~ t2t8!#F ~vc2 iGc!g02q”1mc,r2 i
Gc~vc2 iGc!

mc,r
Gnc~vc2 iGc!J u~ t2t8!

1
1

2vc
H exp@ i ~vc2 iGc!~ t2t8!#F2~vc2 iGc!g02q”1mc,r2 i

Gc~vc2 iGc!

mc,r
G@12nc~vc2 iGc!#

2exp@2 i ~vc1 iGc!~ t2t8!#F ~vc1 iGc!g02q”1mc,r1 i
Gc~vc1 iGc!

mc,r
Gnc~vc1 iGc!J u~ t82t !, ~2.11!

where

nc51/~ebvc11!, vc5Aq21mc,r
2 ,

with

mc,r5mc1ReSc ,

and

Gc~q!5Im Sc~vc ,q!
mc

vc
. ~2.12!

In this paper we will be interested in studying dissipation only of the background scalar fieldw at T50. Therefore we will
restrict ourselves just to the zero-temperature expressions of the above equations.

It will be assumed the couplingsl,hk!1, so that perturbation theory can be consistently formulated with subleading terms
neglected. Then by perturbatively expanding the field averages in Eq.~2.2!, up to two-loop order in the scalar loops~higher-
order loop terms involving fermions also are higher order in the perturbation expansion, as we will discuss later!, the effective
EOM for w(t) is

ẅ~ t !1S mf
2 1

l

2
^f2&0Dw~ t !1

l

6
w3~ t !1lw~ t !E

2`

t

dt8
l

2
w2~ t8!E d3q

~2p!3
Im@Gf

11~q,t2t8!#2

1
l2

3 E
2`

t

dt8w~ t8!E d3q1

~2p!3

d3q2

~2p!3
Im@Gf

11~q1 ,t2t8!Gf
11~q2 ,t2t8!Gf

11~q11q2 ,t2t8!#

24(
k51

Nc

hk,fE
2`

t

dt8hkw~ t8!E d3q

~2p!3
Im@Sab

11~q,t2t8!S11 ba~q,t82t !#50, ~2.13!

with ^ . . . &0 meaning the vacuum expectation value at zero background fieldw50. Using the explicit expressions for the
Green’s functions in Eq.~2.13! and atT50, this EOM becomes

ẅ~ t !1S mf
2 1

l

2
^f2&0Dw~ t !1

l

6
w3~ t !2l2w~ t !E

2`

t

dt8w2~ t8!E d3q

~2p!3

sin~2vfut2t8u!

8vf
2

exp@22Gf~q!ut2t8u#

2
l2

3 E
2`

t

dt8w~ t8!E d3q1

~2p!3

d3q2

~2p!3

sin$@vf~q1!1vf~q2!1vf~q11q2!#ut2t8u%
8vf~q1!vf~q2!vf~q11q2!

exp@2@Gf~q1!1Gf~q2!

1Gf~q11q2!#ut2t8u#22(
k51

Nc

hk
2 E

2`

t

dt8w~ t8!E d3q

~2p!3

exp@22Gck
~q!ut2t8u#

vck

2 mc,r
2

3$2Gck

3 vck
cos~2vck

ut2t8u!1@2mc,r
2 ~vck

2 2mck

2 !1Gck

2 ~vck

2 1mc,r
2 2Gck

!#sin~2vck
ut2t8u!%

50. ~2.14!
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The temporally nonlocal terms of the types appearing in the above equation have been shown in Refs.@2,11–14,24,25# to
lead to dissipative dynamics in the EOM’s. This can be made more explicit by an appropriate integration by parts in the time
integrals in Eq.~2.14! ~see@2,25#! to obtain the result~at T50)

ẅ~ t !1m̄f
2 w~ t !1

l̄

6
w3~ t !1l2w~ t !E

2`

t

dt8w~ t8!ẇ~ t8!E d3q

~2p!3

@vf cos~2vfut2t8u!1Gfsin~2vfut2t8u!#

8vf
2 ~Gf

2 1vf
2 !

3exp@22Gf~q!ut2t8u#1
l2

3 E
2`

t

dt8ẇ~ t8!E d3q1

~2p!3

d3q2

~2p!3
ˆ @vf~q1!1vf~q2!1vf~q11q2!#cos$@vf~q1!1vf~q2!

1vf~q11q2!#ut2t8u%1@Gf~q1!1Gf~q2!1Gf~q11q2!#sin@@vf~q1!1vf~q2!1vf~q11q2!#ut2t8u#%‰

3
exp@2@Gf~q1!1Gf~q2!1Gf~q11q2!#ut2t8u#

8vf~q1!vf~q2!vf~q11q2!

3
1

@Gf~q1!1Gf~q2!1Gf~q11q2!#21@vf~q1!1vf~q2!1vf~q11q2!#2

1 (
k51

Nc

hk
2 E

2`

t

dt8ẇ~ t8!E d3q

~2p!3

exp@22Gck
~q!ut2t8u#

vck

2 mc,r
2 ~Gck

2 1vck

2 !
$@Gck

4 vck
12vck

3 mc,r
2 22mc,r

4 vck

1Gck

2 vck
~vck

2 1mc,r
2 !#cos~2vck

ut2t8u!1@Gck
~2mck

2 2Gck

2 !~vck

2 2mc,r
2 !2Gck

5 #sin~2vck
ut2t8u!%

50, ~2.15!

wherem̄f and l̄ are the effective mass and coupling constant given, respectively, by

m̄f
2 5mf

2 1lE d3q

~2p!3

1

4vf
1 (

k51

Nc

hk
2E d3q

~2p!3 F 2
mc,r

2 2vck

2

vck

3
1OS Gck

2

vck

2 D G
2

l2

3 E d3q1

~2p!3

d3q2

~2p!3 H 1

8vf~q1!vf~q2!vf~q11q2!@vf~q1!1vf~q2!1vf~q11q2!#
1OS Gf

2

vf
2 D J , ~2.16!

and

l̄5l2l2E d3q

~2p!3 F 1

16vf
3

1OS Gf
2

vf
2 D G . ~2.17!

