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PHYSICAL REVIEW D, VOLUME 63, 103509

Affinity for scalar fields to dissipate
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and Departamento de Fica T€aica, Instituto de Fsica, Universidade do Estado do Rio de Janeiro, 20550-013
Rio de Janeiro, RJ, BraZil
(Received 20 December 2000; published 20 April 2001

The zero-temperature effective equation of motion is derived for a scalar field interacting with other fields.
For a broad range of cases, involving interaction with as few as one or two fields, dissipative regimes are found
for the scalar field system. The zero-temperature limit constitutes a baseline effect that will be prevalent in any
general statistical state. Thus, the results found here provide strong evidence that dissipation is the norm not the
exception for an interacting scalar field system. For application to inflationary cosmology, this provides con-
vincing evidence that warm inflation could be a natural dynamics once proper treatment of the interactions is
done. The results found here also may have applicability to entropy production during the chiral phase tran-
sition in heavy-ion collision.

DOI: 10.1103/PhysRevD.63.103509 PACS nuni®er98.80.Cq, 05.70.Ln, 11.10.Wx

[. INTRODUCTION the adiabatic dissipative regime. The key step is the inclusion
Statistical mechanics generally expects an interacting sy®sf quasiparticle effects through the appropriate use of full
tem to equally distribute its energy among all the constituentwo-point Green’s functions at zero temperature. This plays a
degrees of freedom. Efforts to understand this most basicentral role in the dynamics, as will be reviewed later in this
statement from quantum-field theory have focused on simpleaper.
dissipative systems. The most common example among A primary, but not singular, motivation for understanding
these is the case of a quantum scalar field that is interactintpe overdamped regime is to realize the warm inflation sce-
with other fields and that has an amplitude that is initially narios from first principles. The extension of the overdamped
displaced from equilibrium. There has been considerable insolution to zero temperature has important consequences for
terest in this kind of problem due to its many applications,this goal. A careful examination of the earlier wdrk?] as
ranging from the dynamics of condensates in condensedwell as Refs[18,19 reveal that the high-temperature over-
matter physics to the evolution of an inflaton field in infla- damped solutions came very close to a full realization of
tionary cosmologyfor a recent review see Rdfl]). Several warm inflation from simple interacting models. Although ul-
methods have been applied to this problem involving anatimately what we found for that regime was that full warm
lytic and numerical analysig2—14] as well as lattice simu- inflation solutions only could be constructed for certain com-
lations[15,16). plicated model§18-20, a foremost impediment to simpler
Among the variety of dissipative dynamics that can besolutions was the limitation of the high-temperature approxi-
studied for such scalar field systems, the most tractablepation. The main accomplishment of this paper is to estab-
given the present state of understanding in quantum statistiish that the extension of the solution =0 can be ad-
cal mechanics, is the adiabatic regime, where the motion oéquately posed. Although only flat nonexpanding spacetime
the scalar field amplitude is slow. One of the first implemen-is treated in this paper, these results provide a necessary step
tations of this approximation was due to Caldeira and Legiowards the case of expanding space time. Furthermore, the
gett[17] for the problem of interacting quantum-mechanicalresults in this paper already are suggestive that once exten-
harmonic oscillators. Since then, generalizations of this kindsion to expanding space time is done, warm inflation solution
of dynamics for the case of scalar fields have been impleprobably will be viable in most of the simple quantum-field-
mented by several authd8—12. In particular, in an earlier theory models.
work by us[12], a specific consistent solution regime for  The calculation in this paper is incomplete in that dissi-
adiabatic dissipative dynamics was identified, in which thepation at zero temperature necessarily implies a nonequilib-
motion of the scalar field amplitude is overdamped. Ourium state, which immediately should be driven up to some
treatment in that work was restricted to the high-temperaturexcited statistical state. As such, the results presented here
regime. The purpose of this paper is to extend those resulserve only as an indication for a nontrivial dissipative effect,
to zero temperature and to find valid parameter regions fowhich requires a more general nonequilibrium treatment for
determining the precise nature of the excited statistical state.
In this respect, the results in this paper are as yet insufficient

*Email address: ab@ph.ed.ac.uk for constructing completely consistent quantum-field-theory
"Email address: rudnei@peterpan.dartmouth.edu warm inflation solutions. Nevertheless, these calculations es-
*Permanent address. tablish an important point, that interacting scalar field sys-
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tems have an intrinsic and, in appropriate regimes, robusAppendix is also included in which the computations are
affinity to dissipate their energy. This fact in turn could placegiven of the zero-temperature decay widths that are used in
considerable doubt on a commonly followed, though un-the paper.

proven, assumption of inflationary cosmology, that dissipa-

tive effects of the scalar inflaton field can be ignored, thereby Il. DIRECT DECAY MODELS
leading to a supercooled regime of inflation with vanishing, ) . . .
or negligible production of radiation. In this section, models will be studied where the system,

Despite the unconventional implications our results sughere a scalar fiel@, is coupled to bath fields of lighter mass
gest for inflationary cosmology, the argument for supercoolfhan itself, thus allowingb to directly decay into the bath
ing in scalar field driven inflation deserves a reexaminatiorfi€!ds. In the first model the scalar field interacts with a set of
for the following reason. The basic statement of supercooledly fermion fields with Lagrangian density
inflation is that a single degree of freedom, the zero mode of
the inflaton, maintains all the energy of the universe during
the entire duration of inflation in the form of potential, or
equivalently vacuum, energy. However, the curious point is,
even if this single degree were to allow a minuscule fraction — .
of the energy to be released, say one part iR’,1@ still +k21 ddid—my —h®lih. (2.)
would constitute a significant radiation energy density com-
ponent in the universe. For example, for inflation with The @ field is decomposed into a classical background com-

vacuum energy at the grand unified theaGUT) scale onente and a quantum fluctuation part és= ¢ + ¢, with
~10"-10' GeV, leaking one part in 8 of this energy P ¢ q P ¢t

into radiation corresponds to a temperature ot'1GeV, (P)=¢, (¢)=0,
which is nonnegligible. In fact, the most relevant lower

bound that cosmology places on the temperature after inflagnd where the background component is assumed to be ho-
tion comes from the success of hot big-bang nucleosynthesigogeneousy= ¢(t). Using the tadpole methddwhere we
Wh|Ch thus requil’es the Universe'to'b9 within the r'adiatior]mpose< ¢>:0 at all orders in perturbation theory’ leads to
dominated regime by =1 GeV. This limit can be metinthe the condition that the sum of all tadpole terms vanish. The

