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Majorana Flat Bands in s-Wave Gapless Topological Superconductors

Shusa Deng,1 Gerardo Ortiz,2 Amrit Poudel,1 and Lorenza Viola1

1Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA
2Department of Physics, University of Indiana, Bloomington, Indiana 47405, USA

(Dated: April 29, 2014)

We demonstrate how the non-trivial interplay between spin-orbit coupling and nodeless s-wave
superconductivity can drive a fully gapped two-band topological insulator into a time-reversal invari-
ant gapless topological superconductor supporting symmetry-protected Majorana flat bands. We
characterize topological phase diagrams by a Z2 × Z2 partial Berry-phase invariant, and show that,
despite the trivial crystal geometry, no unique bulk-boundary correspondence exists. We trace this
behavior to the anisotropic quasiparticle bulk gap closing, linear vs. quadratic, and argue that this
provides a unifying principle for gapless topological superconductivity. Experimental implications
for tunneling conductance measurements are addressed, relevant for lead chalcogenide materials.

PACS numbers: 73.20.At, 74.78.-w, 71.10.Pm, 03.67.Lx

The emergence of “topologically protected” Majorana
edge modes is a hallmark of topological superconductors
(TSs) [1]. Aside from their fundamental physical signifi-
cance, Majorana modes are key building blocks in topo-
logical quantum computation [2], due to their potential
to realize non-Abelian braiding. As a result, a wealth
of different approaches are being pursued theoretically
and experimentally in the quest for topological quantum
matter [1], with recent highlights including broken time-
reversal (TR) p+ ip superconductors, proximity-induced
TR-invariant superconductivity in topological insulators
(TIs), semiconductor-superconductor heterostructures,
multiband superconductors and/or bilayer systems [3, 4],
as well as experimental signatures of Majorana fermions
in hybrid nanowires [5] and doped TIs [6]. Here, we pro-
pose a different paradigm, based on topological gapless
superconductivity in nodeless (s-wave) superconductors.

Gapless superconductivity is a physical phenomenon
where the quasiparticle energy gap is suppressed (that
is, it vanishes at particular momenta), while the super-
conducting order parameter remains finite, strictly non-
zero. This concept was anticipated on phenomenological
grounds by Abrikosov and Gor’kov [7] in the context of
TR pair-breaking effects in s-wave superconductors. Al-
though certain unconventional superconductors may dis-
play similar behavior, their gapless nature results from
the nodal character of the superconducting order param-
eter. In this work, the physical mechanism leading to a
vanishing excitation gap is the spin-orbit coupling (SOC)
in an otherwise nodeless, TR-invariant (centrosymmet-
ric) multiband superconductor with bulk s-wave pairing.

A consequence of such a state of matter is the emer-
gence of surface Majorana flat bands (MFBs) if the spa-
tial dimension D ≥ 2. It has been appreciated that pro-
tected zero-energy flat bands may exist in unconventional
nodal superconductors – notably, at the surface of certain
dx2−y2-wave [8], dxy-wave [9], and dxy+p-wave supercon-
ductors [10]; superconductors with a mixture of d- and
s-wave pairing [11]; p±ip superconductors [12] and super-

conducting helical magnets with effective p-wave pairing
[13] – as well as in the vortex core of topological de-
fects [14]. Recently, a proposal for MFBs in nodeless
s-wave (one-band) broken TR superconductors has also
been put forward [15]. To the best of our knowledge, our
model provides the first example of a TR-invariant s-
wave gapless TS. We show that the number of Majorana
edge modes in the non-trivial MFB phase (as opposed
to just the parity of the number of Majorana pairs) is
protected by a local chiral symmetry, a feature that is
both crucial to understand robustness against perturba-
tions and may be advantageous for topological quantum
computation [16]. The dispersionless character of a MFB
implies a large peak in the local density of states (LDOS)
at the surface. Thus, while detecting Majorana fermions
through a zero-bias conductance peak in scanning tun-
neling microscopy (STM) experiments is not viable in
gapped D ≥ 2 TSs, an unambiguous experimental signa-
ture is predicted in the gapless case [15, 17].