Both m̄f and l̄ naively appear divergent in Eqs.~2.16! and ~2.17!, respectively, due to the perturbative correction terms.
However, they are rendered finite by the usual introduction of counterterms to renormalize the mass and coupling constant in
the original Lagrangian@11#. In this procedure, the bare~infinite! mass and scalar self-coupling in the Lagrangian arem
5mf,r1dmf and l5l r1dl, where the countertermsdmf and dl cancel the divergent contributions in Eqs.~2.16! and
~2.17! in the usual way. In what follows, we then can just interpret the masses and couplings appearing in our equations as the
renormalized ones and we will omit any additional subscript and overbars for simplicity, so hereafterm̄→m and l̄→l.

A. The effective equation of motion in the adiabatic-Markovian approximation

The effective equation of motion Eq.~2.15! is the main result of this section. As should appear evident, this equation is
difficult to solve either analytically or numerically, since memory of the past history ofw is required at each stage of evolution.
Falling short of a detailed analysis of this equation in this paper, we would like some rough estimates of the dissipative effects
described by the equation. In particular, as a first approximation to Eq.~2.15!, we will explore the derivative expansion at
leading order for the temporally nonlocal terms. This amounts to substitutingt8→t in the arguments of the fields entering in
the time integrals. This is equivalent to a Markovian approximation for the dissipative kernels in Eq.~2.15!. A solution regime
for w where such an approximation might be valid is the adiabatic regime, where the motion ofw is slow. In this and the next
subsections, we will establish a self-consistent solution regime composed of both the adiabatic and Markovian approximations.
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To proceed, first the Markovian approximation will be implemented and then self-consistent solution regimes will be identi-
fied. Thus upon implementing the Markovian approximation, we then can easily perform thet8 integrals and obtain

ẅ~ t !1mf
2 w~ t !1

l

6
w3~ t !1l2w2~ t !ẇ~ t !E d3q

~2p!3

Gf

8vf~vf
2 1Gf

2 !2

1
l2

3
ẇ~ t !E d3q1

~2p!3

d3q2

~2p!3

@Gf~q1!1Gf~q2!1Gf~q11q2!#@vf~q1!1vf~q2!1vf~q11q2!#

4vf~q1!vf~q2!vf~q11q2!

3
1

$@Gf~q1!1Gf~q2!1Gf~q11q2!#21@vf~q1!1vf~q2!1vf~q11q2!#2%2

1 (
k51

Nc

hk
2ẇ~ t ! E d3q

~2p!3

~Gck

2 12vck

2 22mck

2 !

vck
~Gck

2 1vck

2 !2
Gck

50. ~2.18!

An additional simplification can be achieved by demanding that the~effective-! field masses satisfy the inequalitymf
.2mck

. In this case, at zero temperature, the only contribution to the decay widths in Eqs.~2.8! and ~2.12! come from the

imaginary part of the one-loop contribution to the self-energy forF. This is given by the internal fermionic propagators
diagram, which then represents the decay rate for the kinematically allowed processF→ck1c̄k . We therefore have that
Gck

50 andGf is given by~see the Appendix!

Gf~q!5 (
k51

Nc hk
2

8pvf~q!
mf

2 S 12
4mck

2

mf
2 D 3/2

. ~2.19!

We must point out that even though in this case the contribution to the dissipative term in Eq.~2.18! coming from the
fermionic loop vanishes, i.e.,Gck

50, this is a consequence of assuming the Markovian approximation for the dissipative

kernels. In the general case, the last term in the nonlocal EOM, Eq.~2.15!, with Gck
50, still can be interpreted as a dissipative

contribution@2,13,14# to the EOM. Therefore, here the Markovian approximation somewhat underestimates the whole dissi-
pative nature of the nonlocal kernels in Eq.~2.15!. We expect this not to invalidate our main objective here, which is to
determine the viability of adiabatic dissipative behavior in the background field evolution and the intrinsic dissipative nature
of the field dynamics.

As an aside, it is interesting to discuss briefly the interpretation of dissipation coming from the second nonlocal dissipative
term in Eq.~2.15! whenGc50. Though for this case, particle decay does not contribute to dissipation, there still is dissipation
due to ‘‘off-shell’’ excitation of virtual states, which leads to decoherence and power-law decay of the background field
amplitude@2#, in the absence of the scalar field self-interactions. This contrasts with the first dissipative term in Eq.~2.15!, in
which dissipation truly is coming from the real scattering by the quasiparticles in the medium. Furthermore, dissipative kernels
of the sort treated here typically have some type of long-time tail, which retains memory from the past. However, as will be
discussed later, a nonvanishing decay width, as present in this case, helps to suppress the long-time tail of the kernel.