above example by dissipating as little as one part itP o ~ effective equation of motiofEOM) for ¢(t) then becomes
the vacuum energy into radiation. Thus, from the perspective

of both interacting field theory and basic notions of . Y Y A

equipartition, it appears to be a highly tuned requirement of o(t)+mie(t)+ g@s(t)Jf §<P(t)<¢2>+ g<¢3>

supercooled inflation to prohibit the inflaton from even such

tiny amounts of dissipation. On the flip side, the warm infla- Ny _

tion picture demonstratd®1] that by relaxing this require- + 2 h (i) =0, (2.2

ment, the most unnatural and technically intractable aspect of k=1

supercooled inflation, reheating, becomes unnecessary. As _

such, despite the technical complications in computing dissiwhere (%), (¢°), and (¢ are given in terms of the

pative effects, as exemplified by this and the earlier papergoincidence limit of thecausal two-point Green’s functions

on general grounds their presence should be a natural expe@-, * (x,x’) andS;, *(x,x"). These Green'’s functions are ob-

tation. tained from the (1,1) component of the real-time matrix of
The paper is organized as follows. Our real-time dissipafull propagators that satisfy the appropriate Schwinger-

tive formalism is reviewed in Sec. Il. Explicit expressions Dyson equationssee, e.g., Ref§10,12 for further detail$:

are given here for the real-time, fully dressed Bose and

Fermi two-point Green’s functions, which are valid in the

entire temperature range, includifig=0. This formalism

then is applied in Secs. Il and Ill to obtain the effective

equation of motion of the system, here a scalar field that has =id(x,x") (2.3

a classical amplitude out of equilibrium &t=0, which is

coupled to fields that act as a reservoir bath for dissipativend

energy exchange. Two types of models are treated in Secs. Il

and Ill, which we have denoted, respectively, as direct decay _. , ,

models, where the system field directly decays to light par- L1~ My~ Mk@]Sy, (x.x Hf d*z% ), (x.2)S,(2.X")

ticles that are part of the environment, and indirect decay )

models, where this process is mediated by intermediate =i5(x,x"). 2.4

fields. In Sec. IV, we apply the effective equations of motion

to estimate the magnitude of radiation energy production.

Finally in Sec. V, we give concluding remarks and comment for earlier references on the tadpole method applied to determin-

on the implication of our results for the case of an expandingng the equation of motion of a scalar field in the real-time formal-

space time, which is relevant for inflationary cosmology. Anism, see, for instance, RdR22].

2

— 1 m A
LIP, e, ] =5 (3,0)2— = D270

Ny

\
O+mi+ 5 ? G¢(x,X’)+J dz2 4 (x,2)Gy(2,X")
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The momentum-space Fourier transform @f,(x,x") (for 1 _
the scalar fielfican be expressed in the form + 2—%{[14- Ny(wy+ily)]
3 H H ’
G¢(x,x’)=if dq l0-(<—X') Xexg —i(wg+ily)(t—t')]
(2m)°

(G;+(q,t—t’) G, (gt—t") X(t—t)]Ho(t’ —1),
G, (at=t") G, (q.t-t))’

< A > ’
where wheren,, is the Bose distribution functiom ,= w 4(q) is the
iy , - ) ) particle’s dispersion relation anld, is the ¢ decay width,
G, (qt—t")=G,(qt—t")e(t—t") defined as usual in terms of the field self-energy by
+G;(q,t—t") et —t),
-- N "ot Pyla)=——"0 — (2.9
G, (gqt—t")=Gy(q,t—t")e(t' —t) Op
+G (g t—t")et—t"), For the fermion fields we have instead that

+— N _—_rn< 4!
Gy (Qt=t)=G,(qt=t)), Sy (g t—t")=S; (q,t—t")a(t—t")

G, (at—t")=Gg (q,t—t'). (2.6) +S;(q,t—t") et — 1),
In these expressions the fully dresséikbld independent L . - , ,
two-point functions, at finite temperatuiie= 1/8, under the Sy (kt=t)=S,(q,t—=t")e(t’—1)

approximation that the spectral function for the scalar field +SS(qt—t)at—t")
has the standard Breit-Wigner form, are giverf by v ’

1 S, (g,t—t")=S;(q,t—t"),
G;(q,t—t')=2—%{[1+n¢(w¢—ir¢)]exq—i(w¢—ir¢) v (a )=S,(a )

X(t—=t")]+ng(wgs+il ) Sy (@at-th=S,(a.t-t). 29
Xexgi(wy+il g (t—t)]}ot—t') In this caseS, '~ are given by
|
> , 1 : , , _ T y(w,—iT)
Sw(q,t—t ):_E exd —i(w,—il'y)(t—t")] (wl,,—|1"¢)yo—1zﬁ+m¢'r—|m—g{/r
. ) ) _ ' ywy+il'y)
X[1-nyw,—il'y)]—exdi(w,+il,)(t—t")] —(w¢+|rw)yo—q+m¢,‘r+|T

ext —i(w,+iT,)(t—t)]

1

X| (@il ) yo— d+my, +i [1-ny(w,+iT,)]—exdi(w,—iT )

o

) Ty w,—iTy)
—(wy—il ) yo—4+m, —i s 2
mw

X(t—t")] n¢(w,,,—iF¢)]0(t’—t) (2.10

and

2We thank lan Lawrie for pointing out the correct form of these equations.
3Analogous expressions for the general nonequilibrium case are given if2Ref.
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Sw(qt—t)— w[exm(wwﬂl“w)(t t)]| = (0, +ily) vo— q+m¢,r+|m—w[1—nw(w¢+|l“w)]
r
—exfg —i(w,—il)(t—=t")]| (0,~ily) yo—G¢+m, —i an(a)w—irw)]e(t—t’)
1 ) ) , I'(w,—iT") )
+2—% exgi(w,—il)(t—t")] —(w,—iT ) yo—4+m, — m—w[l_”w(“’f'm)]
w(w,/,-l-lrw) ] ,
—exgd —i(w,+iT,)(t=t")]| (w,+il"y) yo— q+m¢,r+|T n¢(w¢+|l“¢)]0(t -1), (2.1)
where
n,=1efor+1), w,=Va>+m;,,
with
my=m,+Re,,,
and
my
F¢(q)=ImE¢(w¢,q)w—¢. (212

In this paper we will be interested in studying dissipation only of the background scalapfaid=0. Therefore we will
restrict ourselves just to the zero-temperature expressions of the above equations.

