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The Effects of Gravitational Slip on the Higher-order Moments of the Matter

Distribution

Scott F. Daniel∗1

1Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 USA

(Dated: July 17, 2017)

Cosmological departures from general relativity offer a possible explanation for the cosmic ac-
celeration. To linear order, these departures (quantified by the model-independent parameter ̟,
referred to as a ‘gravitational slip’) amplify or suppress the growth of structure in the universe
relative to what we would expect to see from a general relativistic universe lately dominated by a
cosmological constant. As structures collapse and become more dense, linear perturbation theory
is an inadequate descriptor of their behavior, and one must extend calculations to non-linear order.
If the effects of gravitational slip extend to these higher orders, we might expect to see a signature
of ̟ in the bispectrum of galaxies distributed on the sky. We solve the equations of motion for
non-linear perturbations in the presence of gravitational slip and find that, while there is an effect
on the bispectrum, it is too weak to be detected with present galaxy surveys. We also develop a
formalism for incorporating scale dependence into our description of gravitational slip.

I. INTRODUCTION

A universe in which gravity obeys the laws of general relativity and is filled with baryons and cold dark matter
ought to decelerate. If we write the spatially-flat Robertson Walker metric

ds2 = a(τ)2[−dτ2 + dr2 + r2dΩ2]. (1)

deceleration means that ȧ ≡ da/dτ decreases with time. This is not the case in the Universe in which we live.
Observations of distant supernovae indicate that our universe is, in fact, accelerating (ȧ is growing with time) [1, 2].
To date, there are many theories vying to explain this acceleration. These theories can be generally divided into two
categories: theories of dark energy and alternative theories of gravity. If we write Einstein’s equations as

Rµν −
1

2
gµνR = 8πGTµν ,

dark energy attempts to explain the acceleration by modifying the right hand side (i.e., by positing that the universe
is filled with an exotic new material). Alternative theories of gravity attempt to explain the acceleration by modifying
the left hand side (i.e., by supposing that the laws of gravity obey different equations of motion on cosmological scales
than they would under general relativity). Great diversity exists within both categories.
Dark energy can be Einstein’s cosmological constant [3], a uniform energy density associated with the vacuum.

Although this is the explanation currently favored by the data, there is no theoretical calculation justifying the
observed value of the constant. Dark energy may also be a cosmological scalar field [4] evolving slowly through its
potential V such that the equation of state w ≡ p̄/ρ̄ < 0 at late times. If this were the case, we would expect to see
w evolve with redshift at early times, which we do not. Dark energy could also be a vector field [5], though these
theories often introduce preferred reference frames or couplings between scalar and vector perturbation modes which
we have yet to observe.
Alternative gravity can be a scalar-tensor theory [6] in which the dark energy scalar field is non-minimally coupled

to the curvature terms in the Einstein-Hilbert action. These theories tend to predict departures from Newton’s law of
gravitation, though the simplest of them merely manifest themselves as a rescaling of Newton’s constant G. There are
also theories which modify gravity by introducing an arbitrary function of the Ricci scalar f(R) into the gravitational
Lagrangian [7, 8, 9]. These theories tend to introduce new scale-dependent effects into the evolution of large scale
structure. Tensor-vector-scalar (TeVeS) theory [10, 11] adds tensor and vector fields to the mix of scalar-tensor theory.
These theories require precise couplings to avoid the pit-falls of vector dark energy noted above. Multi-dimensional
braneworld theories (like the Dvali-Gabadadze-Porrati – DGP – model) [12, 13, 14] attempt to account for cosmic
acceleration by allowing gravity to act in dimensions outside of our 3+1 Universe, imposing a scale beyond which the
expected gravitational attraction is damped. Theories inspired by quantum mechanics, such as a Lorentz-violating
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massive graviton [15], reproduce solar system tests of gravity but introduce new classes of cosmological perturbations
which may or may not show up in our measurements of large scale structure, depending on initial conditions.
All of these theories have solutions that can provide late-time cosmic acceleration. Successfully navigating this

labyrinth of viable theories requires a set of observations complementary to the expansion of the universe for which
different theories of gravity or dark energy predict different effects. The growth of cosmic structure provides one such
set of observations. We model that growth using cosmic perturbation theory. If we consider only perturbations that
transform like scalars, the first-order perturbed form of equation (1) is

ds2 = a2[−(1 + 2ψ)dτ2 + (1− 2φ)d~x2]. (2)

Neglecting the cosmic scale factor a, the potentials ψ and φ – known respectively as the Newtonian and longitudinal

potentials – supply the right hand sides of Newton’s law of gravitation ~̈x = −~∇ψ and the Poisson equation 4πGa2δρ =
∇2φ. Consistent with Newtonian dynamics, general relativity in the presence of non-relativistic stress-energy predicts
that φ = ψ. Alternative theories of gravity make no such guarantee. Each of the gravity theories cited above implies
its own unique relationship between φ and ψ [6, 8, 9, 11, 12, 13, 14, 15].
Lacking theoretical justification to prefer one alternative gravity theory over another, we will content ourselves

searching for evidence of gravitational slip (our word for the difference between φ and ψ) in general. Following
Caldwell et al. [16], we parametrize the relationship between φ and ψ as

ψ = (1 +̟)φ (3)

̟ = ̟0a
3. (4)

Obviously, the scale independence and redshift dependence of equation (4) are assumptions on our part. Because we
are interested in gravity theories which might explain the late time cosmic acceleration, we suppose that φ ≈ ψ at
high redshift and that gravitational slip should grow as the inverse of the matter density. For the purposes of our
calculations, we will assume that the expansion history of the Universe exactly matches that of a ΛCDM universe,
that is a universe which obeys general relativity (̟=0) and in which the acceleration is caused by a cosmological
constant contributing a fraction ΩΛ < 1 to the current density of the Universe.
Equation (3) is obviously not the only possible parametrization of modified gravity. References [17, 18, 19, 20, 21,

22, 23, 24] all explore different model-independent expressions of φ 6= ψ. Reference [25] discusses the consistency of
our choice (3) with these other parametrizations. In the end, it is simply a question of nomenclature.
References [25, 26], derived the linear-order equations of motion by perturbing a Robertson Walker metric (1) in

the presence of a homogeneous, isotropic stress energy tensor

T µ
ν = diag(−ρ̄, p̄, p̄, p̄) (5)

and constrained ̟0 against CMB, supernova, and weak lensing (of galaxies) data sets. Specifically, reference [26]
found the constraint ̟0 = 0.09+0.74

−0.59 (2σ). Reference [27] also tested equation (3), but against CMB and weak lensing
(of the CMB) data sets. They also promoted the redshift dependence of equation (4) to a new free parameter. They
found ̟0 = 1.67+3.07

−1.87 (2σ). Both results are consistent with a ΛCDM universe obeying the laws of general relativity,
but with significant room for departure (φ = ψ within a factor of a few). In this paper, we will attempt to complement
those explorations by calculating the effect of non-zero ̟ on the growth of structure in the Universe beyond linear
order.
As gravitational collapse of structures progresses, the gravitational fields within overdense regions of the universe

grow so that effects beyond linear order become important. Even in a ̟ = 0 universe, this causes the distribution
of overdensities to evolve away from their initial Gaussian distribution [28]. These departures from Gaussianity are
evidenced in the bispectrum, the Fourier transform of the three-point correlation function of galaxies. By altering
the growth of structure [26], ̟ ought also to alter these departures from gaussianity, an effect which we hope will
be detectable in modern galaxy surveys. Section II will derive the equations of motion for cosmic overdensities in
the case of ̟ 6= 0 to “quasi-linear” order. Section III will translate these results into Fourier space. Section IV
will calculate the resulting effects on the bispectrum. Section IVA includes the effects of galaxy bias and redshift
distortions. Section V will consider the effect of adding scale dependence to ̟. Section VI will discuss our results.
Appendix A compares the results of our equations of motion (derived in Section II using Eulerian Perturbation
Theory) to previous results derived in Lagrangian Perturbation Theory. Appendix B discusses the averaged second
order moment of the overdensity distribution (the skewness). Appendix C extends our results to the next higher
quasi-linear order, calculating the effect of scale-independent ̟ on the kurtosis of the overdensity distribution.
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II. EQUATIONS OF MOTION

This paper will work in the convention of Eulerian Perturbation Theory (see Appendix A for a discussion of
Lagrangian Perturbation Theory). We will directly evolve the perturbed quantities φ, δ ≡ (ρ − ρ̄)/ρ̄ and ~v, the
perturbed velocity field in the cold dark matter fluid. References [16, 25, 26] discuss how to modify the linear-order
equations of motion for these perturbed quantities in the case of ̟ 6= 0. For the sake of brevity, we will merely
summarize that discussion here. Of the linear-order perturbed Einstein equations presented in reference [29], the
time-time and diagonal space-space are discarded. The time-space Einstein equation is preserved as a consequence of
the assumption that the cold dark matter fluid remains, on average, at rest in our reference frame. A term is added
to the off-diagonal space-space Einstein equation so to provide for ̟ as a new source of cosmic shear. Because we
have discarded the time-time and diagonal space-space Einstein equations, we can no longer assume that the Poisson
equation is valid. This will be important when deriving the quasi-linear equations of motion below.
At quasi-linear order, gravitational collapse has advanced such that

δ, v/c≫ φ/c2, ψ/c2, (6)

i.e. the dynamics of the local fluid dominate the dynamics of the spacetime. The metric is still Robertson Walker,
but now, the stress energy tensor (5) is replaced by that of a perfect fluid

T µν = (ρ̄+ p̄)uµuν + gµν p̄

where uµ are the components of the fluid’s four-velocity [30]. To consistently determine the smallness of perturbed
quantities, we explicitly include factors of c in the perturbed metric (2), giving

ds2

c2
= −a2

(
1 + 2

ψ

c2

)
dτ2 +

a2

c2

(
1− 2

φ

c2

)
d~x2 (7)

We derive our equations of motion by solving for the dynamics of this reformulated system to zeroth order in 1/c.
This is equivalent to assumption (6).
Requiring uµuµ = −1, we find that

uµ = γ

[
1

a

(
1−

ψ

c2

)
,
~v

a

(
1 +

φ

c2

)]
(8)

where γ = 1/
√
1− ~v2/c2, as usual. Thus, to the required order (because we are considering perturbations in the

matter distribution, we set p̄ = 0),

∇µT
µ0 =

γρ̄

a2

(
δ̇ + ∂i(1 + δ)vi

)
= 0 (9)

∇µT
µi =

γρ̄

a2
(
v̇i +Hvi + vj∂jv

i + ∂iψ
)
= 0 (10)

R0i −
1

2
g0iR = 8πGT0i

=
1

c2
(2∂0iφ+ 2H∂iψ)

= −8πGa2viρ̄(1 + δ)
1

c2
(11)

where H is the conformal time Hubble parameter H ≡ ȧ/a. Note that, to lowest order, ∂i = a−2δij∂j . Equations (9)
and (10) also correspond to equations (2) and (3) of Catelan and Moscardini’s paper deriving the quasi-linear fluid
equations of motion in unmodified general relativity [31]. Their third equation of motion derives from the Poisson
equation, which we discard in favor of our equation (11). (Note that Catelan and Moscardini use the coordinate time
t where we use the conformal time τ). Following Catelan and Moscardini’s lead, we substitute equation (9) into the
divergence of equation (10) to get

δ̈ +Hδ̇ = (1 +̟)∂iδ∂iφ (12)

+∂ij [(1 + δ)vivj ] + (1 + δ)(1 +̟)∇2φ

where we have used equation (3) to rewrite ψ in terms of φ and ̟. In our notation ∇2 ≡ ∂i∂i. Using equation (9),
we can rewrite equation (11) as

3

2
H2Ωmδ̇ = ∇2

(
φ̇+H(1 +̟)φ

)
(13)
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the time derivative of which is

3

2
ΩmH2

(
δ̈ −Hδ̇

)
= ∇2

(
φ̈+H(1 +̟)φ̇

+H2(1 +̟)φ(1 −
3

2
Ωm) +H ˙̟ φ

)
.