Studies of terms similar to the second nonlocal term in Eq.~2.15! have been done in@26–28#. These works studied the case
Nc51 andGc50, and examined the linearized form of the effective EOM once the fermion fields were integrated out. An
important issue raised in Refs.@27,28# was in regard to the singularities in the EOM at the initial time, which in our case refers
to the behavior of the dissipative kernel in Eq.~2.15! arising from the fermionic loop, when computed att5t8. Observe that
this term appears divergent in the ultraviolet region, but this apparent problem easily can be solved in our approach. To see that
our final equation in this case is identical to the final result obtained by the authors in Refs.@27,28#, take, for example, the
second nonlocal term in Eq.~2.15!, due to the fermionic loop, and integrate the time integral twice by parts to give

(
k51

Nc

hk
2 E

2`

t

dt8ẇ~ t8!E d3q

~2p!3

exp@22Gck
~q!ut2t8u#

vck

2 mck

2 ~Gck

2 1vck

2 !

3$@Gck

4 vck
12vck

3 mck

2 22mck

4 vck
1Gck

2 vck
~vck

2 1mck

2 !#cos~2vck
ut2t8u!

1@Gck
~2mck

2 2Gck

2 !~vck

2 2mck

2 !2Gck

5 # sin~2vck
ut2t8u!}
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5 (
k51

Nc

hk
2ẇ~ t !E d3q

~2p!3

~Gck

2 12vck

2 22mck

2 !

vck
~Gck

2 1vck

2 !2 Gck

1 (
k51

Nc

hk
2ẅ~ t !E d3q

~2p!3Fvck

2 2mck

2

2vck

5 1OS Gck

2

vck

2 D G
2 (

k51

Nc

hk
2E

2`

t

dt8ŵ~ t8!E d3q

~2p!3 exp@22Gck
~q!ut2t8u#

3H vck

2 2mck

2

2vck

5 F cos~2vck
ut2t8u!13

Gck

vck

sin~2cck
ut2t8u!1OS Gck

2

cck

2 D G J . ~2.20!

The first term on the right-hand side of Eq.~2.20! is just the second dissipative term appearing in Eq.~2.18!. By taking
Gck

50 this term vanishes. The second term is a wave-function renormalization term, which can be absorbed in a wave-

function counterterm (dZ) in the Lagrangian, by rewriting the kinetic term as (]mF)2→(11dZ)(]mF)2. The last term on the
right-hand side of Eq.~2.20!, for Gck

50 andNc51, reproduces exactly the result obtained in Refs.@27,28# for the EOM
integrated over the fermion fields. Thus, we see that there are no ambiguities or divergences here associated with the kernels
evaluated at equal times. Also, the nonlocal two-loop scalar term in Eq.~2.15! can be examined in a similar way and from such
an analysis its contribution to the wave-function renormalization can be extracted.

Returning from this digression to the EOM Eq.~2.18!, and using Eq.~2.19! for Gf andGc50, the EOM becomes

ẅ~ t !1mf
2 w~ t !1

l

6
w3~ t !1h~w!ẇ~ t !50. ~2.21!

Hereh(w) is the dissipative coefficients, which after doing the momentum integral in the ‘‘one-loop’’ dissipation term and
using the symmetry of the ‘‘two-loop’’ dissipation term under change of momentum integration variables, becomes

h~w!5w2~ t !
l2af,c

2

128p Amf
4 1af,c

4 ~2Amf
4 1af,c

4 12mf
2 !1/2

1
l2af,c

2

4 E d3q1

~2p!3

d3q2

~2p!3 H 1

vf~q1!2vf~q2!vf~q11q2!@vf~q1!1vf~q2!1vf~q11q2!#3
1OS Gf

2

vf
2 D J ,

~2.22!

with

af,c
2 5 (

k51

Nc hk
2

8p
mf

2 S 12
4mck

2

mf
2 D 3/2

. ~2.23!

Finally, we also can easily work out an equivalent model
of F coupled to bath fields that, rather than fermionic fields,
are scalar fields,x j , j 51 . . .Nx , with a trilinear coupling
as( j 51

Nx (gj
2/2)Fx j

2 . Once again, by choosingmf.2mx j
we

haveGx j
50 but a nonvanishingF decay widthGf , which

also has been evaluated in the Appendix. Going through the
same steps as used to obtain Eq.~2.21!, we obtain an analo-
gous expression with a similar dissipative coefficienth(w),
except withaf,c→af,x , where

af,x
2 5(

j 51

Nx g4

16p S 12
4mx j

2

mf
2 D 1/2

. ~2.24!

B. Examination of the dissipative kernels

Up to this point, the naive implementation of the Markov-
ian approximation has been examined and has led from Eq.
~2.15! to Eq. ~2.21!. The applicability of this approximation
is now considered. Returning to the nonlocal EOM Eq.
~2.15!, we can express for example the term generating the
one-loop dissipation contribution in Eq.~2.21! in the general
form4

E
2`

t

dt8w~ t8!ẇ~ t8!K~ t,t8!,

where the dissipative kernel is given by

4Although here we analyze the one-loop dissipative kernel in de-
tail, similar conclusions also can be shown to apply for the more
complicated two-loop dissipative kernel in Eq.~2.15!.
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K~ t,t8!5l2E d3q

~2p!3

3
@vf cos~2vfut2t8u!1Gfsin~2vfut2t8u!#

8vf
2 ~Gf

2 1vf
2 !

3exp@22Gf~q!ut2t8u#. ~2.25!