It will be assumed the couplings h, <1, so that perturbation theory can be consistently formulated with subleading terms
neglected. Then by perturbatively expanding the field averages (2B, up to two-loop order in the scalar loofisigher-
order loop terms involving fermions also are higher order in the perturbation expansion, as we will discushéaedfective
EOM for ¢(t) is

3

o(t)+ mi+%<¢>2>o)<p(t)+%so3(t)+w(t>ﬁ dt’ o (t’ >f(3;3|m[6;+(q,t—t'>]2
+—f dt’ gt )J(z 50 IM[G " (ar,t—t")Gy " (dp,t—t" )Gy " (gr+ap,t—t')]
Ny
—421 heo | 25 (,t—t")S"F Ae(q,t’ —1)]=0, (2.13

with (. ..)o meaning the vacuum expectation value at zero background giel@. Using the explicit expressions for the
Green'’s functions in Eq2.13 and atT=0, this EOM becomes

d3q sin(2ey/t—t'])
(2m)3 8w’

() + exf — 2T 4(q)[t—t'[]

A A t
g+ §<¢2>o)<P(t)+g<P3(t)—)\2<P(t)fmdt'<P2(t')J

d® + + +qp)]Jt—t’
__f dt’ o(t )f(z 1 A2 sinf[4(01) + 0 4(02) + w4(ar+02) ]| |} exi — [T (0) + T y(q)

)2 (27)3 8w (01) w4(d2) wy(d1+02)

q exd—2T, (@[t—t'[]

wwkmwyr

t
+T 4(qp+ ) ][t—t'[]1— 22h2f dt’ (t)f(z

x{zrjkwwkcos(zwwk|t—t’|) + [2m;,r(wf,,k— mjk) + rjk(wf,,kJr mg,,— Ty, )1sin(2w,, [t—t'])}
=0. (2.14

103509-4
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The temporally nonlocal terms of the types appearing in the above equation have been shown[ia Refd&4,24,2bto
lead to dissipative dynamics in the EOM’s. This can be made more explicit by an appropriate integration by parts in the time
integrals in Eq.(2.14) (see[2,25]) to obtain the resultat T=0)

(2m)3 8w¢(F¢+w¢,)

R Iy t :
(t)+mj, <P(t)+g¢3(t)+7\2<P(t)f_wdt'€0(t')¢(t')J

3

oo NP e o dgy d
Xexq_zl“d)(q)'t—t |]+ ?J:oodt o(t )J (277)3 (27 )3

+0s(qr+ Q) [t —t"[}+[T 4(a1) + T 4(Ap) + T (A1 G2) ISiN[ 0 4(a1) + 0 4(0p) + 0 4(qr +02) J[t—t'[T}}

exd — [T 4(ar) + T y(a) + T g1+ ap) |t —t'[]
X
8w 4(01) w4(02) w4(d1+ )

1
X
[F¢(Q1)+F¢(Q2)+F¢(Q1+Q2)]2+[w¢(%)+w¢(CI2)+ w¢(CI1+CI2)]2

N, ) _
+ > h? f dt’ o(t
k=1 —©

{[ (A1) + w4(d2) + @ 4(d1+dp) Jcoq[ w4(d1) + @ 4(d2)

f dq exd —2r, (aq)ft—t']]

{[T4 w, +203 m? —2m o
(2m)? Wi me (12 +wi) = M T TR

+ szkwwk(wik-l- m, ) ]cog 2w, [t—t'])+ [ka(Zmik— rjk)(wﬁ,k— mg,.)— stk]sin(wak|t—t’|)}

=0, (2.15

whereﬁﬁ and\ are the effective mass and coupling constant given, respectively, by

2 2
d3 m‘—w
hif a [2 "o ]

(2m)3 o
d%q, d’q, 1 5
_ — 2.
J(27T)3 (2m)3 8w¢(Q1)w¢(QZ)w¢(Q1+Q2)[w¢(Q1)+w¢(Q2)+w¢(Q1+Q2)]+O wé ’ 219

g 1 N

2 2 I‘ik
m;,=mj+\N| ———+ —
¢ ¢ f(zw)3 4w¢ =1

2
w‘/fk

L2

and

3
Y=>\—>\2f a

(2m)? (2.17

1 rs
3+O — |
16w¢ Wy,

Both m,, and \ naively appear divergent in Eq&.16 and (2.17), respectively, due to the perturbative correction terms.
However, they are rendered finite by the usual introduction of counterterms to renormalize the mass and coupling constant in
the original Lagrangiai11]. In this procedure, the bar@nfinite) mass and scalar self-coupling in the Lagrangianrare

=My, +5m¢ and\=\,+ 6\, where the countertermém, and 6\ cancel the divergent contributions in E48.16 and

(2.17 in the usual way. In what follows, we then can just interpret the masses and couplings appearlng in our equations as the

renormalized ones and we will omit any additional subscript and overbars for simplicity, so heneafterand \ — \.

A. The effective equation of motion in the adiabatic-Markovian approximation

The effective equation of motion E¢R.15 is the main result of this section. As should appear evident, this equation is
difficult to solve either analytically or numerically, since memory of the past histogyiefrequired at each stage of evolution.
Falling short of a detailed analysis of this equation in this paper, we would like some rough estimates of the dissipative effects
described by the equation. In particular, as a first approximation tqZEf5), we will explore the derivative expansion at
leading order for the temporally nonlocal terms. This amounts to substitttirg in the arguments of the fields entering in
the time integrals. This is equivalent to a Markovian approximation for the dissipative kernels(2. E3). A solution regime
for ¢ where such an approximation might be valid is the adiabatic regime, where the motpois efow. In this and the next
subsections, we will establish a self-consistent solution regime composed of both the adiabatic and Markovian approximations.
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To proceed, first the Markovian approximation will be implemented and then self-consistent solution regimes will be identi-
fied. Thus upon implementing the Markovian approximation, we then can easily perfortrh ititegrals and obtain

d3q ry
(27)% 8w (w5 +17)?