Using equation (13), we find

3

2
ΩmH2

(
δ̈ +Hδ̇

)
= ∇2

(
φ̈+H(3 +̟)φ̇ (14)

+H2(1 +̟)φ(3 −
3

2
Ωm) +H ˙̟ φ

)
.

Equations (12) and (14) provide an algorithm by which we can solve for φ and δ to arbitrary order. Once we have
solved for φ and δ, it is a simple matter to use equation (9) to find ~v.
Assume that φ, δ and ~v can be expanded as φ =

∑
i φ

(i) etc., where φ(i) ≫ φ(j>i) (i.e., “φ(i) is the ith order part
of φ”). In that case, we can expand equations (12) and (14) to a given order n, then use the proportionality between
their left hand sides to get a single equation of the form

∇2

(
φ̈(n) + φ̇(n)H(3 +̟) + φ(n)

[
H23(1 +̟)(1 − Ωm) +H ˙̟

]
)

=
3

2
ΩmH2S(n) (15)

S(n) ≡
∑

a+b+c=n

{
(1 +̟)∂iδ

(a)∂iφ
(b) + ∂ij [(1 + δ(a))v(b)iv(c)j] + δ(a)(1 +̟)∇2φ(b)

}
(16)

where the source terms S(n) come from the non-linear part of equation (12). After solving equation (15) for ∇2φ(n),
one can use equation (12)

δ̈(n) +Hδ̇(n) = S(n) + (1 +̟)∇2φ(n) (17)

to solve for δ(n).
Comparing equations (15) and (17), we see that, even though the Poisson equation no longer holds, φ and δ are

still separable at first order (φ = f(τ)ϕ(~x) and δ = D(τ)ξ(~x)) and related such that the spatial parts of δ are the
Laplacians of the spatial parts of φ (i.e., ξ = ∇2ϕ). Indeed, to first order

φ(1) = f(τ)ϕ(~x) (18)

δ(1) = D(τ)∇2ϕ(~x) (19)

~v(1) = −Ḋ~∇ϕ (20)

ḟ + fH(1 +̟) =
3

2
ΩmH2Ḋ

D̈ +HḊ = (1 +̟)f.

At higher orders, the expressions are less compact

φ(2) = α(τ)A(~x) + β(τ)B(~x)

δ(2) = Da∇2A+Db∇2B (21)

~v(2) = ~∇A(−Ḋa +DḊ)− ~∇BḊb, (22)

where

∇2A = ∂i
(
∇2ϕ∂iϕ

)
(23)

∇2B = ∂ij (∂iϕ∂jϕ) (24)

α̈ = −α̇H(3 +̟) +
3

2
ΩmH2(1 +̟)Df − α

[
3H2(1 +̟)(1− Ωm) + ˙̟ H

]
(25)

β̈ = −β̇H(3 +̟) +
3

2
ΩmH2Ḋ2 − β

[
3H2(1 +̟)(1 − Ωm) + ˙̟ H

]
(26)

D̈a = −HḊ
a
+ (1 +̟)α+ (1 +̟)Df (27)

D̈b = −HḊ
b
+ (1 +̟)β + Ḋ2. (28)
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In the ̟ = 0 limit, these expressions agree with the GR results of [32]. There are seven different spatial functions
comprising φ(3). We present them in Appendix C 1.
We now only lack initial conditions on the relevant growth terms in our attempt to solve for δ in the quasi-linear

regime. Since the power spectrum Pδ is initially Gaussian, non-linear growth terms (i.e., α and β from equation (21))
are integrated from the early-time initial conditions αi = 0, α̇i = 0. To find the initial conditions for the linear growth
terms f and D, we combine the first order equations of motion (12) and (13), giving

D̈ + ḊH = (1 +̟)f

ḟ + fH(1 +̟) =
3

2
ΩmH2Ḋ

to get

ḟ =
3

2
ΩmH2Ḋ −H2Ḋ −HD̈

= −ḢḊ −HD̈

= −
d

dτ

(
HḊ

)

f = −HḊ + C (29)

where C is a constant. Since we assume that lima→0̟ = 0, we use the ΛCDM equations of motion combined with
the Poisson-equation result f = (3/2)ΩmH2D to find the correct value for C for a given Ωm. This value changes

depending on the initial conditions assumed for D and Ḋ. However, the normalization of the measured statistic (56)
means that our final results are resilient to such choices. Figure 1 plots the effect of gravitational slip on the first
order growth function D and its derivative. Figure 2 plots the same effects on the second order growth functions Da

and Db.

0 0.2 0.4 0.6 0.8 1
a

-0.4

-0.2

0

0.2

∆D
/D

G
R

ϖ0=−2.0
ϖ0=2.0
ϖ0=6.0

(a)

0 0.2 0.4 0.6 0.8 1
a

-0.4

-0.2

0

0.2

0.4

∆f
1/f

1,
G

R

ϖ0=−2.0
ϖ0=2.0
ϖ0=6.0

(b)

FIG. 1: We plot the change in the first order growth functions D and f1 ≡ a

D

dD

da
resulting from varying ̟0. Note that f1

is a different parameter from the f used in equation (18). All other parameters are set to be the WMAP 5-year maximum
likelihood values [33]. The change is calculated relative to a ̟ = 0 (GR) model so that ∆D/DGR = (D − DGR)/DGR. As

found in [25], ̟0 > 0 amplifies the growth of δ(1), while ̟0 < 0 suppresses it.

III. FOURIER TRANSFORM OF 〈δn〉

In Section IV we will derive an expression for the bispectrum of the matter distribution in the case of ̟ 6= 0. This
calculation will require taking the Fourier transform of terms like 〈δn(~x)〉 for n > 1, which we illustrate below.
If we expand δ(~x) =

∑
i δ

(i)(~x), then

〈δn〉 = 〈(δ(1))n〉+ n〈δ(2)(δ(1))n−1〉+ n〈δ(3)(δ(1))n−1〉+

(
n

2

)
〈(δ(2))2(δ(1))n−2〉+ . . . (30)

(note: superscripts in parentheses are orders of expansion; superscripts outside parentheses are exponents). Therefore,
in order to get the Fourier tranform of 〈δn〉, we first need the Fourier transform of 〈δ(i)〉. From the form of equation
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FIG. 2: We plot the change in the second order growth functions Da and Db resulting from varying ̟0. All other parameters
are set to be the WMAP 5-year maximum likelihood values [33]. In the case of solid lines, ∆Di ≡ Di − Di

GR. In the case of
dashed lines, the second order growth functions are normalized by a factor of D2 (D is the first order growth function) so that
∆Di ≡ Di(DGR/D)2 −Di

GR. The normalization greatly diminishes the effect of varying ̟0, indicating that most of the effect
of ̟0 on the higher order growth functions enters as a normalization.

(17), we can see that

δ(i)(~x) = D(i)(τ)∆(ϕ1 , ϕ2, . . . , ϕi) (31)

where D(i) stands for some combination of ith order growth functions and ∆ is some combination of spatial derivatives
acting on the i powers of ϕ(~x) (see, for example, equation 21). Taking the Fourier transform of this qualitative δ(i),

we find (here we will introduce the notation δ̃
(i)
a ≡ δ̃(i)(~ka))

δ̃(i)(~k) =

∫
d3x

(2π)3/2
e−i~k~xD(i)∆(ϕ1, . . . , ϕi) (32)

=

∫
d3xd3k1...i

(2π)
3
2
(i+1)

ei~x(
P

i
j=1

~kj−~k)D(i)K

i∏

m=1

ϕ̃m (33)

=

∫
d3k1...i

(2π)
3
2
(i−1)

δ3D(~k −

i∑

j=1

~kj)D
(i)K

i∏

m=1

ϕ̃m (34)

=

∫
d3k1...i

(2π)
3
2
(i−1)

δ3D(~k −

i∑

j=1

~kj)×
(−1)iD(i)K

(D(1))i

i∏

l=1

δ̃
(1)
l

k2l
(35)

(note d3k1...i ≡
∏i

j=1 d
3kj) where, in going from equation (32) to (33), we have taken the Fourier transform of each

individual factor of ϕ(~x) in equation (31). K represents the combination of wave vectors {~k1, ~k2, . . .~ki} deriving from
the differential operator ∆. δ3D is a Dirac delta function. We used equation (19) to go from equation (34) to (35).