In Fig. 1 K(t,t850)/l2 is plotted for four cases,
Gf(0)/mf50.1, 0.5, 1.0, and 5.0. There is a degeneracy
among the parametersNc , h, andmc from which to choose

for a given value ofGf(0). Theplots of the kernel are given
over four different time intervals, in order to see the different
aspects of its behavior.

As can be seen, the kernel has a pronounced, narrow peak
aroundt5t8 followed by a power-law decaying oscillatory
behavior, with greater decaying as the number of fields
coupled toF increases. Since from Eq.~2.19! Gf;1/uqu for
uqu@mf , it can be seen from Eq.~2.25! that once uqu
*2mfG(0)ut2t8u, damping from the exponential term
relinquishes. Thus for ut2t8u*1/mf the behavior of
the kernel is K(t,t8);2l2Ci@4mfGf(0)ut2t8u2#
;2l2sin@4mfGf(0)ut2t8u2#/@4mfGf(0)ut2t8u2#. Note this

FIG. 1. The kernelK(t,0)/l2 in Eq. ~2.25! for the casesGf(0)/mf50.1 ~solid!, 0.5 ~dashed!, 1.0 ~dotted!, and 5.0~dot dashed!, plotted
over four different time intervals.
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long-time behavior of theT50 contribution of the kernel
differs from its high-temperature component, which was
studied in Refs.@11,25#. At high temperature, the decay
widths at largeuqu behave as;T2/uqu, but there are also
factors of the number density that become Boltzmann sup-
pressed. As such, the high-temperature limit of the kernel
becomes highly exponentially suppressed at large times.

Power-law decay of the kernel atT50 implies that
memory of the scalar field is retained in Eq.~2.15! in deter-
mining its future evolution. As such, the derivative expan-
sion clearly is not generally valid. However, for sufficiently
slow motion of the scalar field, the derivative expansion still
may be valid for some duration of time. In particular, sup-

poseẇ/w'g in a given solution, whereg is the approximate
magnitude of this ratio over some interval of time. Then,
self-consistency of this solution with respect to the derivative
expansion holds for a time intervalut2t8u&1/g. Thus, as
mentioned at the beginning of this section, the slower is the
motion of w, the longer the above approximation is valid.
Such slowly varying solutions are useful to investigate due to
their simplicity. They also may have practical use, for ex-
ample, for warm inflation, where one seeks solutions where
the motion ofw is slow.

Although the kernel Eq.~2.25! does retain past memory, it
is worth noting that on general grounds for reasonablew(t)
solution regimes, the memory retention only is up to some
finite time in the past. The observation here is that the oscil-
lation rate of the kernel increases with time due to the qua-
dratic dependence on timeK(t,t8);sin(aut2t8u2), wherea is
a constant. As such, for reasonable motions ofw, beyond
some time interval into the pastut2t8u.Dt0, the character-
istic oscillation frequency of the kernel will exceed that ofw.
Thus at all times past this point, the contributions fromw(t)
primarily cancel. As a practical point, despite this property of
the kernel to filter through increasingly high-frequency com-
ponents as the time passes, there are limitations to the types
of w(t) motions that it can describe. In particular, this feature
of the kernel is most efficiently able to cut off the long-time
memory if the field configuration only has slow frequency
components. As such, ideally the applicability of this kernel
is near equilibrium conditions. Note, this also is the regime
assumed in previous works@11,12# for the finite temperature
case.

An additional consistency condition related to the adia-
batic approximation at finiteT, considered in Refs.@12,18#,
is that the microscopic dynamics should be much faster than
all macroscopic motions. For the finite-T case, this was a
necessary requirement since it guaranteed the system ther-
malized fast enough to adjust to any changes in the macro-
scopic state. The need for rapid thermalization was necessary
for self-consistency of the solutions. In contrast, theT50
dynamics treated in this paper does not require a specific
statistical state in which the scalar field evolution occurs.
Thus, consistency requirements, if any, with respect to the
rates of microscopic versus macroscopic dynamics, are less
well defined for theT50 case. To properly address this
question, a complete nonequilibrium analysis is necessary,
which is beyond the scope of this paper. However, for the

time being, to be conservative, a similar consistency condi-
tion to the finite-T case adopted in Ref.@12# will be imposed,
which requires the rate of microscopic physics to be faster
than all macroscopic motions. Since the only scales charac-
terizing the microscopic physics are the decay rates, this re-
quirement implies

Uw
ẇ
U@G21, ~2.26!

which is analogous to the condition in Ref.@12#, except
above zero-temperature decay rates are used. In Sec. IV
some estimates will be given of dissipative dynamics based
on the combined adiabatic-Markovian approximation of this
and the previous sections.

III. INDIRECT DECAY MODELS

This section will consider models in which the particles
ultimately created from dissipation of the scalar field are
coupled indirectly to the scalar field through an intermediate
field. Such a case has much more variety in the types of
decay sequences, as compared to the direct decay models of
Sec. II. The basic model to be examined consists of the sys-
tem, a scalar fieldF, along with scalar fieldsx j , j
51 . . .Nx and fermion fieldsck , k51 . . .Nc . The La-
grangian density is given by

L@F,x j ,c̄k ,ck#5
1

2
~]mF!22

mf
2

2
F22

l

4!
F4

1(
j 51

Nx H 1

2
~]mx j !