. A .
GO+ o0+ 5 (DN |

+)\_2-(t)f d*q; d%qy [T4(d1) + T 4(d2) + T 4(d1+d2) [ 04(d1) + ©4(d2) + @ 4(A1+02) ]

3% (2m)3 (2m)® 4w 4(d1) @ 4(02) 0 4(d1+02)

y 1
{[F¢(Q1)+F¢(Q2)+F¢(Q1+Q2)]2+[w¢(Q1)+w¢(Q2)+w¢(Q1+Q2)]2}2

Ny

+> h
k=1

2 2 2
2(_P(t) f d3q (l—‘l/,k-f-Zwl/,k—mek)
k

b
2m)? 0, (T +o5)? ™

=0. (2.18

An additional simplification can be achieved by demanding that(é¢fectivey field masses satisfy the inequality,,
>2m,,. In this case, at zero temperature, the only contribution to the decay widths ifZ)sand (2.12 come from the

imaginary part of the one-loop contribution to the self-energydor This is given by the internal fermionic propagators

diagram, which then represents the decay rate for the kinematically allowed prbeeﬂ:s(JrEk. We therefore have that
I'y, =0 andI' is given by(see the Appendix

Ny hi ) 4m2¢k 32
r = _— 1-—— . 2.1
@ kzl 87w 4(0) M m;, (e19

We must point out that even though in this case the contribution to the dissipative term (8.H8.coming from the
fermionic loop vanishes, i.eElpk:O, this is a consequence of assuming the Markovian approximation for the dissipative

kernels. In the general case, the last term in the nonlocal EOMZEL), with kazo, still can be interpreted as a dissipative

contribution[2,13,14 to the EOM. Therefore, here the Markovian approximation somewhat underestimates the whole dissi-
pative nature of the nonlocal kernels in H.15. We expect this not to invalidate our main objective here, which is to
determine the viability of adiabatic dissipative behavior in the background field evolution and the intrinsic dissipative nature
of the field dynamics.

As an aside, it is interesting to discuss briefly the interpretation of dissipation coming from the second nonlocal dissipative
term in Eq.(2.15 whenI",,=0. Though for this case, particle decay does not contribute to dissipation, there still is dissipation
due to “off-shell” excitation of virtual states, which leads to decoherence and power-law decay of the background field
amplitude[ 2], in the absence of the scalar field self-interactions. This contrasts with the first dissipative tern{2rilBgin
which dissipation truly is coming from the real scattering by the quasiparticles in the medium. Furthermore, dissipative kernels
of the sort treated here typically have some type of long-time tail, which retains memory from the past. However, as will be
discussed later, a nonvanishing decay width, as present in this case, helps to suppress the long-time tail of the kernel.

Studies of terms similar to the second nonlocal term in(Ed.5 have been done if26—28. These works studied the case
N,=1 andI' ,=0, and examined the linearized form of the effective EOM once the fermion fields were integrated out. An
important issue raised in Ref®7,28 was in regard to the singularities in the EOM at the initial time, which in our case refers
to the behavior of the dissipative kernel in Eg.15 arising from the fermionic loop, when computedtatt’. Observe that
this term appears divergent in the ultraviolet region, but this apparent problem easily can be solved in our approach. To see that
our final equation in this case is identical to the final result obtained by the authors inR&RS, take, for example, the
second nonlocal term in E¢2.15), due to the fermionic loop, and integrate the time integral twice by parts to give

diq exd 20, (a)t-t'[]
(2m)®  wj my (I + o)

N, ¢ _
> hﬁJ dt’<p(t’)J
k=1 —®
4 3 2 4 2 2 2 2
X{[F¢kw¢k+2w¢kmwk—mekw¢k+F¢kwwk(w¢k+m¢k)]cos(2w¢k|t—t D
+[Ty (2m5 —T7 ) (wf —m3 ) =T} Isin2w,, |t—t'])}
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2 2 2
- Ny (t)f d (F¢k+2w¢k—2m¢k)r
gD (2 )3 wl/Ik(FZ./Ik_’_wik)z Ty

Ny g3 w2 —m? r2
- q by e %
+> h? —— =4 0| —
= hk(’o(t)J (27) [ 2w5¢ o wy
K k
Ny .

d3q
mdt’ﬁo(t')f (z—w)gexlﬁi—Zka(Q)|t—t’|]

1-*2
lﬂwk

The first term on the right-hand side of E@®.20 is just the second dissipative term appearing in €418. By taking
r,=0 this term vanishes. The second term is a wave-function renormalization term, which can be absorbed in a wave-
function countertermdZ) in the Lagrangian, by rewriting the kinetic term @(13)2H(1+ 5Z)(aﬂd>)2. The last term on the
right-hand side of Eq(2.20, for r,=0 andN,=1, reproduces exactly the result obtained in RE23,28 for the EOM
integrated over the fermion fields. Thus, we see that there are no ambiguities or divergences here associated with the kernels
evaluated at equal times. Also, the nonlocal two-loop scalar term i(2ELp can be examined in a similar way and from such
an analysis its contribution to the wave-function renormalization can be extracted.

Returning from this digression to the EOM EQ.18, and using Eq(2.19 for I' , andI',=0, the EOM becomes

wik—mzw F
X 2—5 cos{2w¢,|t—t |)+3—S|n(2¢¢,|t—t D+O| — (2.20
w Oy

) A .
e()+mie(t)+ = @)+ n(¢)@()=0. (2.2)

Here 5(¢) is the dissipative coefficients, which after doing the momentum integral in the “one-loop” dissipation term and
using the symmetry of the “two-loop” dissipation term under change of momentum integration variables, becomes

)\za(zﬁw
1287 mj+aj , (2Vm+a), ,+2m5)t2

n(@)=¢4(t)

Vawf d’a d3q2[ 1 m(r_z)]
4 (2m)2 (27)° | 04(01)20 4(U2) @ 4(A1+ U2 [ @ 4(A1) + @ 4(U2) + @ 4 (g +Gp) T2 wé ,

(2.22
|
with B. Examination of the dissipative kernels
Ny 2 am? | 32 Up to this point, the naive implementation of the Markov-
o = 2 ﬂmz % (2.23 ian approximation has been examined and has led from Eq.
eV & 8w mi (2.15 to Eq.(2.21). The applicability of this approximation

is now considered. Returning to the nonlocal EOM Eg.