From equation (35), we can see that a term of the form δ(i)(~x)(δ(1)(~x))n can be written in terms of Fourier transforms
as

δ(i)(~x)(δ(1)(~x))n =

∫
d3kd3k1...n

(2π)
3
2
(n+1)

ei~x(
~k+

P

n
j=1

~kj) × δ̃(i)
n∏

m=1

δ̃(1)m

=

∫
d3kd3k1...n

(2π)
3
2
(n+1)

d3k′1...i
(2π)

3
2
(i−1)

ei~x(
~k+

P

n
j=1

~kj)
n∏

m=1

δ̃(1)m × δ3D(~k −
i∑

l=1

~k′l)
(−1)iD(i)

(D(1))i
K

i∏

b=1

δ̃
(1)′
b

k′2b
(36)

where, to be explicit, the k′j wave vectors come from the Fourier transform δ̃(i). Integrating the right hand side of

equation (36) over the wave vector ~k, we see that

δ(i)(~x)(δ(1))n =

∫
d3k1...i+n

(2π)
3
2
(i+n)

ei~x·(
Pi+n

j=1
~kj) ×

D(i)

(D(1))i
K

∏i
l=1 k

2
l

i+n∏

j=1

δ̃
(1)
j
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whence

〈δ(i)(~x)(δ(1))n〉 =

∫
d3k1...i+n

(2π)
3
2
(i+n)

ei~x·(
Pi+n

j=1
~kj) ×

(−1)iD(i)

(D(1))i
K

∏i
l=1 k

2
l

× 〈δ̃
(1)
1 . . . δ̃

(1)
i+n〉. (37)

At this point, it is useful to recall that, for a Gaussian field (like δ̃(1)),

〈δ̃
(1)
1 δ̃

(1)
2 . . . δ̃(1)n 〉 = 0 n odd (38)

= 〈δ̃
(1)
1 δ̃

(1)
2 〉〈δ̃

(1)
3 δ̃

(1)
4 〉 . . . 〈δ̃

(1)
n−1δ̃

(1)
n 〉

+ permutations n even (39)

so that, for example

〈δ̃
(1)
1 δ̃

(1)
2 δ̃

(1)
3 〉 = 0

〈δ̃
(1)
1 δ̃

(1)
2 δ̃

(1)
3 δ̃

(1)
4 〉 = 〈δ̃

(1)
1 δ̃

(1)
2 〉〈δ̃

(1)
3 δ̃

(1)
4 〉

+〈δ̃
(1)
1 δ̃

(1)
3 〉〈δ̃

(1)
2 δ̃

(1)
4 〉

+〈δ̃
(1)
1 δ̃

(1)
4 〉〈δ̃

(1)
3 δ̃

(1)
2 〉.

From this, we see that the right hand side of equation (37) involves (i + n − 1)(i + n − 3) . . . (1) terms if (i + n) is
even. If (i + n) is odd, equation (37) is identically zero. Finally, we recall that

〈δ̃
(1)
1 δ̃

(1)
2 〉 = δ3D(~k1 + ~k2)Pδ(k1) (40)

Combining these results with equation (30) gives us an algorithm for evaluating the higher order correlation functions
of the δ distribution. We illustrate this by considering the bispectrum.

IV. THE BISPECTRUM

The bispectrum is the three point equivalent of the power spectrum, i.e. it is the Fourier transform of the three-point
correlation function. In the expression

〈δ(~x1)δ(~x2)δ(~x3)〉 = 〈

∫
d3k1...3
(2π)9/2

ei
P

3

j=1
~xj

~kj

3∏

l=1

δ̃(~kl)〉

=

∫
d3k1...3
(2π)9/2

ei
P

3

j=1
~xj

~kjB(~k1, ~k2, ~k3)

B is the bispectrum. From equations (30) and (38), we see that the three-point correlation function will, to leading
order, be made up of three terms like

〈δ(2)δ(1)δ(1)〉.

We write δ(2), using equations (21), (23) and (24), as

δ(2) = Da
(
∂iϕ∂i∇

2ϕ+∇2ϕ∇2ϕ
)
+Db

(
∂ijϕ∂ijϕ+∇2ϕ∇2ϕ+ 2∂iϕ∂i∇

2ϕ
)
.

From equation (35), we see that this means

δ̃(2)(~k) =

∫
d3k′d3k′′

δ̃(~k′)δ̃(~k′′)

D2
δ3D(~k − ~k′ − ~k′′)×

[
Da
(
1 +

~k′ · ~k′′

k′2

)
+Db

(
1 + 2

~k′ · ~k′′

k′2
+

(~k′ · ~k′′)2

k′2k′′2

)]

=

∫
d3k′

(2π)3/2
δ̃(~k′)δ̃(~k − ~k′)

D2

[
Da
(
1 +

~k′ · (~k − ~k′)

k′2

)
+ Db

(
1 + 2

~k′ · (~k − ~k′)

k′2
+

(~k′ · (~k − ~k′))2

k′2(~k − ~k′)2

)]
(41)
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We can now average equation (41) with two factors of δ̃(~k) to find the form of the bispectrum.

〈δ̃
(1)
1 δ̃

(1)
2 δ̃

(2)
3 〉 =

∫
d3k4
D2

〈δ̃
(1)
1 δ̃

(1)
2 δ̃

(1)
3−4δ̃

(1)
4 〉 ×

[
Da
(
1 +

~k4 · (~k3 − ~k4)

k24

)
+Db

(
1 + 2

~k4 · (~k3 − ~k4)

k24
+

(~k4 · (~k3 − ~k4))
2

k24(
~k3 − ~k4)2

)]

=

∫
d3k4
D2

{
P (k1)P (k2)δ

3
D(1+3−4)δ

3
D(2+4) + P (k1)P (k2)δ

3
D(1+4)δ

3
D(2+3−4) + P (k1)P (k4)δ

3
D(1+2)δ

3
D(3)

}

×
[
Da
(
1 +

~k4 · (~k3 − ~k4)

k24

)
+Db

(
1 + 2

~k4 · (~k3 − ~k4)

k24
+

(~k4 · (~k3 − ~k4))
2

k24(
~k3 − ~k4)2

)]
(42)

(note δ3D(i+j−l) ≡ δ3D(~ki + ~kj − ~kl)) where we have used equation (40) to get the power spectra and δ3D factors.

Note that, by the coefficients of the growth terms, the δ3D(~k3) term will vanish upon integration. Once that term is

discarded, we see that the bispectrum is proportional to δ3D(~k1 + ~k2 + ~k3). Specifically

B(~k1, ~k2, ~k3) =
P (k1)P (k2)

D2

[
Da(1 +

~k2 · ~k1
k22

) +Db(1 + 2
~k2 · ~k1
k22

+
(~k2 · ~k1)

2

k22k
2
1

]
δ3D(~k1 + ~k2 + ~k3)

+
P (k1)P (k2)

D2

[
Da(1 +

~k2 · ~k1
k21

) +Db(1 + 2
~k2 · ~k1
k21

+
(~k2 · ~k1)

2

k22k
2
1

]
δ3D(~k1 + ~k2 + ~k3)

+permutations. (43)

It is straightforward to integrate the equations in Section II and determine how ̟0 affects equation (43). It is less
straightforward to turn this calculation into a real-world constraint on ̟0.

A. Galaxy bias and redshift distortions

It is presently impossible to measure the dark matter density at all points in space. As its name suggests, we
cannot see dark matter. We can only see the galaxies that form in dark matter haloes. Going from astronomical
observations to a determination of the bispectrum (43) requires assumptions about how the galaxy distribution tracks
the dark matter distribution (the “galaxy bias”) for which we have little theoretical motivation. As if that were not
hard enough, we only actually see the galaxies in two dimensions (altitude and azimuth relative to our telescope).
We infer the radial distance to galaxies by measuring their redshift and assuming that Hubble’s law is valid. This is
a decent assumption for redshifts of a few. Unfortunately, it means that galactic peculiar motions interfere with our
determination of galaxies’ positions, giving rise to “redshift distortions” in the observed distribution of galaxies. It is
known how to correct for these effects in calculating equation (43). We will do so below. Our derivation relies heavily
on the ̟ = 0 calculations presented by Bernardeau in Section 7 of reference [34].
The correction for scale- and time-independent galaxy bias is simple. Assume that the excess number density of

galaxies δg = (ng − n̄g)/n̄g relates to the matter overdensity δ by

δg =
∑

i

biδ
i

i!

where bi are (constant) coefficients of the expansion. If we then write the overdensity δ as we did in the discussion
leading up to equation (30), we have, to second order

δg = b1δ
(1) + b1δ

(2) +
b2
2
(δ(1))2 + . . . (44)

To first order, the expansion is simply δg = b1δ.
To account for redshift space distortions, we follow Section 7 of reference [34] or Section 9.4 of reference [35]. We

denote redshift space (in which radial distance is reckoned from Hubble’s law) by ~xs. Physical space will remain ~x.
Because observations are made in redshift space, we want to calculate the bispectrum of the redshift space distribution
using the physical space evolution equations we derived in Section II. We will work in the plane-parallel approximation
in which the sky is flat and the radial direction is ẑ. By Hubble’s law, the redshift space z coordinate of a given
galaxy will be

zs = zx +
vz
H0

. (45)
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We use the conformal time Hubble parameter because, throughout this work, ~v has also been calculated as the
conformal time velocity. It is also true that H0 = H0 as long as a0 = 1. From equation (45), we have

d3xs
d3x

=
dxsdysdzs
dxdydz

= 1 +
1

H0
∂zvz .

Because we do not want our change in coordinates to change the mass of a given region, we set

(1 + δs)d
3xs = (1 + δ)d3x (46)

from which we find

δs = (1 + δ)
d3x

d3xs
− 1

=

(
1 + δ −

d3xs
d3x

)
d3x

d3xx

=

(
δ −

1

H0
∂zvz

)
d3x

d3xs
.