22
mx j

2

2
x j

22
f j

4!
x j

4

2
gj

2

2
F2x j

2J 1 (
k51

Nc

c̄kF i ]”2mck
2hk,fF

2(
j 51

Nx

hk j ,xx j Gck , ~3.1!

where all coupling constants are positive:
l, f j ,gj

2 ,hk,f ,hk j ,x.0.
As before, we are interested in obtaining the EOM for a

scalar field configurationw5^F&. For this, the fieldsx j and
ck are regarded as part of the environment. Once again the
scalar fieldF is decomposed into its expectation value and
fluctuationF5w1f, where^F&5w. The EOM forw then
is obtained from the tadpole method by imposing that^f&
50, which leads to the condition that the sum of all tadpole
terms vanish. Restricting again our analysis of the EOM to a
homogeneous fieldw[w(t), we obtain the effective EOM
for w
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ẅ~ t !1mf
2 w~ t !1

l

6
w3~ t !1

l

2
w~ t !^f2&1

l

6
^f3&

1(
j 51

Nx

gj
2@w~ t !^x j

2&1^fx j
2&#1 (

k51

Nc

hk,f^c̄kck&50,

~3.2!

where the field averages above can be expressed as usual in
terms of the coincidence limit of the~causal! two-point
Green’s functionsGf

11(x,x8), Gx
11(x,x8), andSc

11(x,x8)
for theF, x j , andck fields, respectively. Using the expres-
sions of the previous section forG11 andS11 for the scalar
and fermionic propagators, respectively, and working out the
expression analogous to Eq.~2.15!, we obtain the EOM

ẅ~ t !1m̄f
2 w~ t !1

l̄

6
w3~ t !1l2w~ t !E

2`

t

dt8w~ t8!ẇ~ t8!E d3q

~2p!3

3
@vf cos~2vfut2t8u!1Gfsin~2vfut2t8u!#

8vf
2 ~Gf

2 1vf
2 !

exp@22Gf~q!ut2t8u#1
l2

3 E
2`

t

dt8ẇ~ t8!E d3q1

~2p!3

d3q2

~2p!3
ˆ @vf~q1!

1vf~q2!1vf~q11q2!#cos$@vf~q1!1vf~q2!1vf~q11q2!#ut2t8u %1@Gf~q1!1Gf~q2!1Gf~q1

1q2!#sin$@vf~q1!1vf~q2!1vf~q11q2!#ut2t8u%‰
exp$2@Gf~q1!1Gf~q2!1Gf~q11q2!#ut2t8u%

8vf~q1!vf~q2!vf~q11q2!

3
1

@Gf~q1!1Gf~q2!1Gf~q11q2!#21@vf~q1!1vf~q2!1vf~q11q2!#2

1(
j 51

Nx

gj
4w~ t !E

2`

t

dt8w~ t8!ẇ~ t8!E d3q

~2p!3

@vx j
cos~2vx j

ut2t8u!1Gx j
sin~2vx j

ut2t8u!#

2vx j

2 ~Gx j

2 1vx j

2 !
exp@22Gx j

ut2t8u#

1(
j 51

Nx

gj
4E

2`

t

dt8ẇ~ t8!E d3q1

~2p!3

d3q2

~2p!3
ˆ @vx j

~q1!1vf~q2!1vf~q11q2!#cos$@vx j
~q1!1vf~q2!1vf~q11q2!#

3ut2t8u%1@Gx j
~q1!1Gf~q2!1Gf~q11q2!#sin$@vx j

~q1!1vf~q2!1vf~q11q2!!ut2t8u%‰

3
exp@2@Gx j

~q1!1Gf~q2!1Gf~q11q2!#ut2t8u#

8vx j
~q1!vf~q2!vf~q11q2!

3
1

@Gx j
~q1!1Gf~q2!1Gf~q11q2!#21@vx j

~q1!1vf~q2!1vf~q11q2!#2

1 (
k51

Nc

hk,f
2 E

2`

t

dt8ẇ~ t8!E d3q

~2p!3

exp@22Gck
~q!ut2t8u#

vck

2 mck

2 ~Gck

2 1vck

2 !
$@Gck

4 vck
12vck

3 mck

2 22mck

4 vck
1Gck

2 vck
~vck

2

1mck

2 !#cos~2vck
ut2t8u!1@Gck

~2mck

2 2Gck

2 !~vck

2 2mck

2 !2Gck

5 #sin~2vck
ut2t8u!%

50. ~3.3!

The dissipative dynamics in these indirect decay models will differ based on the relation of the masses among theF, x j ,
andc i fields. Consider first the case where the~effective! masses satisfy the relation

mf.mx j
.2mck

, ~3.4!

which we will refer to more specifically as the indirect cascade decay regime. The first attribute of this regime to note is at zero
temperatureGf and Gx j

are nonvanishing andGc50. There are two kinematically allowed on-shell processes,F→ck

1c̄k , with decay widthGf as given in Eq.~2.19!, andx j→ck1c̄k , with decay width
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Gx j
~q!5 (

k51

Nc hk j ,x
2

8pvx j

mx j

2 S 12
4mck

2

mx j

2 D 3/2

. ~3.5!