Finally, we also can easily work out an equivalent model(2.15), we can express for example the term generating the
of @ coupled to bath fields that, rather than fermionic fields,one-loop dissipation contribution in E€2.21) in the general
are scalar fleldsXJ, j=1...N,, with a trilinear coupling  form*
as>; Xl(g]/2)<l>)(J Once agaln by choosing,>2m, we .
haveF —0 but a nonvanishing> decay widthl" ,, WhICh f dt’ o(t ) e(t)K(t,t"),
also has been evaluated in the Appendix. Going through the o
same steps as used to obtain E421), we obtain an analo-
gous expression with a similar dissipative coefficieitp),
except witha, ,— a4\, Where

where the dissipative kernel is given by

2
Ny g 4mx ! “4Although here we analyze the one-loop dissipative kernel in de-
2 6m 1- ZJ (2.29 tail, similar conclusions also can be shown to apply for the more
- my complicated two-loop dissipative kernel in E&.15).
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FIG. 1. The kerneK(t,0)/A2 in Eq. (2.25 for the cased’,(0)/m,=0.1(solid), 0.5 (dashed 1.0(dotted, and 5.0(dot dasheyj plotted
over four different time intervals.

d%q for a given value of” ,(0). Theplots of the kernel are given
K(t,t’)=)\2j 3 over four different time intervals, in order to see the different
(2m) aspects of its behavior.

As can be seen, the kernel has a pronounced, narrow peak

X[‘%COS(Z“’GSH_V|)+F¢Sin(2w¢|t_t’|)] aroundt=t’ followed by a power-law decaying oscillatory

8wfb(rfb+w§)) behavior, with greater decaying as the number of fields
coupled tod increases. Since from E.19 I' ,~ 1/q| for
xexp — 2T 4(q)t—t'[]. (225  |g/>m,, it can be seen from Eq(2.29 that once|q|

=2m,I'(0)[t—t'|, damping from the exponential term
In Fig. 1 K(t,t’=0)/\? is plotted for four cases, relinquishes. Thus for[t—t’'|=1/m, the behavior of
I'4(0)/m,=0.1, 0.5, 1.0, and 5.0. There is a degeneracythe  kernel s K(t,t’)~—}\2Ci[4mé,,l“¢(0)|t—t’|2]
among the parameteh$,, h, andm,, from which to choose ~—)\Zsir[4m¢l“¢,(0)|t—t’|2]/[4m,b1“¢(0)|t—t’| 1. Note this
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long-time behavior of theT=0 contribution of the kernel time being, to be conservative, a similar consistency condi-
differs from its high-temperature component, which wastion to the finiteT case adopted in Ref12] will be imposed,
studied in Refs[11,25. At high temperature, the decay which requires the rate of microscopic physics to be faster
widths at large|q| behave as~T?/|q|, but there are also than all macroscopic motions. Since the only scales charac-
factors of the number density that become Boltzmann supterizing the microscopic physics are the decay rates, this re-
pressed. As such, the high-temperature limit of the kernefjuirement implies
becomes highly exponentially suppressed at large times.

Power-law decay of the kernel ai=0 implies that
memory of the scalar field is retained in E&.15 in deter-
mining its future evolution. As such, the derivative expan-
sion clearly is not generally valid. However, for sufficiently
slow motion of the scalar field, the derivative expansion still

may be valid for some duration of time. In particular, sup- which is analogous to the condition in RefL2], except
poseg/ o~ y in a given solution, where is the approximate  above zero-temperature decay rates are used. In Sec. IV
magnitude of this ratio over some interval of time. Then,some estimates will be given of dissipative dynamics based
self-consistency of this solution with respect to the derivativeon the combined adiabatic-Markovian approximation of this
expansion holds for a time intervéi—t'|<1/y. Thus, as and the previous sections.

mentioned at the beginning of this section, the slower is the

motion of ¢, the longer the above approximation is valid.

Such slowly varying solutions are useful to investigate due to ll. INDIRECT DECAY MODELS

their simplicity. They also may have practical use, for ex-
ample, for warm inflation, where one seeks solutions where
the motion ofg is slow.

> 1 (2.26

This section will consider models in which the particles
ultimately created from dissipation of the scalar field are
: .. coupled indirectly to the scalar field through an intermediate
Although the kernel Eq2.29 does retain past memory, it field. Such a case has much more variety in the types of

's worth noting that on general grounds for reasonaf(ie decay sequences, as compared to the direct decay models of

solution regimes, the memory retention only is up to som
finite time in the past. The observation here is that the OSC|(Iesec Il. The basic model to be examined consists of th_e Sys-
tem, a scalar field®, along with scalar fieldsy;, j

lation rate of the kernel increases with time due to the qua-~

dratic dependence on tim&(t,t’) ~sin@t—t'|?), wherea is =1...N, and fermion fieldsiy, k=1...N,. The La-

a constant. As such, for reasonable motionsppfbeyond granglan den5|ty is given by

some time interval into the pagt—t’|>At,, the character-

istic oscillation frequency of the kernel will exceed thatgof 2

Thus at all times past this point, the contributions freit) T _E 2 My 2_£ 4
‘C[(DIXvak lr/lk]_ (&M(I)) ® ®

primarily cancel. As a practical point, despite this property of 4!
the kernel to filter through increasingly high-frequency com- N 2
. T m
ponents as the time passes, there are limitations to the types i 2 l f,— 4
of ¢(t) motions that it can describe. In particular, this feature - (X)) X; - TRS

of the kernel is most efficiently able to cut off the long-time

memory if the field configuration only has slow frequency J2 Ny

components. As such, ideally the applicability of this kernel 5 D27+ 2 | 16—my, —hy P

is near equilibrium conditions. Note, this also is the regime

assumed in previous work41,12 for the finite temperature Ny

case. — 2 M | % (3.
An additional consistency condition related to the adia- =1

batic approximation at finitd, considered in Refd.12,18,

is that the microscopic dynamics should be much faster than

all macroscopic motions. For the finifle-case, this was a Where all ~ coupling  constants are  positive:
necessary requirement since it guaranteed the system they f ',9, i,k >0.

malized fast enough to adjust to any changes in the macro- As before, we are interested in obtaining the EOM for a
scopic state. The need for rapid thermalization was necessasgalar field configuratiop =(®). For this, the fieldsg; and

for self-consistency of the solutions. In contrast, e 0 ¢ are regarded as part of the environment. Once again the
dynamics treated in this paper does not require a specifigcalar field® is decomposed into its expectation value and
statistical state in which the scalar field evolution occursfluctuation® = ¢+ ¢, where(®)=¢. The EOM for¢ then
Thus, consistency requirements, if any, with respect to thés obtained from the tadpole method by imposing thég
rates of microscopic versus macroscopic dynamics, are less0, which leads to the condition that the sum of all tadpole
well defined for theT=0 case. To properly address this terms vanish. Restricting again our analysis of the EOM to a
guestion, a complete nonequilibrium analysis is necessarjijomogeneous fieleo= ¢(t), we obtain the effective EOM
which is beyond the scope of this paper. However, for theor ¢
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. ) Ao, N o N where the field averages above can be expressed as usual in
() +Mye()+ @ (D) + 5 e(1(¢) + (&%) terms of the coincidence limit of thécausal two-point
Green's functionsz; * (x,x'), G, " (x,x'), andS,, " (x,x")

5 5 for the ®, x;, and lﬂk fields, respectlvely Using the expres-
+]§=:l gTe(O(x)) +(dxH ]+ E hi,o{ Yt =0, sions of the previous section f&** andS* * for the scalar

and fermionic propagators, respectively, and working out the
(3.2 expression analogous to E@.15, we obtain the EOM

. A
e(t)+mf o) +5¢%(1)+\?