In addition to the above practical significance, an out-
standing feature that our work unveils is the anoma-
lous, non-unique bulk-boundary correspondence (BBC)
that gapless TSs may exhibit: MFBs may emerge only
along particular crystal directions, with no surface modes
existing along others. While such an anomalous BBC is
reminiscent of the directional behavior typical of topo-
logical crystalline phases [18], it does not stem simply
from special crystal symmetries. Rather, the physical
mechanism is rooted in the anisotropic momentum de-
pendence of the band degeneracy: the quasiparticle gap
may close non-linearly along certain directions, while it is
linear (Dirac) along others. Only in the former case may
a MFB exist at the corresponding edge. Accordingly, our
findings suggest a general guiding principle for identify-
ing and/or engineering materials supporting MFBs.

Model Hamiltonian.— We consider a two-band (say,
orbitals c and d) TR-invariant s-wave superconductor
on a 2D square lattice. By letting k ≡ (kx, kz) de-
note the wave-vector in the first Brillouin zone and

http://arxiv.org/abs/1401.2173v2
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ψ
†
k
≡ (c†

k,↑, c
†
k,↓, d

†
k,↑, d

†
k,↓, c−k,↑, c−k,↓, d−k,↑, d−k,↓), the

relevant momentum-space Hamiltonian may be written
as H = 1

2

∑

k

(

ψ
†
k
Ĥkψk − 4µ

)

, where the 8× 8 matrix

Ĥk = sz(mkτz−µ) + τx(λkx
σx+λkz

σz)−∆sxτyσx. (1)

Here, sν , τν , σν , ν = x, y, z, are the Pauli matrices in the
Nambu, orbital, and spin space, respectively, and tensor-
product notation is understood. Physically, mk ≡ ucd −
2t(cos kx+coskz), with ucd and t representing the orbital-
dependent on-site potential and the intraband hopping
strength; µ is the chemical potential; λk ≡ (λkx

, λkz
) =

−2λ(sin kx, sinkz) describes the interband SOC, and ∆
is the mean-field gap, with the superconducting pairing
term being an interband s-wave spin-triplet of the form
Hsw = i∆

∑

j [(c
†
j,↑d

†
j,↓ + c

†
j,↓d

†
j,↑) + H.c.], ∆ ∈ R .

In addition to TR, particle-hole, and inversion sym-
metries [4], the Hamiltonian in Eq. (1) obeys a special
(unitary) chiral symmetry, [Ĥk, UK ]+ = 0, where UK ≡
sx ⊗ τz ⊗ I and I denotes the 2× 2 identity matrix [19].
This symmetry will play an essential role in protecting
MFBs. We may decouple Ĥk into two 4×4 blocks by ap-
plying a suitable unitary transformation U , followed by a
reordering P of the fermionic operator basis. Specifically,
let U≡ 1√

2
{[I ⊗ (I + iσx)]⊕

[

I ⊗ (I − iσx)]}, with Pψ
†
k
≡

(c†
k,↑, d

†
k,↓, c−k,↓, d−k,↑, c

†
k,↓, d

†
k,↑, c−k,↑, d−k,↓). Then H

is transformed into H ′ = 1
2

∑

k
(ψ†

k
Ĥ ′

kψk
− 4µ), with

Ĥ ′
k = (PU)Ĥk(PU)† ≡ Ĥ ′

1,k ⊕ Ĥ ′
2,k. As in [4], Ĥ ′

1,k

and Ĥ ′
2,k may be regarded as TR partners, and

Ĥ ′
1,k =

(

mkσz − µ+ λk · ~σ −i∆σy
i∆σy −mkσz + µ+ λk · ~σ

)

,

with ~σ ≡ (σx, σy). The exact quasiparticle excitation

spectrum obtained by diagonalizing Ĥ ′
1,k is given by:

ǫn,k=±

√

m2
k
+Ω2+ |λk|2± 2

√

µ2λ2kx
+Ω2(λ2kz

+m2
k
), (2)

where we assume the order ǫ1,k ≤ ǫ2,k ≤ 0 ≤ ǫ3,k ≤ ǫ4,k,
and Ω2 ≡ µ2 + ∆2. If no SOC is present, λ = 0, then
ǫn,k = ±(|mk| ± |Ω|), hence the gap closes (ǫ2,k = 0)
for |mk| = |Ω|. By comparing ǫ2,k and ǫ3,k, one can
see that as long as |ucd ± 4t| > |Ω|, there is a continu-
ous region of gapless bulk modes, which corresponds to a
gapless two-band superconductor with overlapping exci-
tation spectrum [20]. If λ 6= 0, the situation is simplest at

µ = 0, in which case ǫn,k = ±

√

λ2kx
+(

√

m2
k
+λ2kz

±∆)2,

and ǫ2,k = 0 when λkx
= 0, and λ2kz

+ m2
k
= ∆2. For

instance, if λ = t 6= 0, this leads to kx ≡ kx,c ∈ {0, π},

and kz ≡ km = ± arccos
(

(ucd−2t cos kx,c)
2+4t2−∆2

4t(ucd−2t cos kx,c)

)

. Let

(kx, kz) ≡ (kx,c,±km) denote the modes for which the
bulk excitation spectrum closes. We then expect only a
finite set of values km when λ 6= 0 for arbitrary µ. The

−8 −6 −4 −2 0 2 4 6 8

0

2

4

6

ucd

∆

0

0

0

0

(1,1)

(1,1)(1,1)       (1,1) (1,1)

(−1,1)

(1,−1)

(−1,−1)(−1,1)

(1,−1)

(a)

(b) (c) ∆ 6= 0∆ = 0

FIG. 1: (Color online) Panel (a): Phase diagram ofH [Eq. (1)]
for µ = 0 = λ = 1. Each phase is labelled by the partial
Berry-phase parities (PB,0, PB,π). The topological numbers
do not change under ∆ 7→ −∆. Panels (b) and (c): Sketch of
the spectrum of H with ∆ = 0 in a TI phase, and with ∆ 6= 0
in a TS flat-band phase, respectively.

quantum critical lines are determined by ∆ = ±mkc
,

with kc ≡ (kx,c, kz,c) and kz,c ∈ {0, π}) [Fig. 1(a)].
In the limit ∆ = 0, our Hamiltonian reduces (up to

unitary equivalence) to a TI model [21]. A qualitative
comparison of the spectrum with open boundary condi-
tions (OBC) along ẑ with ∆ = 0 vs. ∆ 6= 0 is shown in
Fig. 1(b)-(c). Remarkably, we may consider our gapless
TS to arise from doping a TI with fully-gapped, node-
less (spin-triplet) s-wave superconductivity. More intu-
itively, an alternative route to realize our gapless TS is
by turning on a suitable SOC in a two-band gapless su-
perconductor, as the effect of λ 6= 0 is to separate the
overlapping excitation spectrum and only leave a vanish-
ing gap at a finite number of points. Thus, our nontrivial
quasiparticle spectrum is a combined effect of SOC and
superconducting order parameter. The most striking as-
pect of such a spectrum is the fact that the quasiparti-
cle gap closing is anisotropic: the gap vanishes linearly
along kx [i.e., ∼ (kx − kx,c)] and quadratically along kz
[i.e., ∼ (kz − km)2]. As we shall soon see, this peculiar
behavior will manifest directly into an anomalous BBC.
Topological response.— As a result of the gapless na-

ture of the bulk excitation spectrum, topological invari-
ants (such as the partial Chern number [4]) applicable
to 2D TR-invariant gapped TS systems are no longer
appropriate. This motivates the use of partial Berry-
phase indicators [4]. In particular, we study the partial
Berry phase of the two occupied negative bands of one
Kramers’ sector only, Ĥ1,k, for each kz (or kx), namely,
Bn,kz