Implementing once again the adiabatic-Markovian approximation of Sec. II A, we then obtain the same expression for the
EOM as Eq.~2.21!, excepth(w) now is given by

h~w!5w2~ t !
l2af,c

2

128p Amf
4 1af,c

4 A2Amf
4 1af,c

4 12mf
2

1
l2af,c

2

4
E d3q1

~2p!3

d3q2

~2p!3 H 1

vf~q1!2vf~q2!vf~q11q2!@vf~q1!1vf~q2!1vf~q11q2!#3
1OS Gf

2

vf
2 D J

1w2~ t !(
j 51

Nx

gj
4
ax,c

2

32p

1

Amx j

4 1ax,c
4 A2Amx j

4 1ax,c
4 12mx j

2

1(
j 51

Nx gj
4ax,c

2

4
E d3q1

~2p!3

d3q2

~2p!3 H 1

vx j
~q1!2vf~q2!vf~q11q2!@vx j

~q1!1vf~q2!1vf~q11q2!#3
1OS Gx j

2 ,Gf
2

v2
D J ,

~3.6!

with af,c given by Eq.~2.23! and

ax,c
2 5 (

k51

Nc hk j ,x
2

8p
mx j

2 S 12
4mck

2

mx j

2 D 3/2

. ~3.7!

It is interesting to note that the last two terms in Eq.~3.6!
come solely from the decay channels ofx j into the fermion
fields ck , which then backreact on the system fieldw in
terms of a damping force. The same effect also would appear
for the case whereF was the lightest field,

mx j
.2mck

.mf . ~3.8!

This regime will be referred to simply as the indirect decay
regime outside the cascade region Eq.~3.4!. For this case
Gf50, or af,c50 in Eq. ~3.6!. This type of dissipation, in
which the system field is lighter than the decay products, was
first noted by Calzetta and Hu@14#. They have shown how a
heavy field influences the dynamics of a light field in the
form of dissipation and fluctuations of the light field, even
when no aspect of the light field dynamics is above the mass
threshold of the heavy field. This same behavior also can be
inferred from our results for the above regime.

Let us finally make a few comments about higher-order
loop terms. Observe that the results obtained for the dissipa-
tion coefficients in Eqs.~2.22! and~3.6! are the leading-order
ones at zero temperature,O(l2hk

2) andO(gj
4hk j ,x

2 ), respec-
tively. We have neglected higher-order loop contributions to
the EOM, since they all can be shown also to be of higher
order in the coupling constants. For instance, a two-loop con-
tribution made of a fermion loop with a vertical scalar propa-
gator can easily be seen to give a contribution to the dissi-

pation coefficienth(w) of order O(hk
4Gf);O(hk

6), for the
first case analyzed in Sec. II, andO(hk,f

2 hk j ,x
4 ), for the case

studied in this section. Also, higher-order scalar loop terms
are subleading in the coupling constants, as compared to the
results given by Eqs.~2.22! and~3.6!. For example, at finite
temperature, scalar ladder diagrams@12,29# are known to be
of the same order as the two-vertex one-loop term in the
EOM, due to on-shell divergences of these diagrams and the
way the field decay widths regularize them. However at zero
temperature these divergences are not present and ladder dia-
grams are at most of orderO(l4Gf

2 );O(l4hk
4) for the

model in Sec. II, andO(gj
8hk j ,x

4 ), for the model in this sec-
tion.

IV. APPLICATION

In this section we will apply the effective equation of
motion Eq. ~2.21!, with h(w) as given by Eqs.~2.22! and
~3.6!, to make estimates of entropy production from conver-
sion of the scalar field potential energy into radiation. Recall
the applicability of Eq.~2.21! is limited, since it requires the
validity of the adiabatic-Markovian approximation of Sec. II.
For this reason and since as mentioned in the Introduction,
the zero-temperature dissipation found here is indicative of a
nonequilibrium dynamics that drives the system to finite
temperature, we will not delve into detailed applications of
this effective equation of motion. The full dynamics of this
problem must be understood before detailed application is
worthwhile. Nevertheless, we will make some naive esti-
mates of radiation production from our equations, just to get
a feeling for the magnitudes of the effect. Note that for ap-
plication to warm inflation, the fact that dissipation occurs at
T50 implies the dynamics automatically will bootstrap the
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universe to finite temperature, independent of initial condi-
tions.

In general, for a damped equation of motion of the form
~2.21!, the regime of overdamped~underdamped! motion is

m2~w!5mf
2 1

l

2
w2,~. !h2~w!. ~4.1!

For the direct decay models in Sec. II, since the dissipative
coefficienth(w) is suppressed by two powers of thef self-
coupling parameterl, we find that underdamped motion
generally is possible, unless there are very many environ-
ment bath fields. For the indirect decay models of Sec. III,
the cascade decay regime Eq.~3.4! has similar constraints;
thus solutions, as those of the direct decay models of Sec. II.
However, in the other interesting regime Eq.~3.8!, the dissi-
pative coefficient and the parameters of thew potential can
be independently tuned, which means the overdamped re-
gime can be identified for as few as one or two heat bath
fields. Both the underdamped and overdamped regimes may
have application to the chiral transition in heavy-ion colli-
sion @30#, whereas the overdamped regime also is of interest
to the warm inflation scenario@21#. Below, both the direct
and indirect decay models will be examined.

For the direct decay model, the overdamped~under-
damped! regime from Eqs.~2.22!, ~2.23!, and~4.1! is given
by

l2Nc

2048p2
*~& !1, ~4.2!

where the Yukawa couplingh is determined by requiring
mc'hw,m(w)/2'Alw/2. Thus, even for strong coupling
l;1, it requiresNc*104 fields for the overdamped regime.