[w¢cos(2w¢|t t'])+ T 4sin(2w 4t —t’ |)] d3q

8w¢(F +w¢)

exif — 2T ()]t t|]+—f dt’ et >f 2 (Twy(a)

(2m )3 (2m )3
+ @ 4(02) + 04011 02) 1O [ 4(A1) + @4 (Ap) + @ 4 (A + ) It —t"| }+[T y(qq) + T 4(q2) + T (0

exp{— [T 4(a1)+ T 4(q2) + T y(arta) J[t—t'[}
8w 4(01) w4(02) (01 + )

+ ) Isi{[ @ 4(A1) + 4(2) + 0 g(a+ ) ]|t —t'[}}

1
X
[T (A1) +T 4(A2) + T (A1 +02) 1P+ [ @ 4(01) + 04(02) + @ 4( 01+ ) ]2

N, ‘ _
+j§l gf‘cp(t)ﬁxdtwp(t')@(t’)f

d%q [@,C0820, t=t')+T, sin2w, [t—t'])]
(2m)® 2w§j(r§j+w§j)

exp[—ZFXj|t—t’|]

2 f dt’ (t )f(Z )13 (2m )3{[ X; Q1)+w¢(Q2)+w¢(Q1+Q2)]COS{[wX(Q1)+w¢(Q2)+w¢(Q1+Q2)]

X |t_t,|}+[FXJ.(Q1)+F¢(Q2)+F¢(Q1+ Q2)]3in{[wxj((11)+w¢(Q2)+w¢(Q1+ a2))[t—t"[}}

eXF{_[FXJ.(%)+F¢(Q2)+F¢(Q1+Q2)]|t_t,|]
8jo(Q1)w¢(Q2)w¢(Q1+ d2)

X

1
X
[FXJ-(Q1)+F</>(Q2)+F¢(Q1+ Q2)]2+[wxj(Q1)+w¢(Q2)+w¢(Q1+ a2 1?

Ny ¢ _
+> h2, f dtup(t’)f
k=1 " —®

d3q exd—2r, (@[t-t'[]
(2m)3 wikmfbk(rfm

4 3.2 5 4 2 2
o) [kaw¢k+2w¢km¢k 2m¢kw¢k+r¢kw¢k(w¢k
k

+ mzwk)]cos(2w¢k|t—t’|) + [rwk(zmjk— Fik)(wik— mjk) - rf;k]sin(zwwkn—t' Y

=0. (3.3

The dissipative dynamics in these indirect decay models will differ based on the relation of the masses ardgng; the
and ¢; fields. Consider first the case where tleffective masses satisfy the relation

mg> ij>2ml,,k, (3.9

which we will refer to more specifically as the indirect cascade decay regime. The first attribute of this regime to note is at zero
temperaturel’, and ij are nonvanishing andf ,=0. There are two kinematically allowed on-shell processes; i

+ ¢, With decay widthl" , as given in Eq(2.19), and)(j—u//kJrEk, with decay width
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Ny h&j 4m2¢k 3
U= ——Xm|1- . (3.5
i j m?

=1 87TwX_ X
J Xj

Implementing once again the adiabatic-Markovian approximation of Sec. Il A, we then obtain the same expression for the
EOM as Eq.(2.21), exceptn(¢) now is given by

2 2
A a(i)"#

1287 \mi+ad, V2ymi+tad +2m?

(@)= ¢*(t)

ke o 1 o)
4 (2m)2 (27)° | 04(01)%04(A2) @ 5( A1+ A2) [ @ 4(01) + @ 4(02) + @ 4 (A1 +02) ]2 w<2;s

a2

NX
W
+<P2(t)2l g'=
=

1
i
32m \/mij-l—ai’w \/2\/mj‘(j+ ay ,t me(j

2 2
& glad, [ da oo, 1 rzre
+ 3 3 2 3 +0 2 ’
=1 4 (2m)° (2m) jo(ql) w¢(Q2)w¢(Q1+QZ)[jo(Q1)+w</>(Q2)+w¢>(Q1+QZ)] w
(3.6
|
with a , given by Eq.(2.23 and pation coefficient(p) of order O(hiT" ,)~O(hy), for the
N Lo am2 | 32 first case analyzed in Sec. I, ad(hi 4h; ,), for the case
) L Py ) My, studied in this section. Also, higher-order scalar loop terms
Yo~ & 8o Myl +~ mf( 37D are subleading in the coupling constants, as compared to the
i

results given by Eq92.22 and(3.6). For example, at finite
temperature, scalar ladder diagrafh&,29 are known to be

: " of the same order as the two-vertex one-loop term in the
come solely from the decay channels)gfinto the fermion g, due to on-shell divergences of these diagrams and the
fields ¢4, which then backreact on the system figldin 4y the field decay widths regularize them. However at zero
terms of a damping force. The same effect also would appeggmperature these divergences are not present and ladder dia-
for the case wheréd was the lightest field, grams are at most of orde(r)()\4l“2¢)~(9()\4h‘k‘) for the
model in Sec. II, and)(gfhy; ), for the model in this sec-
tion.