, n = 1, 2, since the Berry phase of all the negative

bands of Ĥ1,k and Ĥ2,k is always trivial [4]. We can then
compute the partial Berry phase parity for each kz as

PB,kz
= (−1)mod2π(B+,kz )/π, B+,kz

≡ B1,kz
+B2,kz

, (3)

and define a Z2 topological number as
∏

kz
PB,kz

. How-
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ever, similar to the gapped case [4], the latter fails to
identify quantum-critical lines between phases that share
the same Z2 number. For the purpose of identifying
all the phase transitions and characterizing the whole
phase diagram in Fig. 1(a), a Z2 ×Z2 indicator is neces-
sary. Specifically, we define our topological invariant as
(PB,kz=0, PB,kz=π) [marked in each phase on Fig. 1(a)],
which correctly signals a phase transition whenever a
jump of either PB,kz=0 or PB,kz=π occurs. Since, as ex-
pected for a consistent bulk behavior, it turns out that
(PB,kx=0, PB,kx=π) = (PB,kz=0, PB,kz=π), we shall just
write the Z2 × Z2 invariant as (PB,0, PB,π) henceforth.
Note that while ultimately such a Z2 × Z2 invariant in-
volves only the partial Berry phase at k = kc, the reason
for the more general definition of the topological numbers
at kz 6= kz,c is related to the BBC, as we discuss next.

Bulk-boundary correspondence.— In a gapped TR-
invariant TS, the BBC defines the relation between bulk
topological invariants and the (parity of the) number of
TR pairs of edge states [1, 4, 22]. To understand the
BBC in our gapless model, we contrast two situations:
BC1—periodic boundary conditions (PBC) along ẑ, and
OBC along x̂; BC2— PBC along x̂, and OBC along ẑ.
Fig. 2 shows how the excitation spectrum changes as a
function of ∆ for BC1 (top panels) and BC2 (bottom
panels) for representative parameter choices in phases la-
belled by (PB,0, PB,π) = (1, 1) [panels (a) and (c)], and
(PB,0, PB,π) = (1,−1) [panels (b) and (d)]. In (a) there
are two pairs of Majorana modes on each boundary for
kz = 0, but no Majorana edge modes in (c); likewise,
in (b) there is a MFB for km < |kz| ≤ π (km ≈ 1.8),
but again no Majorana edge modes in (d). As further
investigation under BC1 reveals, when PB,kz

= −1 a
single TR-pair of Majorana edge modes exists for that
kz-value on each boundary. Thus, a MFB is generated
when there is a dense set of kz for which PB,kz

= −1.
On the contrary, the partial Berry phase for kx 6= kx,c is
always trivial (i.e., PB,kx

= 1); and when PB,kx,c
= −1,

it corresponds to gapless bulk modes for that kx,c.

The above results demonstrate the asymmetry be-
tween the x̂ and ẑ directions notwithstanding their ge-
ometrical equivalence – in direct correspondence with
the anisotropic momentum dependence of the bulk ex-
citation gap, as anticipated [23]. We stress that al-
though the choice of Hamiltonian in Eq. (1) is moti-
vated by our earlier work [4], different physical realiza-
tions of s-wave gapless TR-invariant TSs may be envi-
sioned as long as a similar mechanism is in place: no-
tably, we may change Hsw to interband s-wave spin-
singlet, H ′

sw =
∑

j ∆[(c†j,↑d
†
j,↓ − c

†
j,↓d

†
j,↑) + H.c.], while

also ensuring that the strength of the SOC is sufficiently
anisotropic, e.g., (λkx

, λkz
) = −2(λx sinkx, λz sin kz),

with λz ≪ λx. Based on these observations, we con-
jecture that the momentum asymmetry of the (bulk) ex-
citation gap closing is a necessary condition for anoma-
lous BBC, and that MFBs are necessarily associated with

−4 −2 0 2 4
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ǫ
k

x
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−1

0

1

2

kx

ǫ
k

x

∆ = 4

∆ = 4

(a)

(c)

(b)

(d)