Considering first the underdamped regime, the adiabatic
condition Eq.~2.26! requires

ẇ

w
'm~w!,Gc'

h2Nc

8p
m~w!'

lNc

16p
m~w!, ~4.3!

where for underdamped motion from Eq.~2.21! ẇ
&m(w)w. The energy dissipated by the scalar field goes into
radiation energy densityr r , here composed of fermions
and/or scalar bosons, at the rate

ṙ r52
dEf

dt
5h~w!ẇ2'

l2Ncm5~w!

2048p2
, ~4.4!

where to obtain the last expression we estimateẇ2

'm2(w)w2. For the overdamped regime from Eq.~2.21!,
ẇ5m2(w)w/h(w). Writing h(w)5Qm(w), from Eqs.
~2.22! and ~2.23! Q'l2N/(2048p2) and for overdamping
Eq. ~4.1! requiresQ.1. This requirement of overdamping
automatically implies the adiabatic condition Eq.~2.26! is
satisfied. Thus the radiation production in this case is

ṙ r'
m3~w!w2

Q
. ~4.5!

Overall, for the direct decay model, the underdamped re-
gime is generic except if there are a very large number of
bath fieldsN.104, in which case overdamped motion also
becomes possible. In the underdamped regime, moderate ra-
diation energy production occurs. In particular during a char-
acteristic oscillation time;1/m(w), the produced radiation
has an associated temperature scaleT'(r r /Nc)1/4

'l1/2m(w)/10&m(w). On the other hand, the overdamped
regime, although requiring a large number of bath fields, can
yield sizable radiation by increasing the amplitudew in Eq.
~4.5!

Turning next to the indirect decay models of Sec. III, the
cascade region Eq.~3.4! leads to similar solutions as given
above for the direct decay models, so will not be further
elaborated. However, dissipative dynamics also appears to
occur in the regime Eq.~3.8!, which does not have a direct
interpretation in terms of particle decay at one of the two
steps of the process, thew→x transition. We believe further
investigation of this case is needed in order to obtain a sen-
sible interpretation of this process, and this is left for future
work. Nevertheless, here it is interesting to estimate the size
of the dissipative effects for this case. In particular for this
case, the overdamped regime can easily be obtained as will
be shown next. The overdamped regime requires the condi-
tion in Eq. ~4.1! and the adiabatic condition requires

ẇ

w
5

m2~w!

h~w!
,Gx . ~4.6!

Since the scalar field sector has two free parameters,mf and
l, it is always possible to tunem2(w) to satisfy both the
above requirements independent ofGx , h(w), and for any
amplitudew.

In the overdamped regime, the kinetic energy of the scalar
field is negligible. Thus, the loss in its potential energy trans-
lates into the energy released into radiationr r as

ṙ r~ t !5h~w!ḟ252
dV

dw
ẇ5S mf

2 w1
l

6
w3D ẇ'V~w!

m2~w!

h

,V~w!Gx , ~4.7!

where the second line follows from Eqs.~2.21! and ~3.1!.
Generally the microscopic scale is determined byGx . In this
time interval, we find the radiation to increase to

r r~1/Gx!'V~w!
m2~w!

hGx
,V~w!, ~4.8!

where to obtain the right most expression we used Eq.~4.6!.
Thus the energy dissipated into radiation is proportional to
the potential energy contained in the scalar field. To consider
some numbers, for example, typical for inflation, suppose the
potential energy is at the GUT scaleV(w)1/4

;1015216 GeV andm2(w)/(hGx)'1024. For this, it im-
plies a radiation component is generated which, if expressed
in terms of temperature, is at the scaleT;1014215 GeV, and
this is non-negligible. The main point to note is that consid-
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erable radiation production can occur from the indirect decay
models in the regime Eq.~3.8!.

V. CONCLUSION

Although the calculations in this paper were for nonex-
panding Minkowski spacetime, a brief reflection will be
made here on the consequences of these results for inflation-
ary cosmology. In this case, the background space is expand-
ing. The effect of the interaction between the scalar field, in
this case called the inflaton, and the background metric is
known to yield a 3Hẇ term in the inflaton effective equation
of motion, where the Hubble parameterH[ȧ/a anda(t) is
the cosmic scale factor. As well known, this term does not
arise from microscopic interactions with other fields, but
rather from the macroscopic interaction with the background
metric of gravity. Precisely this disparity in scales and the
difference in origin of the interactions suggests that the effect
of this term and the dissipative term computed in this paper
will act independently on the inflaton to a good approxima-
tion, with perhaps some self-consistency requirements. At
present, we are extending our calculation to expanding space
time in order to examine this point. Should this paper render
true the expectations from Sec. IV for dissipation, it will be
difficult to justify the supercooled inflation picture, rather it
would appear the warm inflation picture is the natural one.

For the moment, assuming the correctness of the above
expectations, a lower bound on the temperature of the uni-
verse during inflation can be estimated from the direct decay
model. In typical inflation models,mf;H for supercooled
inflation andmf is perhaps a few orders of magnitude bigger
than H for warm inflation. Furthermore, the conditions on
density perturbations generally require the inflaton self-
coupling parameter to be tinyl;10210210216. In an ex-
panding background, the evolution of the radiation in pres-
ence of a dissipating scalar field source is given by Eq.~4.3!
with the addition of the term24Hr r to the right-hand side,
which accounts for the redshift of the radiation due to back-
ground expansion. Therefore, in steady stateṙ r50,r r

'hẇ2/(4H), or the associated temperatureT;(r r /g* )1/4,
where we take the number of light particlesg* ;N. With
these estimates, based on Eq.~4.3!, we findT*l1/2mf/10. If
mf;1010 GeV as a typical value, then this impliesT
;(104210) GeV.