It is interesting to note that the last two terms in E3}16)

ij>2m¢,k> my. (3.8

This regime will be referred to simply as the indirect decay
regime outside the cascade region E84). For this case
I'y=0, oray ,=0 in Eq.(3.6). This type of dissipation, in In this section we will apply the effective equation of
which the system field is lighter than the decay products, wagotion Eq.(2.21), with 5(¢) as given by Egs(2.22 and
first noted by Calzetta and Hd4]. They have shown how a (3.6), to make estimates of entropy production from conver-
heavy field influences the dynamics of a light field in thesion of the scalar field potential energy into radiation. Recall
form of dissipation and fluctuations of the light field, even the applicability of Eq(2.21) is limited, since it requires the
when no aspect of the light field dynamics is above the massalidity of the adiabatic-Markovian approximation of Sec. II.
threshold of the heavy field. This same behavior also can bEor this reason and since as mentioned in the Introduction,
inferred from our results for the above regime. the zero-temperature dissipation found here is indicative of a
Let us finally make a few comments about higher-ordemonequilibrium dynamics that drives the system to finite
loop terms. Observe that the results obtained for the dissipaemperature, we will not delve into detailed applications of
tion coefficients in Eq¥2.22 and(3.6) are the leading-order this effective equation of motion. The full dynamics of this
ones at zero temperatur@()\zhﬁ) and (’)(gfhﬁjyx), respec- problem must be understood before detailed application is
tively. We have neglected higher-order loop contributions toworthwhile. Nevertheless, we will make some naive esti-
the EOM, since they all can be shown also to be of highemates of radiation production from our equations, just to get
order in the coupling constants. For instance, a two-loop cona feeling for the magnitudes of the effect. Note that for ap-
tribution made of a fermion loop with a vertical scalar propa-plication to warm inflation, the fact that dissipation occurs at
gator can easily be seen to give a contribution to the dissiT=0 implies the dynamics automatically will bootstrap the

IV. APPLICATION
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universe to finite temperature, independent of initial condi- Overall, for the direct decay model, the underdamped re-
tions. gime is generic except if there are a very large number of

In general, for a damped equation of motion of the formbath fieldsN> 10, in which case overdamped motion also
(2.21), the regime of overdampe@inderdampedmotion is becomes possible. In the underdamped regime, moderate ra-

diation energy production occurs. In particular during a char-

4.1) acteristic oscillation time~1/m(¢), the produced radiation

' has an associated temperature scales(p,/N,)*
_ _ _ =~ \Ym(¢)/10=m(¢). On the other hand, the overdamped
For the direct decay models in Sec. II, since the dissipativ@egime, although requiring a large number of bath fields, can
coefficient7(¢) is suppressed by two powers of thieself-  yield sizable radiation by increasing the amplituglén Eq.
coupling parameten, we find that underdamped motion (4 5)
generally is possible, unless there are very many environ- Tyrning next to the indirect decay models of Sec. I, the
ment bath fields. For the indirect decay models of Sec. ”lcascade region Eq34) leads to similar solutions as given
the cascade decay regime H§.4) has similar constraints; apove for the direct decay models, so will not be further
thus solutions, as those of the direct decay models of Sec. |é|ab0rated_ However, dissipative dynamics also appears to
However, in the other interesting regime K8.8), the dissi-  occur in the regime Eq3.8), which does not have a direct
pative coefficient and the parameters of thegpotential can interpretation in terms of particle decay at one of the two
be independently tuned, which means the overdamped reteps of the process, the— y transition. We believe further
gime can be identified for as few as one or two heat bathinyestigation of this case is needed in order to obtain a sen-
fields. Both the underdamped and overdamped regimes mayble interpretation of this process, and this is left for future
have application to the chiral transition in heavy-ion colli- work. Nevertheless, here it is interesting to estimate the size
sion[30], whereas the overdamped regime also is of interesyf the dissipative effects for this case. In particular for this
to the warm inflation scenarif21]. Below, both the direct case, the overdamped regime can easily be obtained as will
and indirect decay models will be examined. be shown next. The overdamped regime requires the condi-

For the direct decay model, the overdampemder- tjon in Eq.(4.1) and the adiabatic condition requires
damped regime from Eqs(2.22), (2.23, and(4.1) is given
by

A
m*(p)=mg+ = ¢?<(>) n*(e).

e mi(e)
AN, e e Lx “-8
=(=)1, 4.2
204872 = (4.2

Since the scalar field sector has two free parametegsand

X, it is always possible to tune?(¢) to satisfy both the
above requirements independentldf, 7(¢), and for any
amplitudee.

In the overdamped regime, the kinetic energy of the scalar
d is negligible. Thus, the loss in its potential energy trans-
lates into the energy released into radiatigras

where the Yukawa couplingy is determined by requiring
m,~he<m(¢)/2~ JN¢/2. Thus, even for strong coupling
A~1, it requiresN = 10* fields for the overdamped regime.

Considering first the underdamped regime, the adiabatiﬁel
condition Eq.(2.26) requires

¢ . h®N,, AN, 43

m?(¢)

¢~V(¢)

where for underdamped motion from Eq2.2) ¢ <V(e)T,, 4.7
=m(¢) . The energy dissipated by the scalar field goes into

radiation energy density,, here composed of fermions \yhere the second line follows from Eq.21) and (3.1).
and/or scalar bosons, at the rate Generally the microscopic scale is determinedhy In this
time interval, we find the radiation to increase to

_ P P
pr(D)=7n(¢)d =T dpf T Meet ge

. dE, , NNym>(e)
pi="gq; ~ e = ooae? (4.4) 2
m(l/FX)%vw)mn(F“’) <V(e), (4.9

X

where to obtain the last expression we estimaté

_”m2(<P)<P2- For the overdamped regime from E@.21),  \here to obtain the right most expression we used(E®).
e=m?(@) ol n(p). Writing 7(¢)=Qm(¢), from Egs. Thus the energy dissipated into radiation is proportional to
(2.22 and (2.23 Q~\2N/(20487%) and for overdamping the potential energy contained in the scalar field. To consider
Eq. (4.1 requiresQ>1. This requirement of overdamping some numbers, for example, typical for inflation, suppose the
automatically implies the adiabatic condition EQ.26) is  potential energy is at the GUT scaleV(p)Y

satisfied. Thus the radiation production in this case is ~10'71% GeV andm?()/(nl',)~10"*. For this, it im-
3 5 plies a radiation component is generated which, if expressed
. M(p)e in terms of temperature, is at the sca@le 10+ 1° GeV, and
pr~—. (4.5 o L . . . .
Q this is non-negligible. The main point to note is that consid-
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erable radiation production can occur from the indirect decay It should be clarified that the results found in this paper in

models in the regime Ed3.8). no way require supersymmetry. However, these calculations
easily could be applied in supersymmetry models. In such
V. CONCLUSION models, it is becoming appreciated that to avoid gravitino