Now, we can write

δ̃s(~k) =

∫
d3xs

(2π)3/2
e−i~k·~xsδs(~xs)

=

∫
d3xs

(2π)3/2
e−i~k·~x−ikzvz/H0

(
δ −

1

H0
∂zvz

)
d3x

d3xs
(47)

≈

∫
d3x

(2π)3/2
e−i~k·~x

(
1−

ikzvz
H0

)(
δ −

1

H0
∂zvz

)
(48)

where the ≈ comes from expanding equation (47) to first order in perturbed quantities. If we want the Fourier
transform of the galaxy overdensity in redshift space, equation (48) must be rewritten

δ̃(~k)g,s =

∫
d3x

(2π)3/2
e−i~k·~x

(
1−

ikzvz
H0

)(
b1δ

(1) + b1δ
(2) +

b2
2
δ(1)2 −

1

H0
∂zvz

)
. (49)

To proceed further, we will require expressions for the first and second order parts of the peculiar velocity field, ~v(1)

and ~v(2), in terms of the Fourier transform ϕ̃.
Recalling equations (20) and (22), we write

~v(1) = −iḊ

∫
d3k

(2π)3/2
ei

~k·~x~kϕ̃(~k)

~̃v(1) = −iḊ~kϕ̃ = i
Ḋ

D

~k

k2
δ̃(1) (50)

~v(2) = i

∫
d3k1d

3k2
(2π)3

ei~x·(
~k1+~k2)ϕ̃(~k1)ϕ̃(~2)×

[
(Ḋa −DḊ)(k21

~k2) + Ḋb([~k1 · ~k2] ~k2 + k21
~k2)
]

~̃v(2) = i

∫
d3k′

(2π)3/2
ϕ̃′ϕ̃(~k − ~k′)×

[
(Ḋa −DḊ)(~k′(~k − ~k′)2) + Ḋb(~k′[~k′ · (~k − ~k′)] + ~k′(~k − ~k′)2)

]
. (51)

Hoping to find a redshift space expression equivalent to equation (42) we separate equation (49) into first and second
order parts. For the first order part, we find

δ̃(1)(~k)g,s = b1

∫
d3xd3k′

(2π)3
ei~x·(

~k′−~k)(−k′2)Dϕ̃(~k′)−

∫
d3xd3k′

(2π)3
ei~x·(

~k′−~k) (k
′
z)

2

H0
Ḋϕ̃(~k′)

= (−k2b1D −
Ḋ

H0
k2z)ϕ̃(

~k) (52)

where the factors of k2z come from ∂zvz (recall that ṽz ∝ kz by equation 50).
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The second order part gives

δ̃(2)(~k)g,s = b1δ̃
(2)(~k) +

b2
2

∫
d3k′

(2π)3/2
D2k′2(~k − ~k′)2ϕ̃(~k′)ϕ̃(~k − ~k′)

+

∫
d3k′

(2π)3/2
kz
H0

ϕ̃(~k′)ϕ̃(~k − ~k′)×
[
k′z(

~k − ~k′)2(Ḋa −DḊ) + Ḋb(~k′ · (~k − ~k′)k′z + (~k − ~k′)2k′z)
]

−
Ḋ

H0

∫
d3k′

(2π)3/2
ϕ̃(~k′)ϕ̃(~k − ~k′)×

[
− b1kzk

′
z(
~k − ~k′)2D −

Ḋ

H0
kzk

′
z(kz − k′z)

2
]

(53)

where δ̃(2)(~k) on the right hand side of the first line is given by equation (41). Combining equations (52) and (53) we
can now write, by analogy with equation (42)

〈δ̃
(1)
1 δ̃

(1)
2 δ̃

(2)
3 〉g,s =

∫
d3k4

{
P (k1)P (k2)δ

3
D(~k1 + ~k3 − ~k4)δ

3
D(~k2 + ~k4)

+P (k1)P (k2)δ
3
D(~k1 + ~k4)δ

3
D(~k2 + ~k3 − ~k4) + P (k1)P (k4)δ

3
D(~k1 + ~k2)δ

3
D(~k3)

}

×
[ b1
D2

Da(1 +
~k4 · (~k3 − ~k4)

k24
) +

b1
D2

Db
(
1 + 2

~k4 · (~k3 − ~k4)

k24
+

(~k4 · (~k3 − ~k4))
2

k24(
~k3 − ~k4)2

)

+
b2
2

+
k3z
D2H0

(k4z
k24

(Ḋa −DḊ) + Ḋb
(~k4 · (~k3 − ~k4)k4z

k24(
~k3 − ~k4)2

+
k4z
k24

)

−
Ḋ

D2H0

(
− b1D

k3zk4z
k24

−
Ḋ

H0

k3zk4z(k3z − k4z)
2

k24(
~k3 − ~k4)2

)]

×

[
b1 +

Ḋ

DH0

(
k1z
k21

)]
×

[
b1 +

Ḋ

DH0

(
k2z
k22

)]
. (54)

The galaxy bispectrum in redshift space Bg,s has the same form as equation (43) with the appropriate substitution

from equation (54). Note that, though the b2δ
3
D(~k3) term is not identically zero (as the δ3D(~k3) terms in previous

expressions are), we are still justified in discarding it, as we will not be interested in values of Bg,s for which ~k3 = 0.
The introduction of redshift distortions into equation (54) breaks the isotropy of the B. Peculiar velocities only

affect our measurement in the ẑ direction, so it matters which way our {~k1, ~k2, ~k3} triangles are oriented. We can
average over this orientation-dependence by integrating

Bavg(k1, k2, k3, θ12) =

∫ π

0

sin θ1
4π

dθ1

∫ 2π

0

dφBg,s(~k1, ~k2, ~k3) (55)

where θ1 is the angle that ~k1 makes with the z axis, φ is the angle that the plane defined by ~k2 and ~k3 makes with

the plane defined by ~k1 and the z axis, and θ12 is the angle between ~k1 and ~k2. Appendix A checks the consistency
of our expression with prior results derived in Lagrangian perturbation theory.
To eliminate effects due to initial conditions, it is typical to talk about the normalized bispectrum Q defined so

that

Q(~k1, ~k2, ~k3) =
Bavg(k1, k2, k3, θ12)

b41a
2
0(P1P2 + P1P3 + P2P3)

(56)

Pi ≡ Pδ(ki)

a0 ≡ 1 +
2

3
f1 +

1

5
f2
1

f1 ≡
a

D

dD

da
.

Figure 3 plots (Q−QGR)/QGR for different values of ̟0 and Ωm. QGR is the value of the normalized bispectrum (56)
in a ̟ = 0 universe with the WMAP 5-year maximum likelihood cosmology [36]. We use a Monte Carlo integrator
based on the sobol sequence generator sobseq() presented in reference [37] to evaluate integral (55). The WMAP
5-year team [33] reports Ωm = 0.26 ± 0.03 (1σ). Reference [26] finds that CMB data alone gives ̟0 = 1.7+4.0

−2.0 (2σ).
We find that the variation in the bispectrum due to a 1σ change in Ωm is comparable to the variation due to a
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FIG. 3: We plot the effect of varying ̟0 and Ωm on the unbiased normalized bispectrum with redshift distortions, Q, defined
in equation (56). The vertical axis is the relative deviation from the result in the WMAP 5-year maximum likelihood GR

cosmology. The horizontal axis is the angle between ~k1 and ~k2 in units of π. Linear power spectra were calculated using the
code CMBfast [40] modified as in reference [25]. We find that Q is much more sensitive to small changes in Ωm than it is to
large changes in ̟0. This rules out the possibility of constraining ̟0 from the three-point correlation function.

2σ change in ̟0. Thus we conclude that the three-point function will be of little help in constraining the value of
̟0. Even if future experiments improve our constraint on Ωm, the fact that measurements of the galaxy three-point
correlation function are only precise to & 10% (see Tables A1-A3 of reference [38]) means that we are a long way off
from being able to constrain ̟0 from the distribution of galaxies in the Universe.

V. SCALE DEPENDENCE

As was discussed in reference [25], our scale-independent model of gravitational slip (4) does not affect the shape of
the power spectrum Pδ. Any effect on the bispectrum observed in Figure 3 must therefore be due to the renormalization
of second order perturbations relative to first order perturbations in the presence of ̟ 6= 0. Clearly, this effect is
weaker than that of actually changing the shape of Pδ, as varying Ωm does. Figure 2 plots the effect of varying ̟0 on
both the unnormalized second order growth functions Da and Db (solid lines) and the normalized second order growth
functions Da/D2 and Db/D2 (dashed lines). The normalization greatly reduces the effect of ̟0, lending credence to
our hypothesis that the principal effect of scale-independent gravitational slip on the bispectrum is through the same
renormalization previously found for the first order growth function [26]. Fortunately, the most popular alternative
gravity models all predict scale-dependent effects [19]. It is therefore incumbent upon us to consider the effect of
including scale dependence in parametrization (3). In this section, we find that scale-dependent ̟ does amplify
non-GR modifications to the bispectrum, provided one considers the right combination of {k1, k2, k3}.

A. Scale-dependent equations of motion

Because we want solar system tests to remain consistent with general relativity [39], we will work in Fourier space
and impose the constraint that ̟ → 0 as k → ∞. In this case, it is an easy matter to calculate the effect of
scale-dependent ̟ on our first order results, provided that we rewrite parametrizations (3) and (4) as

ψ̃ = (1 +̟)φ̃ (57)

̟ = ̟0K̃(k)a3 (58)

with the restriction that limk→∞ K̃(k) = 0.
To first order, the equations of motion for {φ, δ, ~v} remain unchanged under this reparametrization. The only

difference in our results is that, under (58) the growth functions D and f are dependent on the modulus of the

wave vector ~k as well as on redshift. To higher orders, the presence of the non-linear source term (16) forces us to
reformulate our approach towards calculating the bispectrum.
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Our ability to write equations of motion (25)–(28) depended on the separability of equation (15) into scale- and
redshift-dependent parts. Using the first order solutions for {φ, δ, ~v} we were able to write the second order source
term (16) as

S(2) = D(1 +̟)f∂i(ϕ∇
2ϕ) + Ḋ2∂ij(∂iϕ∂jϕ).

Under reparametrization (57), we have

S(2) =

∫
d3k1d

3k2
(2π)3

ei~x(
~k1+~k2)

{
D(k1)(1 +̟(k2))f(k2)

(
k21
~k1 · ~k2 + k21k

2
2

)

+ Ḋ(k1)Ḋ(k2)
[
k21k

2
2 + (~k1 · ~k2)

2 + k21
~k1 · ~k2 + k22

~k1 · ~k2
]}
ϕ̃(k1)ϕ̃(k2). (59)

The integration over wave vectors (stemming from the fact that reparametrization (57) is defined in Fourier space)
makes it impossible for us to find a separable solution for {φ(2), δ(2), ~v(2)}. This does not, however, mean that we
need be stymied in our attempt to calculate the bispectrum under (57).
Upon inspection of equation (54), we see that the bispectrum accounting for redshift space distortions and galaxy

bias is made up of terms of the following types

〈δ̃(2)δ̃(1)δ̃(1)〉 (60)

〈δ̃(2)δ̃(1)∂z ṽ
(1)
z 〉 (61)

〈δ̃(2)∂z ṽ
(1)
z ∂z ṽ

(1)
z 〉 (62)

〈∂z ṽ
(2)
z δ(1)δ(1)〉 (63)

〈∂z ṽ
(2)
z δ(1)∂z ṽ

(1)
z 〉 (64)

〈∂z ṽ
(2)
z ∂z ṽ

(1)
z ∂z ṽ

(1)
z 〉 (65)

〈δ(1)δ(1)δ(1)δ(1)〉 (66)

〈δ(1)δ(1)∂z ṽ
(1)
z ∂z ṽ

(1)
z 〉 (67)

〈∂z ṽ
(1)
z ∂z ṽ

(1)
z ∂z ṽ

(1)
z ∂z ṽ

(1)
z 〉. (68)