∆ = 0.5

∆ = 0.5

FIG. 2: (Color online) Excitation spectrum of H [Eq. (1)]
for µ = 0, t = λ = ucd = 1. Top (bottom) panels correspond
to BC1 (BC2), whereas right vs. left columns correspond to
(PB,0, PB,π) = (1, 1) vs. (1,−1). System size: Nx = Nz = 40.

higher-than-linear closing. Direct calculation confirms
that this conjecture holds across a variety of models sup-
porting surface flat bands: in particular, anomalous BBC
is observed in spin-triplet px + ipy TSs [12], in both s-
wave and dx2−y2-wave spin-singlet TSs [15], as well as a
TR-broken TI model [24]. Interestingly, MFBs emerge
along both spatial directions in dxy TSs [9], consistent
with the symmetric (quadratic) closing of the bulk gap.
Observable signatures of Majorana flat band.— The

tunneling current between a STM and the material is
proportional to the surface LDOS of electrons [25]. Re-
sults of LDOS calculations are shown in Fig. 3, together
with the corresponding bulk density of states (DOS): a
huge (small) peak for the LDOS (DOS) is seen at zero
energy under BC1 in (a), whereas no zero-energy peak
occurs under BC2 in (b). While the quantitative dif-
ference between the LDOS vs. DOS peaks in panel (a)
does indicates that the zero-energy modes are located on
the boundary, the qualitative difference between panels
(a) and (b) reinforces the asymmetric behavior under the
two boundary conditions shown in Fig. 2. It is instructive
to compare to a typical gapped TS, e.g., the TR-invariant
model discussed in Ref. [4]. Although in this case Majo-
rana edge modes exist in a nontrivial phase regardless of
the direction along which OBC are assigned, no peak in
LDOS (DOS) is seen at zero energy for D > 1 [panels (c)-
(d)]: in 2D (and 3D), the contribution to the LDOS from
the finite number of Majorana edge modes is washed out
by the extensive one from the bulk modes as the system
size grows. Thus, a mechanism other than the existence
of a finite number of Majoranas is needed to explain a
zero-bias peak in 2D (3D) fully-gapped superconductors.

Robustness of Majorana flat band.— Let us first con-
sider a TR-preserving perturbation of the form Hp =
∑

jx,kz,k′

z,σ
up (c

†
jx,kz,σ

cjx,k′

z ,σ + d
†
jx,kz,σ

djx,k′

z,σ) + H.c.,
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FIG. 3: (Color online) Panels (a) and (b): LDOS and DOS
for H [Eq. (1)] for µ = 0, t = λ = ucd = 1, ∆ = 4. Insets: The
jagged lines signify cuts of the system, implying that in BC1
(BC2) the OBC is along the x̂ (ẑ). In (a), the brown (orange)
arrows indicate a continuum of TR-pairs of Majoranas on each
boundary, propagating along opposite directions. Panels (c)
and (d): LDOS and DOS for a gapped TS in 2D and 1D.
System size: (Nx, Nz) = (80, 400) (a), (Nx, Nz) = (400, 80)
(b), (Nx, Nz) = (80, 400) (c), Nx = 80 (d).

where k′z ∈ {−kz, π − kz}, up ∈ R . Since Hp allows
Majorana modes at kz and k′z to couple with each other,
it could significantly change the number of edge modes
in principle. However, the zero-energy modes on the left
(right) boundary of Ĥ ′

1,kz
, say γkz ,ℓ (ℓ = L,R), may be

taken to be eigenstates of K, i.e., Kγkz ,ℓ = ±γkz,ℓ, when
there is only one edge mode on each boundary for kz.
Thus, when there is only one pair of zero-energy modes
in the bulk, at kz = ±km, all the zero-energy edge modes
on the same boundary can be continuously deformed one
into another, which guarantees that they belong to the
same sector of K. Therefore, any local perturbation that
preserves both chirality and TR cannot lift the degener-
acy of the zero-energy modes belonging to the same sec-
tor ofK, leaving the MFB stable. However, the protection
from K may fail when there is an even number of pairs of
zero-energy bulk modes: e.g., in the phase (PB,0, PB,π) =
(−1,−1), the MFB is not robust against Hp, since now
Majoranas on the same boundary may belong to differ-
ent sectors of K. Thus, not only does the parity of the
number of Kramers’ pairs of Majoranas still play an im-
portant role, but also the number of edge modes in the
MFB is conserved as long as both symmetries are re-
spected and there is only one pair of bulk gapless modes.
Similarly, the MFB is robust against another natural
TR-preserving perturbation, namely, intraband s-wave
pairing, Hs = ∆c