overproduction, for any type of inflation scenario, the tem-
Although the calculations in this paper were for nonex-perature of the universe after inflation cannot be very high
panding Minkowski spacetime, a brief reflection will be T<10" GeV [32]. From this perspective, the possibility
made here on the consequences of these results for inflatiofeund in this paper for low-temperature warm inflation solu-
ary cosmology. In this case, the background space is expantlens in the direct decay models would be phenomenologi-
ing. The effect of the interaction between the scalar field, incally attractive.
this case called the inflaton, and the background metric is One cautionary remark is in order. Since,~H, the

known to yield a 3¢ term in the inflaton effective equation lower limit on the temperature during inflation that is sug-

of motion, where the Hubble parametde=a/a anda(t) is gested above, is below the so-called Gibbons-Hawking
the cosmic scale factor. As well known, this term does not‘temperature” Tgy=H/(27). HoweverTgy does not rep-
arise from microscopic interactions with other fields, butresent a temperature in the usual sense of a thermal bath of
rather from the macroscopic interaction with the backgroundparticles. Tgy acts like a temperature in the formal sense,
metric of gravity. Precisely this disparity in scales and thethat for a noninteracting scalar field in de Sitter space, its
difference in origin of the interactions suggests that the effecEuclideanized de Sitter invariant Green’s function is periodic
of this term and the dissipative term computed in this papefm imaginary time. The role thaf sy plays in this Green’s
will act independently on the inflaton to a good approxima-function is formally the same as what actual temperature
tion, with perhaps some self-consistency requirements. Aplays in the static thermal Green’s function in Minkowski
present, we are extending our calculation to expanding spacgace. However, for the noninteracting scalar field in the de
time in order to examine this point. Should this paper rendeitter case, there are no particles present in the sense that the
true the expectations from Sec. IV for dissipation, it will be field is in a vacuum Stat%]n contrast, the radiation produc-
difficult to justify the supercooled inflation picture, rather it tion we have computed for the interacting scalar field results
would appear the warm inflation picture is the natural one. jn real particle production, irrespective of whether its asso-
For the moment, assuming the correctness of the abovgated temperature is above or beldwy, .
expectations, a lower bound on the temperature of the uni- |5 summary, this paper has studied dissipative effects of
verse dUring inflation can be estimated from the direct deca}hteracting scalar fields at zero temperature_ Similar treat-
model. In typical inflation modelsn,~H for supercooled ments along this line are limitef2,13,14 and one of the
inflation andm,, is perhaps a few orders of magnitude biggerfeatures of this paper is the appropriate inclusion of quasi-
than H for warm inflation. Furthermore, the conditions on particles effects through the fully dressed zero-temperature
density perturbations generally require the inflaton selftwo-point Green’s functions. Another feature of our analysis,
coupling parameter to be tiny~10"'°-107"'° In an ex-  which has been studied only to a limited extent in the litera-
panding background, the evolution of the radiation in presture, is a detailed examination of the dissipative kernel in
ence of a dissipating scalar field source is given by(B)  Sec. Il B. The models examined in this paper were generic
with the addition of the term-4Hp, to the right-hand side, and in all cases dissipation was found. Since dissipative ef-
which accounts for the redshift of the radiation due to backfects are seen for the zero-temperature state, we conclude
ground expansion. Therefore, in steady state=0,p, that radiation production from dissipation is invariably
~ n@?(4H), or the associated temperatdfe- (p, /g*)V4, ~ Present for generic interacting scalar field systems, although
where we take the number of light particlg& ~N. With the extent of radiation production can vary |mrr_1ensely. M|n|-
these estimates, based on B43), we ﬁnd-l-z}\1/2m¢/10_ If mally, it appears the mass of the scalar field times a suitable
m¢~1010 GeV as a typical value, then this implieB d|men.S|onIess coupling constant sets a lower I|_m|_t to the
~(10°-10) GeV. associated tempgrature scale of the produced (ad|at|on. How-
In order not to affect the successful predictions of nucleo€Ver: for the indirect decay models in the region Ei8),
synthesis, the primary requirement is that the universe shoulti€ré appears a much more robust possibility for producing
be well within the hot big-bang radiation dominated regimefadiation. Although formally this is what is indicated by our
by T~10 MeV. Slightly more conservative, though not nec- qalculatlons, as mennoned earlier, we feel further_mvesuga—
essarily mandatory, is to require that the QCD phase transfion Of these indirect decay models is necessary in order to
tion atT=1 GeV occurs within the radiation dominated era. ©Ptain a sensible interpretation of its dissipative process. In

So a safe lower bound for inflation to end and the radiatiof€9ard to the potential implications of the results found in
dominated era to commence &=1 GeV. As such, the thls_ paper to inflationary cosmoI(_)gy, we |_nfer that L_err ge-
lower limits for radiation production during the inflation neric circumstances, the scalar inflaton field will dissipate a

given above still would be above this lower limit require- non-negligible amount of radiation during inflation. In par-

ment set by cosmology. The results found here may be a|st('5cular, the lower bound suggested by the above estimates for

useful in applications to the low-temperature regimes of
warm inflation identified in the phenomenological studies of
Ref. [31]. SWe thank Larry Ford for this clarification.
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the direct decay models already are sufficiently high to preserve that the expression in the square brackets is Lorentz
clude a mandatory requirement for a reheating. Furthermorenvariant, thus most conveniently it is evaluated in the rest
the upper bound from the indirect decay models in the reframe of the initial particlgp=0.

gime Eq.(3.8) could yield very high-temperature warm in- For the scalar to 2 fermion modeh (s the Yukawa cou-
flation solutions, in the range discussed below E§8).  pling)

However, these only are expectations suggested by the cal-

culations in this paper. Verification of these expectations re- Ly=— hd)(x)E(x)z/r(x), (A2)
quires a proper extension of these calculations to expanding
spacetime, which we currently are examining. which implies
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APPENDIX A I'(p)= 87o(D) 1- E (A5)

In this appendix the decay widths for the procesges
— ¢+ (or y—y+¢) and ¢— x+ y are derived. Recall For the scalar to two scalar model, with coupling constant
the basic expression for the decay of an initial particle ofd: We have instead that
momentump into two particles,

g )
L d%, d% == 5 XX, (A6)
PO = 5| [ =2 @m oWkt p)
@pl ) (2m)7 (2m) which implies
x o -m) a(k3—my) TT (2m) 3 M2, M=—ig%, (A7)
fermmq Spirs;
and so
(A1)
where w,= Vp?+ M2, M is the mass of the scalar decaying I'(p)= ( 1— (A8)
field, andm stands for the mass of the decay products. Ob- 167w 4(p) M2
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