As noted above, we can calculate the terms built totally out of first order pieces (66,67,68) exactly as we did in Section
IVA, allowing for the new scale dependence of the relevant growth functions. We can calculate the terms with second
order parts by modifying the equations of motion (15) and (17) so as to calculate the ensemble averages 〈δ(2)δ(1)δ(1)〉,
etc. directly (rather than calculating the second order part, multiplying by the first order parts, and then taking the
ensemble average). We explain this modification below.
Consider equation (17). If we multiply both sides by two extra factors of δ(1) take the Fourier transform and take

the ensemble average, we have
∫
d{Fourier}

{
〈¨̃δ

(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉+H〈 ˙̃δ(2)δ̃

(1)
2 δ̃

(1)
3 〉
}
=

∫
d{Fourier}

{
〈S̃

(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉 − k21(1 +̟)〈φ̃(2)δ̃

(1)
2 δ̃

(1)
3 〉
}

(69)

where the integral over d{Fourier} stands for an integral over

d3xd3k1...3
(2π)6

ei~x(
~k−

P

3

j=1
~kj)

which reduces to

d3k1...3
(2π)3

δ3D(~k − ~k1 − ~k2 − ~k3) (70)

upon integration over d3x. Simple differential calculus allows us to write the integrand of equation (69) as a second
order differential equation for

〈δ̃(2)δ̃(1)δ̃(1)〉

which is exactly the form of terms like (60) in equation (54). For example,

〈
˙̃
δ
(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉 =

d

dτ
〈δ̃

(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉 − 〈δ̃

(2)
1

˙̃
δ
(1)
2 δ̃

(1)
3 〉 − 〈δ̃

(2)
1 δ̃

(1)
2

˙̃
δ
(1)
3 〉

=
d

dτ
〈δ̃

(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉 − (

Ḋ2

D2
+
Ḋ3

D3
)〈δ

(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉 (71)
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where we have used δ̃
(1)
i = −k2iD(ki)ϕ̃(ki). We can use equation (15) to write a similar differential equation, which

we can evolve to calculate the 〈φ̃(2)δ̃(1)δ̃(1)〉 term on the right hand side of equation (69). As for the source term in
(69), we can use equation (59) to write

〈S̃(2)δ̃(1)δ̃(1)〉 =

∫
d3xd3k1...4
(2π)15/2

ei~x(
~k−

P

4

j=1
~kj

{
. . .
}

×〈ϕ̃1ϕ̃2δ̃
(1)
3 δ̃

(1)
4 〉

=

∫
d3xd3k1...4
(2π)15/2

δ3D(~k −

4∑

j=1

~kj)
{
. . .
}
×

1

D1D2k21k
2
2

P1P2 ×
(
δ3D(1+3)δ

3
D(2+4) + δ3D(1+4)δ

3
D(2+3)

)

= 2

∫
d3k1d

3k2
(2π)9/2

{
. . .
}
×

P1P2

D1D2k21k
2
2

δ3D(~k) (72)

where {. . . } represents the combination of k vectors and growth functions in the integrand of equation (59) sym-

metrized in terms of ~k1 and ~k2. The δ3D(~k) in equation (72) means that the right hand side of equation (69) will

be zero unless ~k = 0, which, from the form (70) of the integral measure in equation (69), implies that the left hand

side will be zero unless ~k1 + ~k2 + ~k3 = 0. This is simply the familiar result that the bispectrum is defined only for
triangular configurations of k vectors. Noting that

〈δ̃
(2)
1 δ̃

(1)
2 ∂z ṽ

(1)
3z 〉 = −

Ḋ3

D3

k23z
k23

〈δ̃
(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉 (73)

we are now able to solve for the terms (61) and (62) in equation (54).

To calculate the terms in (54) which involve ∂z ṽ
(2)
z , we use equation (9) to find

~̃v(2) = −(~∇)−1 ˙̃δ(2) −

∫
d3k1d

3k2
(2π)3/2

δ3D(~k − ~k1 − ~k2)δ̃
(1)
1 ~̃v

(1)
2 . (74)

We can treat the first term on the right hand side of (74) the same way that we treated 〈δ̃(2)δ̃(1)δ̃(1)〉 terms in equation
(69). Note that

〈(~∇−1) ˙̃δ
(2)
1 δ̃

(1)
1 δ̃

(1)
3 〉 =

[ d
dτ

−

(
Ḋ2

D2
+
Ḋ3

D3

)]
× 〈(~∇−1)δ̃

(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉. (75)

The term 〈(~∇−1)δ̃
(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉 can be found by using the same evolution equations we used to find 〈δ̃(2)δ̃(1)δ̃(1)〉 except

eliminating the leading factor of 2 from the source term (72) and rewriting the {. . . } as
{
. . .
}

= D(k2)f(k3)(1 +̟(k3))k
2
2k3 + Ḋ(k2)Ḋ(k3)(k

2
2k3 +

~k2 · ~k3k3). (76)

The factor of 2 is eliminated because 〈(~∇−1)δ̃
(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉 is not symmetric in its wave vector arguments. We will

need to account for this by summing over all possible arrangements of {~k1, ~k2, ~k3} when we calculate the bispectrum.
The new scale dependence (76) is to account for the inverse ∇ operator. Once the equations of motion have been
integrated, we must also multiply by a factor of −k1zk3z/k3 to account for the fact that we are interested in the ∂z
derivative of the z-component of ~v(2).
The second term on the right hand side of (74) is found (relatively) simply from the first order solutions for ~v and

δ. Again, we ultimately want to find a term that looks like 〈∂z ṽ
(2)
1z δ̃

(1)
2 δ̃

(1)
3 〉. Our first order solutions give

FT∂z

(
δ
(1)
4 v

(1)
5z

)
= i

∫
d3k4d

3k5
(2π)3/2

δ3D(~k − ~k4 − ~k5)(k4z + k5z)δ̃
(1)
4 ṽ

(1)
5z

= −

∫
d3k4d

3k5
(2π)3/2

δ3D(~k − ~k4 − ~k5)(k4z + k5z)
Ḋ5

D5

k5z
k25

δ̃
(1)
4 δ̃

(1)
5

where FT denotes a Fourier transform. From here we see that FT〈∂z
(
δ(1)v(1)

)
δ̃(1)δ̃(1)〉 will contribute terms like

−P2P3
k3zk1z
k23

Ḋ3

D3
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to the bispectrum. This contribution can be added to the contribution (75) to find that, the 〈∂z ṽ
(2)
z δ̃(1)δ̃(1)〉 term in

the redshift distortion-corrected bispectrum will be

〈∂z ṽ
(2)
z δ̃(1)δ̃(1)〉 =

∑ k3zk1z
k3

{
−

[
d

dτ
−

(
Ḋ2

D2
+
Ḋ3

D3

)]
〈(~∇−1)δ̃

(2)
1 δ̃

(1)
2 δ̃

(1)
3 〉+

Ḋ3

k3D3
P2P3

}
(77)

where the sum is over the 6 permutations of {~k1, ~k2, ~k3}. This is the term (63) in equation (54). Using equation (73),
we can also evaluate terms (64) and (65). Thus, we are able to calculate the redshift distortion-corrected bispectrum
in the case of scale-dependent gravitational slip.
Because our source term (59) depends on the power spectrum at specific length scales we cannot, as in Section II,

evolve our equations of motion (69) from arbitrarily early times without regards to the shape of {φ̃(1), δ̃(1)} and then
add the scale-dependence later. We must, instead, begin with realistic initial conditions for the perturbation modes.
Since the form of (58) is such that lima→0̟ = 0, we take these initial conditions from the Boltzmann code CMBfast

[40] with the appropriate background parameters and modified it to output {φ̃(1), ˙̃φ(1), δ̃(1), ˙̃δ(1)} at a = 0.1 (chosen
as an epoch early enough that ̟ ∼ 0 and late enough that quasi-linear structure growth can be expected to set in).

We still assume that φ̃(2) =
˙̃
φ(2) = δ̃(2) =

˙̃
δ(2) = 0 at this initial epoch. With these initial conditions, we can calculate

the redshift distortion-corrected bispectrum (54) in the case of scale-dependent ̟. All that remains is to explore the
effect of parametrization (57) on obsevable statisitics.

B. Effects on observables

To compare the effects of scale-dependent gravitational slip to a ̟ = 0 universe, we perform the same average over
orientation as in equation (55) and use the same Q statistic as defined in equation (56). The denominator of Q in the
case of scale-dependent gravitational slip is written

b41(P1P2a1a2 + P1P3a1a3 + P2P3a2a3)

with

ai ≡ 1 +
2

3
f1,i +

1

5
f2
1,i

f1,i ≡
a

D(ki)

dD(ki)

da
.

Figure 4 plots the effect of scale-dependent ̟ on the Q statistic. For the purposes of this plot, we choose ̟ to have
a scale dependence given by (recall equation 58)

K̃(k) =
1 + k

kcrit

1 + 0.01
(

k
kcrit

)2 . (78)

In Figure 4 we choose kcrit = 0.01(Mpc)−1 and ̟0 = 5. This is an illustrative model only and is not meant to
represent any specific theory of gravity. Including the scale dependence (78) amplifies the effect of gravitational slip

on Q, but only for configurations {~k1, ~k2, ~k3} in which the length scales correspond to the peak of K̃(k). It therefore
seems reasonable to conclude that, while the bispectrum may be able to tell us something about scale-dependent
gravitational slip, it will only do so if we choose to examine a particularly sensitive range of k.