In order not to affect the successful predictions of nucleo-
synthesis, the primary requirement is that the universe should
be well within the hot big-bang radiation dominated regime
by T'10 MeV. Slightly more conservative, though not nec-
essarily mandatory, is to require that the QCD phase transi-
tion atT&1 GeV occurs within the radiation dominated era.
So a safe lower bound for inflation to end and the radiation
dominated era to commence isT*1 GeV. As such, the
lower limits for radiation production during the inflation
given above still would be above this lower limit require-
ment set by cosmology. The results found here may be also
useful in applications to the low-temperature regimes of
warm inflation identified in the phenomenological studies of
Ref. @31#.

It should be clarified that the results found in this paper in
no way require supersymmetry. However, these calculations
easily could be applied in supersymmetry models. In such
models, it is becoming appreciated that to avoid gravitino
overproduction, for any type of inflation scenario, the tem-
perature of the universe after inflation cannot be very high
T&1010 GeV @32#. From this perspective, the possibility
found in this paper for low-temperature warm inflation solu-
tions in the direct decay models would be phenomenologi-
cally attractive.

One cautionary remark is in order. Sincemf;H, the
lower limit on the temperature during inflation that is sug-
gested above, is below the so-called Gibbons-Hawking
‘‘temperature’’ TGH5H/(2p). HoweverTGH does not rep-
resent a temperature in the usual sense of a thermal bath of
particles.TGH acts like a temperature in the formal sense,
that for a noninteracting scalar field in de Sitter space, its
Euclideanized de Sitter invariant Green’s function is periodic
in imaginary time. The role thatTGH plays in this Green’s
function is formally the same as what actual temperature
plays in the static thermal Green’s function in Minkowski
space. However, for the noninteracting scalar field in the de
Sitter case, there are no particles present in the sense that the
field is in a vacuum state.5 In contrast, the radiation produc-
tion we have computed for the interacting scalar field results
in real particle production, irrespective of whether its asso-
ciated temperature is above or belowTGH .

In summary, this paper has studied dissipative effects of
interacting scalar fields at zero temperature. Similar treat-
ments along this line are limited@2,13,14# and one of the
features of this paper is the appropriate inclusion of quasi-
particles effects through the fully dressed zero-temperature
two-point Green’s functions. Another feature of our analysis,
which has been studied only to a limited extent in the litera-
ture, is a detailed examination of the dissipative kernel in
Sec. II B. The models examined in this paper were generic
and in all cases dissipation was found. Since dissipative ef-
fects are seen for the zero-temperature state, we conclude
that radiation production from dissipation is invariably
present for generic interacting scalar field systems, although
the extent of radiation production can vary immensely. Mini-
mally, it appears the mass of the scalar field times a suitable
dimensionless coupling constant sets a lower limit to the
associated temperature scale of the produced radiation. How-
ever, for the indirect decay models in the region Eq.~3.8!,
there appears a much more robust possibility for producing
radiation. Although formally this is what is indicated by our
calculations, as mentioned earlier, we feel further investiga-
tion of these indirect decay models is necessary in order to
obtain a sensible interpretation of its dissipative process. In
regard to the potential implications of the results found in
this paper to inflationary cosmology, we infer that under ge-
neric circumstances, the scalar inflaton field will dissipate a
non-negligible amount of radiation during inflation. In par-
ticular, the lower bound suggested by the above estimates for

5We thank Larry Ford for this clarification.
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the direct decay models already are sufficiently high to pre-
clude a mandatory requirement for a reheating. Furthermore,
the upper bound from the indirect decay models in the re-
gime Eq.~3.8! could yield very high-temperature warm in-
flation solutions, in the range discussed below Eq.~4.8!.
However, these only are expectations suggested by the cal-
culations in this paper. Verification of these expectations re-
quires a proper extension of these calculations to expanding
spacetime, which we currently are examining.
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APPENDIX A

In this appendix the decay widths for the processesf

→c1c̄ ~or x→c1c̄) and f→x1x are derived. Recall
the basic expression for the decay of an initial particle of
momentump into two particles,

G~p!5
1

2vp
F E d4k1

~2p!3

d4k2

~2p!3
~2p!4d (4)~k11k22p!

3d~k1
22m1

2!d~k2
22m2! )

fermionj

~2mj ! (
spinsj

uM f i u2G ,

~A1!

wherevp5Ap21M2, M is the mass of the scalar decaying
field, andm stands for the mass of the decay products. Ob-

serve that the expression in the square brackets is Lorentz
invariant, thus most conveniently it is evaluated in the rest
frame of the initial particlep50.

For the scalar to 2 fermion model (h is the Yukawa cou-
pling!

LI52hf~x!c̄~x!c~x!, ~A2!

which implies

M52 ihūs1
~k1!vs2

~k2!, ~A3!

so that

(
sj

uMu25h2
k1•k22m2

m2
. ~A4!

Substituting this into Eq.~A1! gives

G~p!5
h2M2

8pv~p! S 12
4m2

M2 D 3/2

. ~A5!

For the scalar to two scalar model, with coupling constant
g, we have instead that

LI52
g2

2
f~x!x2~x!, ~A6!

which implies

M52 ig2, ~A7!

and so

G~p!5
g4

16pvf~p! S 12
4m2

M2 D 1/2

. ~A8!
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