∑

j(c
†
j,↑c

†
j,↓ + ∆d

∑

j d
†
j,↑d

†
j,↓) + H.c.,

∆c,∆d ∈ R , which anti-commutes with UK .

Next, consider TR-breaking perturbations due to a
static magnetic field [4, 26], Hν = hν

∑

j ψ
†
jσνψj , where

ν = x̂, ẑ (ŷ) correspond to in-plane (out-of-plane) direc-
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FIG. 4: (Color online) Excitation spectrum of H+Hν for µ =
0, t = λ = 1, ucd = 4,∆ = 2. Panels (a) and (b): in-plane vs.
out-of-plane field. Panels (c) and (d): LDOS for increasing
field strength along ẑ vs. ŷ. System size: (Nx, Nz) = (40, 40)
[(a), (b)], (Nx, Nz) = (40, 400) [(c), (d)].

tions. The response to an in-plane field is similar in both
directions, with the MFB remaining flat, Fig. 4(a). Un-
der a magnetic field hy, instead, the MFB becomes unsta-
ble, Fig. 4(b). The effect of the magnetic field along dif-
ferent directions may be understood through its relation
with chirality. Specifically, the x̂ and ẑ-components of
Hν anti-commute with K, whereas Hy commutes with K.
Accordingly, chirality-protection is lost in this case. The
LDOS in the presence of Zeeman fields along in-plane (ẑ)
and out-of-plane (ŷ) directions is shown in Fig. 4 (c)-(d):
the peak at zero energy stays almost unchanged as hz
increases, whereas it is strongly suppressed when hy 6= 0.
This is consistent with the results from the excitation
spectrum shown above. Moreover, the behavior of the
LDOS under a magnetic field along an arbitrary direc-
tion on the x̂-ẑ plane is similar to the one under hz. We
may then infer that a MFB responds to a uniform Zee-
man field along a certain direction in a similar way as
to a magnetic impurity field along the same direction.
Thus, the MFB will be robust in the presence of in-plane
magnetic impurities, which may be unavoidable in real
materials. Lastly, we investigated the effect of on-site dis-
order along the boundary,Hd =

∑

j vj(c
†
j,↑ cj,↑+c

†
j,↓ cj,↓+

d
†
j,↑ dj,↑+d

†
j,↓ dj,↓)+H.c, where vj ∈ R is a Gaussian ran-

dom potential. The MFBs is robust against weak disor-
der so long as chirality is preserved, with the zero-energy
peak in the LDOS remaining qualitatively intact.

Conclusion.— Majorana modes in gapless TSs can
manifest themselves through new signatures, such as the
emergence of a chirality-protected MFB which may de-
pend crucially on the nature of the boundary. Such an
anomalous, non-unique, BBC in 2D (3D) gapless TSs al-
lows for a more unambiguous signature in tunneling ex-
periments than gapped TSs may afford. The anisotropic,
linear vs. non-linear, vanishing of the quasiparticle bulk
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excitation gap at particular momenta is the unifying prin-
ciple behind such anomaly. Our model provides an ex-
plicit realization of a TR-invariant two-band gapless TS,
where an anisotropic excitation spectrum arises from the
interplay of conventional s-wave superconductivity with
a SOC whose form is motivated by band-structure studies
in PbxSn1−xTe [27]. Thus, we expect that materials in
this class may be natural candidates for the experimental
search of TR-invariant gapped [4] or gapless TSs.
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