VI. CONCLUSION

Contrary to expectations, we have found that quasi-linear order structure growth is ineffective at constraining
scale-independent gravitational slip (4). However, with judicious triangle choice, we may be able to say something
about a scale-dependent gravitational slip (58) by measuring the bispectrum. To date, there has been no attempt
to constrain scale-dependent gravitational slip with even linear-order cosmological data. Conventional wisdom has
been that the data is still too imprecise to say anything meaningful about so detailed an effect as scale-dependence.
The next generation of cosmological experiments will hopefully remedy this oversight [26]. Given the prevalence of
scale-dependent effects in alternative gravity theories [19], it may behoove us to find a useful, model-independent
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FIG. 4: The same as Figure 3 except for scale-dependent ̟ of the form (58) with ̟0 = 5 and eK(k) given by equation (78). All

length scales are in units of Mpc. All triangles considered are isosceles (i.e., k2 = k1). As in Figure 3, θ is the angle between ~k1
and ~k2. Figure 4(a) plots eK(k). Figure 4(b) plots the change in the bispectrum relative to the WMAP5 maximum likelihood
GR cosmology [36] for different triangles. The case of kcrit = 1014 is shown to illustrate what the curve would look like for
scale-independent ̟ (4). The effect of ̟ is much more pronounced for triangles whose sides correspond to length scales at

which eK(k) peaks.

parametrization of the scale dependence K̃(k) (58) and subject these future datasets to the same analysis given
in reference [26]. Depending on what such investigations say, the results of Section V may be able to extend our
knowledge by bringing to bear measurements of the three-point correlation function on the question of gravitational
slip.
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APPENDIX A: COMPARISON TO LAGRANGIAN PERTURBATION THEORY

Equation (54) was derived using Eulerian perturbation theory (i.e., we evolved the perturbed fields {φ, δ, ~v} directly).
Hivon et al. [41] perform the same calculation using the Lagrangian perturbation theory formalism laid out in
references [42, 43, 44, 45]. Rather than evolving the perturbed density and velocity fields, Lagrangian perturbation

theory evolves the displacement field ~Ψ(τ, ~q) defined as the displacement of a fluid element whose initial position in
space was ~q. Put another way, at some time τ , the position of a fluid element originating at spatial position ~q and
initial time τi is

~x = ~q + ~Ψ(τ − τi, ~q). (A1)

From this, we find that the perturbed velocity field of Section II is just

~v =
d~x

dτ
= ~̇Ψ(τ, ~q) + (~v · ~∇)~Ψ(τ, ~q)

= ~̇Ψ(1) + (~̇Ψ(1) · ~∇)~Ψ(1) + ~̇Ψ(2) +O(3) (A2)

where we have set τi ≡ 0. Note that in our notation (as in Section II), an overdot denotes partial differentiation with

respect to conformal time τ . In Hivon et al’s notation, an overdot denotes the Lagrangian derivative (∂τ +~v · ~∇). The
same conservation of mass considerations that prompted us to write equation (46), now imply

ρ̄(1 + δ)d3x = ρ̄d3q.

There is no δ on the right hand side because we assume that the fluid starts from a homogeneous state. Algebra and
equation (A1) give

δ = |
d3q

d3x
| − 1 =

(
1 + ~∇ · ~Ψ(1) +

1

2

[
(~∇ · ~Ψ(1))2 − ∂iΨ

(1)
j ∂jΨ

(1)
i

]
+ ~∇ · ~Ψ(2) +O(3)

)−1

= −~∇ · ~Ψ(1) + (~∇ · ~Ψ(1))2 − ~∇ · ~Ψ(2) −
1

2

[
(~∇ · ~Ψ(1))2 − ∂iΨ

(1)
j ∂jΨ

(1)
i

]
+O(3) (A3)

where we have expanded Ψ in the same way that we expanded φ, δ and ~v in Section II. With equations (A2) and
(A3), we can find the same physical quantities in Lagrangian perturbation theory (LPT) as we calculated directly in
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Eulerian perturbation theory (EPT) in Section II. The advantage is that, in LPT, the transition to redshift space is
merely a coordinate transformation. In this section, we show that our EPT results are consistent with LPT results
to second order. In reference [34], Bernardeau claims that this is not the case, that LPT and EPT do not agree and
that LPT is more consistent with the results of N-body simulations (see the discussion following his Figure 48). This
is merely a confusion of terminology. What Bernardeau meant to claim is that second order LPT and EPT results
differ substantially from third order LPT results (the difference between “tree-level” and “one-loop level” perturbation
theory in reference [46]) and that N-body simulations are more consistent with the third order results. In Section IV,
we found that the effect of ̟0 on the second order results is not strong enough to justify extending our calculations
out to higher order.

Before we begin, there is a subtlety which bears discussion. All of the ~Ψ functions and their spatial derivatives in
equations (A2) and (A3) are expressed in terms of ~q coordinates, that is, in terms of the spatial positions of fluid

elements at initial time τ = 0. When we go to derive field equations for φ and ~Ψ, we will be expressing φ and its
spatial derivatives in terms of ~x coordinates (spatial positions now). Assume that Ψj ≪ qj . Because we will only
be interested in quantities up to second order, the transformation between ~q and ~x coordinates is a straightforward

Taylor expansion. If we use ~̄Ψ(~x) to represent the displacement field as a function of the present position ~x (see
reference [41]), then

~Ψ(~q) = ~̄Ψ(~x) + ∂xi

~̄Ψ(~x)(~q − ~x)i +O(~̄Ψ3)

= ~̄Ψ(~x)− Ψ̄i∂xi

~̄Ψ(~x) +O(~̄Ψ3) (A4)

∂q~Ψ(~q) =
∂x

∂q
∂x

(
~̄Ψ(~x)− Ψ̄i∂xi

~̄Ψ(~x) +O(~̄Ψ3)
)

=
(
1 + ∂q~Ψ

)
·
(
∂x
~̄Ψ− ∂xΨ̄i∂xi

~̄Ψ− Ψ̄i∂x∂xi

~̄Ψ+O(~̄Ψ3)
)

= ∇x
~̄Ψ− Ψ̄i∂x∂xi

~̄Ψ+O(~̄Ψ3) (A5)

where we have used the zeroth order equation ~q = ~x. Now

δ = −~∇ · ~̄Ψ(1) + (~̄Ψ · ~∇)~∇ · ~̄Ψ+ (~∇ · ~̄Ψ(1))2 −
1

2
((~∇ · Ψ̄(1))2 − ∂iΨ̄

(1)
j ∂jΨ̄

(1)
i )− ~∇ · ~̄Ψ(2) +O(3) (A6)

~v = ~̇̄Ψ(1) − ˙̄Ψ
(1)
i ∂i

~̄Ψ(1) − Ψ̄
(1)
i ∂i

~̇̄Ψ(1) + ~̇̄Ψ
(1)
i ∂i

~̄Ψ(1) + ~̇̄Ψ(2) +O(3)

= ~̇̄Ψ(1) − Ψ̄
(1)
i ∂i

~̇̄Ψ(1) + ~̇̄Ψ(2) +O(3). (A7)

From here on, we will deal only in ~̄Ψ(~x) and derivatives with respect to ~x. Let us now consider the LPT equations of
motion.
LPT proceeds from the geodesic equation

uα∇αu
i = 0

(i is a spatial index) and the Poisson equation. We once again replace the Poisson equation with the space-time
Einstein equation in the form (13)

∇2
(
φ̇+H(1 +̟)φ

)
=

3

2
H2Ωmδ̇

with δ taken from equation (A6) so that, to first order,

3

2
H2Ωm

(
~∇ · ~̇̄Ψ(1)

)
= −∇2

(
φ̇+H(1 +̟)φ

)
. (A8)

Using metric (7) and four-velocity (8), the geodesic equation taken out to zeroth order in 1/c2 merely returns equation
(10)

~̇v +H~v + (~v · ~∇)~v + ~∇φ(1 +̟) = 0.

To first order in {φ, δ, ~v}, this equation gives

−∇2ψ = ~∇ · ~̇v +H~∇ · ~v

= ~∇ · ~̈̄Ψ(1) +H~∇ · ~̇̄Ψ(1) (A9)
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where we have used equation (A7). The time derivative of equation (A8) gives

3

2
H2Ωm

(
~∇ · ~̈̄Ψ(1) −H~∇ · ~̇̄Ψ(1)

)
= −∇2

(
φ̈+ Ḣ(1 +̟)φ+H(1 +̟)φ̇+H ˙̟ φ

)

3

2
H2Ωm

(
~∇ · ~̈̄Ψ(1) +H~∇ · ~̇̄Ψ(1)

)
− 3H3Ωm

~∇ · ~̇̄Ψ(1) =

3

2
H2Ωm

(
−∇2φ(1 +̟)

)
+ 2H∇2

(
φ̇+H(1 +̟)φ

)
= (A10)

where, in the last line, we substitute from equations (A8) and (A9). Equation (A10) can be rearranged to give the
first order EPT equation (15). Clearly, the first order result for φ is identical in either LPT or EPT formalism. The

same is true of δ and ~v, given that equations (A6) and (A7) give δ̇ = −~∇ · ~v, which is the first order part of the EPT
equation of motion (9). To second order, we illustrate the consistency between LPT and EPT by observing that the
second order parts of equations (A6) and (A7) are such that

δ̇(2) = ∂iΨ̄
(1)
i ∂j

˙̄Ψ
(1)
j + ˙̄Ψi∂ijΨ̄j + Ψ̄

(1)
i ∂ij

˙̄Ψ
(1)
j + ∂i

˙̄Ψ
(1)
j ∂jΨ̄

(1)
i − ∂i

˙̄Ψ
(2)
i

= −∂iv
(2)
i + ∂iΨ̄

(1)
i ∂j

˙̄Ψ
(1)
j + ˙̄Ψ

(1)
i ∂ijΨ̄

(1)
j

= −∂iv
(2)
i − δ(1)∂iv

(1)
i − v

(1)
i ∂iδ

(1) (A11)

which is the second order part of equation (9). Note that we have used the assumption that the fluid flow is irrotational
so that ∂iΨ̄j = ∂jΨ̄i. Using result (A11) as motivation, we will now write the growth functions from reference [41] in
terms of our own and show that our second order solutions are, indeed, equivalent to those of LPT.
Results in reference [41] are presented in terms of the growth factors g1 and g2 and their dimensionless derivatives

fi = (a/gi)(dgi/da). These growth factors are defined such that

Ψ̄ = g1
˜̄Ψ(1) + g2

˜̄Ψ(2)

where ˜̄Ψ denotes the spatial part of Ψ̄. From the first order part of equation (A3), it is easy to see that g1 is just our
growth factor D from equation (19). To find g2 as a function of our second order growth functions Da and Db, we
compare our equation (41) to equation (A19) of reference [41], which finds that δ goes as

δ(2) = g21

∫
d3k1d

3k2
(2π)3

φ̃
(1)
1 φ̃

(1)
2 k21k

2
2W (|~k1 + ~k2|)e

i~x·(~k1+~k2)
(
1 + cos θ12

k1
k2

− (1 +
g2
g21

)
(1− cos2 θ12)

2

)
. (A12)

The comparison with our equation (41) proceeds more directly if we write

Da = −2D2
1 +

3

2
D2

Db =
3

2
D2

1 −
3

4
D2

where D1 is just the first order growth function D from equation (19), and D2 is defined in equation (39a) of reference
[47] (this equivalence can be seen by comparing that work’s equation 48 with our equation 41). Now, we can rewrite
our equation as

δ(2) =

∫
d3k1d

3k2
(2π)3

φ̃
(1)
1 φ̃

(1)
2 k21k

2
2e

i~x·(~k1+~k2)

×
(
(−2D2

1 +
3

2
D2)(1 +

k1
k2

cos θ12) + (
3

2
D2

1 −
3

4
D2)(1 + cos2 θ12 + 2

k1
k2

cos θ12)
)
. (A13)

Comparing equations (A12) and (A13), we find that D1 = g1 (as promised) and

g2 = 2D2
1 −

3

2
D2

or

g2 = −3Da − 4Db + 2D2
1 (A14)
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FIG. 5: We plot the relative disagreement in Bavg between Eulerian and Lagrangian (reference [41, 48]) perturbation theories.

The horizontal axes are the angle of separation between the vectors ~k1 and ~k2 in units of π. The vertical axes are (Bavg, EPT −
Bavg, LPT)/Bavg,LPT. We compare (55) with b1 = 1 and b2 = 0 to the results presented in equations (33)-(35) of reference [41].
We use equation (A14) to express g2 and f2 = (a/g2)(dg2/da) in terms of our growth functions. For all curves, ̟0 = 0 and the
background cosmology is the WMAP 5-year maximum likelihood universe [33, 36].

or

Da = −g2 (A15)

Db =
1

2
(D2 + g2). (A16)

Using these results and equation (22), we find for EPT

~∇ · ~v
(2)
EPT = (ġ2 +DḊ)(∇2ϕ∇2ϕ+ ∂iϕ∂i∇

2ϕ)− (ġ2/2 +DḊ)(∇2ϕ∇2ϕ+ ∂ijϕ∂ijϕ+ 2∂jϕ∂j∇
2ϕ)

=
ġ2
2
(∇2ϕ∇2ϕ− ∂ijϕ∂ijϕ)−DḊ(∂ijϕ∂ijϕ+ ∂iϕ∂i∇

2ϕ).

For LPT, we note that δ(1) = −∂iΨ̄
(1)
i means that Ψ̄

(1)
i = −D∂iϕ. This, combined with the result from reference [41]

that

∂iΨ̄
(2)
i =

g2
g21

1

2

[
(∂iΨ̄

(1)
i )2 − ∂iΨ̄

(1)
j ∂jΨ̄

(1)
i

]
(A17)

gives

~∇ · ~v
(2)
LPT =

1

2
(
ġ2
g21

− 2ġ1
g2
g31

)
[
(∂iΨ̄

(1))2 − ∂iΨ̄
(1)
j ∂jΨ̄

(1)
i

]
+ ġ1

g2
g31

[
(∂iΨ̄

(1))2 − ∂iΨ̄
(1)
j ∂jΨ̄

(1)
i

]
− ∂j(Ψ̄

(1)
i ∂i

˙̄Ψ
(1)
j )

=
ġ2
2
(∇2ϕ∇2ϕ− ∂ijϕ∂ijϕ)−DḊ(∂ijϕ∂ijϕ+ ∂jϕ∂j∇

2ϕ).

From this we see that equation (A14), which guarantees δ
(2)
LPT = δ

(2)
EPT also provides ~v

(2)
LPT = ~v

(2)
EPT. Figure 5 compares

the results of Section IV with the results of LPT in the case of ̟ = 0. LPT results are evaluated from Hivon et al’s
equations (33)-(35) using our equation (A14). We find that our EPT results agree with Hivon et al’s LPT results at
the sub-percent level.
All of the discussion in this Appendix has assumed ̟ = 0. As shown above, our results are perfectly consistent with

LPT in this limit. One can move between the two formalisms using the algebraic relationships (A15) and (A16). This
is not the case once ̟0 6= 0. Equations (A15) and (A16) imply a relationship between Da, Db, and D. Specifically,
they imply

Da = −2Db +D2. (A18)

Figure 6 plots the departure from this relationship as a function of ̟0 for cosmologies with different values of Ωm.
All of the curves are evaluated at redshift z = 0. While we see that equation (A18) is identically true for ̟0 = 0,
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FIG. 6: We plot the departure of Da from the predictions of equation (A18) as a function of ̟0 for different Ωm cosmologies.
While equation (A18) holds exactly when ̟0 = 0, the relationship breaks down as |̟0| grows.

it becomes less and less true as |̟0| grows. Recall that equations (A15) and (A16) were derived by assuming that

δ
(2)
LPT = δ

(2)
EPT and comparing the growth functions of the different spatially dependent terms. If we assume that LPT

and EPT remain in agreement for ̟0 6= 0, it seems likely that the spatial dependence of δ(2) must change for ̟0 6= 0.
Specifically the spatial relationship (A17) may break down, spoiling the relationship between our EPT growth factors
and the LPT growth factor g2. Given our success at reproducing the ̟0 = 0 solutions of LPT, the main body of this
paper analyzed the ̟0 6= 0 bispectrum using our EPT solutions. It may be worth solving the exact ̟0 6= 0 LPT
equations of motion in some future work.

APPENDIX B: THE SKEWNESS

The third order moment (the skewness) is a measure of the asymmetry of the δ distribution function once non-linear
growth has set in. Mathematically, it is defined as

S3 =
〈δ3(~x)〉

〈δ2(~x)〉2
(B1)

Kamionkowski and Buchalter derive an exact expression for the skewness of the matter distribution in a general
relativistic universe under different assumptions of flatness and acceleration or deceleration [32]. In this section, we
follow their lead and derive a similar expression in the case of ̟0 6= 0.
As with the bispectrum, the numerator of the skewness (B1) reduces to 3〈δ(2)(δ(1))2〉. Equation (41) gives us

〈δ(2)(δ(1))2〉 =

∫
d3k1 . . . d

3k4
(2π)6

ei~x·(
~k1+~k2+~k3+~k4)

〈δ̃1δ̃2δ̃3δ̃4〉

D2k23k
2
4

×

[
~k3 · ~k4k

2
4(D

a + 2Db) + k23k
2
4(D

a +Db) + (~k3 · ~k4)
2Db

]
. (B2)

Using the following results

∫
d2k1d

3k2
(2π)6

Pδ(k1)Pδ(k2)

D2

(
− 2k21

~k1 · ~k2 − 1
)

= −

∫
d2k1d

3k2
(2π)6

Pδ(k1)Pδ(k2)

D2
(B3)

∫
d2k1d

3k2
(2π)6

Pδ(k1)Pδ(k2)

D2

(
1 + 2

(~k1 · ~k2)
2

k21k
2
2

)
=

∫
d2k1d

3k2
(2π)6

Pδ(k1)Pδ(k2)

D2

(
1 + 2 cos2 θ12

)

∫ 1

−1

d(cos θ) cos2 θ =
2

3
∫
d2k1d

3k2
(2π)6

Pδ(k1)Pδ(k2)

D2

(
1 + 2 cos2 θ12

)
=

5

3

∫
d2k1d

3k2
(2π)6

Pδ(k1)Pδ(k2)

D2
(B4)
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FIG. 7: We plot the change in the skewness S3 (B1) resulting from varying Ωm and ̟0. When Ωm is varied, ̟0 = 0. When
̟0 is varied, Ωm = 0.256. ∆S3 is assessed relative to a ̟0 = 0,Ωm = 0.256 universe. All other parameters are set to be
the WMAP 5-year maximum likelihood values [33]. Over regions of interest, the effect of varying ̟0 is much stronger than
the effect of varying Ωm. Unfortunately, this will not hold when the calculation is altered to take into account a realistic
observational window function (see Figure 8).

we find that the normalized skewness may be written

S3 =
3〈δ(2)(δ(1))2〉

〈(δ(1))2〉2
=

3

D2

(
2Da +

8

3
Db

)
. (B5)

Note that the denominator of the left hand side of equation (B5) is effectively

∫
d3k1d

3k2
(2π)6

Pδ(k1)Pδ(k2)

hence the simplicity of the right hand side.
Figures 7(a) and 7(b) plot the effect of the parameters Ωm and ̟0 on the skewness as determined by equation (B5).

When Ωm is varied, ̟0 = 0. When ̟0 is varied, Ωm = 0.256. All other parameters are set to be the WMAP 5-year
maximum likelihood values [33]. As in Figure 3, the vertical axis is

∆S3

S3,GR
=
S3 − S3|̟0=0,Ωm=0.256

S3|̟0=0,Ωm=0.256
. (B6)

Varying ̟0 within the WMAP 5-year 2σ limit (̟0 = 1.4+4.0
−2.0 (2σ) [26]) results in a few percent variation in S3, while,

for ̟0 = 0, variations of Ωm within the WMAP 5-year 2σ range result in only a few tenths of a percent change in
S3. The 1σ constraint reported by the WMAP 5-year team is Ωm = 0.26± 0.03 [36]. Though a few percent is still far
too fine a variation to expect to detect in the data, the fact that the change due to ̟0 is so much more pronounced
than the change due to Ωm leaves open the hope that we may one day be able to distinguish between an alternative
gravity and a dark-energy dominated universe on the basis of the matter overdensity distribution. Unfortunately, as
we will see below, even this hope evaporates in the face of considerations associated with the mechanics of making an
observation.

1. The smoothed skewness

As with the bispectrum, we cannot achieve perfect knowledge of the skewness at any scale. The birdshot distribution
of our mass gauges (galaxy dynamics, lensing of background galaxies, etc.) forces us to accept that our measurement
of δ(~x) will have to be averaged over some scale R0 (e.g. σ8 is the rms average mass fluctuation within an 8h−1Mpc
sphere). Bernardeau derives expressions for both the skewness and the kurtosis smoothed over some scale R0 in
reference [47]. In this section, we will follow his calculation, convolving our results from Section B with a top-hat
window function. We find that whatever hope Figures 7(a) and 7(b) give us for constraining ̟0 vanishes behind the
limitations of actual measurement.
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For the purposes of this section, we will work with a simple top-hat window function ΘR0
(r) which is zero if r > R0

and unity otherwise. The smoothed first order overdensity is therefore

δ
(1)
R0

(~x) =

∫
d3x′δ(1)(~x′)ΘR0

(|~x′ − ~x|) (B7)

=

∫
d3x′d3k

(2π)3/2
ei

~k·~x′

δ̃(1)(~k)ΘR0
(|~x′ − ~x|)

=

∫
d3x′d3k

(2π)3/2
ei

~k·(~x′−~x)ei
~k·~xδ̃(1)(~k)ΘR0

(|~x′ − ~x|)

=

∫
d3k

(2π)3/2
δ̃(1)(~k)W (kR0)e

i~k·~x (B8)

W (kR0) ≡ 3

(
sin(kR0)

(kR0)3
−

cos(kR0)

(kR0)2

)
.

W (kR0) is the Fourier transform of ΘR0
. The second order smoothed overdensity is

δ
(2)
R0

(~x) =

∫
d3k1d

3k2
(2π)3

δ̃(1)(~k1)δ̃
(1)(~k2)

D2
ei~x·(

~k1+~k2)W (R0|~k1 + ~k2|)

×

[
D(a)

(
1 +

~k1 · ~k2
k21

)
+D(b)

(
1 +

(~k1 · ~k2)
2

k21k
2
2

+ 2
~k1 · ~k2
k21

)]
(B9)

which is what we would expect from equation (41) written in a slightly different form and subjected to the same
convolution explicitly shown going from equation (B7) to equation (B8).
By analogy with equation (B1), the smoothed skewness is defined as

S3(R0) ≡
〈δR0

(~x)3〉

〈
(
δ
(1)
R0

(~x)
)2

〉2
. (B10)

From equations (B8) and (B9), we can write (note that, as in Bernardeau,Wi ≡W (kiR0) andWi+j =W (|~ki+~kj |R0))

3〈δ
(1)2
R0

δ
(2)
R0

〉 = 3

∫
d3k1 . . . d

3k4
(2π)6

W1W2W3+4
1

D2

×
{
Da

(
1 +

~k3 · ~k4
k23

)
+Db

(
1 + 2

~k3 · ~k4
k23

+
(~k3 · ~k4)

2

k23k
2
4

)]
〈δ̃1δ̃2δ̃3δ̃4〉. (B11)

Remembering our power spectrum convention (40), it is useful to note that the coefficients of both the Da and the

Db terms will vanish if ~k3 = −~k4. Therefore, the 〈δ̃1δ̃2〉〈δ̃3δ̃4〉 term does not contribute to the integral and we have

3〈δ
(1)2
R0

δ
(2)
R0

〉 = 6

∫
d3k1 . . . d

3k4
(2π)6

W1W2W3+4
1

D2

×
{
Da

(
1 +

~k3 · ~k4
k23

)
+Db

(
1 + 2

~k3 · ~k4
k23

+
(~k3 · ~k4)

2

k23k
2
4

)]

× Pδ(k1)Pδ(k2)δ
3
D( ~k1 + ~k3)δ

3
D(~k2 + ~k4)

= 6

∫
d3k1d

3k2
(2π)6

W1W2W1+2
1

D2

×

{
D(a)

(
1 +

~k1 · ~k2
k21

)
+D(b)

(
1 + 2

~k1 · ~k2
k21

+
(~k1 · ~k2)

2

k21k
2
2

)}

× P (k1)P (k2). (B12)
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FIG. 8: We plot the smoothed skewness (B10) as a function of scale R0 for different values of ̟0 and Ωm. Results are presented
(as in Figure 7) as a change in skewness relative to the WMAP 5-year maximum likelihood GR cosmology. While ̟0 retains
the strong influence on S3 observed in Figure 7(b), the effect of Ωm on the shape of the power spectrum amplifies its influence,
so thtat it is now very difficult to distinguish between a significant departure from general relativity and a minor shift in Ωm.
The 1σ confidence interval reported by the WMAP 5-year team is Ωm = 0.26 ± 0.03.

It is tempting to proceed as in Section B and analytically evaluate equation (B12) to find the same result as equation
(B5) with an added factor of

∫
d3k1d

3k2
(2π)6

Pδ(k1)Pδ(k1)W1W2W1+2.

Unfortunately, the compound window function W1+2 depends on the angle between ~k1 and ~k2, and thus spoils the
straightforward angular integrations leading to equations (B3) and (B4). Furthermore, the denominator of equation
(B10) has a completely different dependence on the window functions and power spectra. To wit

〈(δ
(1)
R0

)2〉2 =

(∫
d3k

(2π)3
Pδ(k)W

2(kR0)

)2

. (B13)

The smoothed skewness (B10) cannot be written as a simple function of growth factors. It must be integrated over

the 6 dimensional parameter space {~k1, ~k2}, which can be reduced to a 4 dimensional parameter space upon noting
that the integrand in equation (B12) does not explicitly depend on the azimuthal angles φk1

or φk2
so that we can

replace those two integrations with a factor of 4π2. We use the same Monte Carlo integrator we used in Section IV.
We present our results in Figure (8) as a change in skewness (relative to a WMAP 5-year maximum likelihood GR
universe; see equation B6). While ̟0 retains the strong influence on S3 observed in Figure 7(b), the effect of Ωm

on the shape of the power spectrum amplifies its influence, so that it is now very difficult to distinguish between a
significant departure from general relativity and a minor shift in Ωm. We perform a similar calculation for S4(R0) in
Section C.

APPENDIX C: FOURTH ORDER MOMENTS

The smoothed kurtosis S4(R0) of the overdensity distribution is the fourth order moment of the distribution averaged
over a radius R0, i.e.

S4(R0) =
〈δR0

(~x)4〉 − 3〈δR0
(~x)2〉2

〈δR0
(~x)2〉3

. (C1)

In this section, we will show the effect of ̟ 6= 0 on S4(R0). While the effect is stronger than that found on the
skewness in Section B, this is of little comfort because, as a higher order moment, the kurtosis is much harder to
measure than the (already difficult) skewness. Also, we find that the effect of varying Ωm is similarly amplified so
that it would still be difficult to discern a large change in ̟0 from a small change in Ωm.
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1. Third order equations of motion

Calculating the kurtosis requires first that we find the evolution of the third order perturbations {φ(3), δ(3), ~v(3)}.
We do so in this section. For easy reference, we recall the first and second order solutions

φ(1) = f(τ)ϕ(~x)

δ(1) = D(τ)∇2ϕ

~v(1) = −Ḋ~∇ϕ(~x)

φ(2) = α(τ)A(~x) + β(τ)B(~x)

δ(2) = D(a)(τ)∇2A+D(b)(τ)∇2B

~v(2) = (−Ḋa +DḊ)~∇A− Ḋb~∇B

∇2A = ∂i
(
∇2ϕ∂iϕ

)

∇2B = ∂ij (∂iϕ∂jϕ) .

The third-order part of equation (12) is

δ̈(3) +Hδ̇(3) = (1 +̟)
(
∂iδ

(2)∂iφ
(1) + ∂iδ

(1)∂iφ
(2)
)
+ ∂ij

[
2vi(2)vj(1) + δ(1)vi(1)vj(1)

]

+(1 +̟)
(
δ(1)∇2φ(2) + δ(2)∇2φ(1) +∇2φ(3)

)
. (C2)

Using the recipe outlined in Section II, we find

φ(3) =

7∑

i=1

F (i)(τ)G(i)(~x)

δ(3) =

7∑

i=1

F (i)(τ)∇2G(i)(~x) (C3)

where

∇2G(1) = ∂i
[
∂iϕ∇

2A
]

∇2G(2) = ∂i
[
∂iϕ∇

2B
]

∇2G(3) = ∂i
[
∇2ϕ∂iA

]

∇2G(4) = ∂i
[
∇2ϕ∂iB

]
(C4)

∇2G(5) = ∂ij [∂jϕ∂iA]

∇2G(6) = ∂ij [∂jϕ∂iB]

∇2G(7) = ∂ij
[
∇2ϕ∂iϕ∂jϕ

]
.

The equations of motion for F (i) and F (i) are

F̈ (i) = −Ḟ (i)H(3 +̟)− F (i)
[
H23(1 +̟)(1− Ωm) +H ˙̟

]
+

3

2
ΩmH2S(3,i)

F̈ (i) = −HḞ (i) + (1 +̟)F (i) + S(3,i).

The right hand side of equation (C2) gives

S(3,1) = (1 +̟)fD(a)

S(3,2) = (1 +̟)fD(b)

S(3,3) = (1 +̟)Dα

S(3,4) = (1 +̟)Dβ

S(3,5) = −2Ḋ(−Ḋa + ḊD)

S(3,6) = 2ḊḊb

S(3,7) = DḊ2.
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2. The kurtosis

The numerator of equation (C1) is equivalent to

〈δR0
(~x)4〉 − 3〈δR0

(~x)2〉2 = 4〈δ(1)3δ(3)〉+ 6〈δ(1)2δ(2)2〉.

Using equation (C3) and drawing an analogy with equation (B12), we find that

〈δ(1)3δ(3)〉 = 4

∫
d3k1d

3k2d
3k3

(2π)9
P (k1)P (k2)P (k3)

D3
W1W2W3W1+2+3

7∑

i=1

F (i)
∑

perm

G̃(i)(~k1, ~k2, ~k3) (C5)

where
∑

perm G̃(i) = G̃(i)(~k1, ~k2, ~k3) + G̃(i)(~k1, ~k3, ~k2) + . . . and the G̃(i) are the Fourier transforms of equations (C4)
with all factors of ϕ artificially removed.
Similarly, the other part of the kurtosis reduces to

〈δ(1)2δ(2)2〉 = 6

∫
d3k1d

3k2d
3k3

(2π)9
P (k1)P (k2)P (k3)

D4
W1W2

∑

perm

W3−1W−3−2D̃(~k3,−~k1)D̃(−~k3,−~k2) (C6)

D̃(~ki, ~kj) = k2i k
2
j

[
D(a)

(
1 +

~ki · ~kj
k2i

)
+D(b)

(
1 + 2

~ki · ~kj
k2i

+
(~ki · ~kj)

2

k2i k
2
j

)]
. (C7)

In this case
∑

permW3−1W−3−2D̃(~k3,−~k1)D̃(−~k3,−~k2) has 8 terms, permuting over both the content of the two pairs
of vectors

D̃(~k3,−~k1)D̃(−~k3,−~k2) → D̃(~k3,−~k2)D̃(−~k3,−~k1), etc.

and permuting over the vectors’ orders within the pairs

D̃(~k3,−~k1)D̃(−~k3,−~k2) → D̃(−~k1, ~k3)D̃(−~k2,−~k3), etc.

Note also that ~k3 is always positive in the first pair and negative in the second. ~k1 and ~k2 are always negative. These
minus signs are acquired from the delta function in

〈δ̃(1)(~ki)δ̃
(1)(~kj)〉 = P (ki)δ

3
D(~ki + ~kj).

Figure 9 recreates Figure 8 for the smoothed kurtosis. Again we find that it is nearly impossible to distinguish a large
change in ̟0 from a small change in Ωm.
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FIG. 9: We plot the smoothed kurtosis (C1) as a function of scale R0 for different values of ̟0 and Ωm. Results are presented
(as in Figure 3) as a change in kurtosis relative to the WMAP 5-year maximum likelihood GR cosmology. The 1σ confidence
interval reported by the WMAP 5-year team is Ωm = 0.26 ± 0.03.
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