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Results from electrostatic calibrations for measuring

the Casimir force in the cylinder-plane geometry
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(Dated: February 19, 2018)

We report on measurements performed on an apparatus aimed to study the Casimir force in the
cylinder-plane configuration. The electrostatic calibrations evidence anomalous behaviors in the
dependence of the electrostatic force and the minimizing potential upon distance. We discuss analo-
gies and differences of these anomalies with respect to those already observed in the sphere-plane
configuration. At the smallest explored distances we observe frequency shifts of non-Coulombian
nature preventing the measurement of the Casimir force in the same range. We also report on mea-
surements performed in the parallel plane configuration, showing that the dependence on distance
of the minimizing potential, if present at all, is milder than in the sphere-plane or cylinder-plane
geometries. General considerations on the interplay between the distance-dependent minimizing po-
tential and the precision of Casimir force measurements in the range relevant to detect the thermal
corrections for all geometries are finally reported.

PACS numbers: 12.20.Fv, 03.70.+k, 04.80.Cc, 11.10.Wx

I. INTRODUCTION

Casimir forces [1] have been investigated since their inception as a macroscopic test of the irreducible fluctuations
associated to quantum fields. They are geometrical in character, as they originate from the possibility to confine
and shape the energy density of quantum fluctuations using proper boundary conditions. So far, the experimental
attention has been mainly focused on the original parallel plate configuration [2, 3], and the sphere-plane geometry
[4–9], apart from the only experiment performed in a crossed-cylinder configuration [10]. Further motivations to
pursue precision studies of the Casimir forces are related to the possibility to discover new forces of strength similar
or larger than the Newtonian gravitational coupling but with short-range or different distance scaling and expected to
act, according to various models, in the submillimeter range [11]. This can be considered part of a broader program
aimed at testing deviations from Newtonian gravitation in the nonrelativistic limit [12, 13]. In the micrometer range
the dominant source of background to non-Newtonian gravitational forces is provided by Casimir forces [14, 15] (see
also [16, 17] for reviews) and to discover such forces, or at least to provide reliable limits on their existence, one must
control at the highest level of accuracy all systematic sources of deviation from the idealized case analyzed by Casimir
in his original paper. Major sources of systematic errors that are still considered under partial control are the use of
the proximity force approximation (PFA) [18, 19] for curved surfaces, the presence of electric forces not reflected in
the purely Coulombian contribution, such as patch effects [20–24], and the combined effect of finite conductivity and
finite temperature [25–27].
The use of the PFA has been discussed at length in the literature, with several alternative methods developed to

overcome its limitations, and exact solutions have been found in particular curved geometries. It is generally assumed
that the PFA for the Casimir force differs from the exact result by an amount smaller than 0.1 %, an assumption
compatible with the results of a dedicated experiment [28]. The control on the PFA used to assess limits to Yukawian
non-Newtonian gravity has not been addressed until very recently, although it has been used for many years [9, 29–
34]. It has been argued that the usual form of PFA cannot be extended unambiguously to volumetric forces [35], and
thereafter an alternative form of the PFA has been discussed [36], which, however, has been shown in [37] to coincide
with the exact formula for geometries in which one of the two bodies has translational invariance.
The presence of electric forces not incorporated in the Coulombian contribution has been discussed extensively in

the literature, in particular in [20]. Anomalies in the electrostatic calibrations of the sphere-plane configuration have
been evidenced for large radii of curvature of the sphere and small distances from the planar surface [38, 39]. This
has triggered discussions about the nature and the universality of the observed anomalies [35, 40], and the situation
is still far from being clarified. The anomalous exponent optimizing the fit of the electrostatic calibrations in [38, 39]
has not been found in another experiment using spheres of much smaller diameter located at similar distances from
the planar surface [41], while the dependence of the minimizing potential on the sphere-plane separation reported in
[38] has been confirmed in [41], and for crystalline Ge in [42] (see also [39] for a discussion of some unpublished data

http://arxiv.org/abs/1101.1476v2
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from former experiments). The spatial and temporal variabilities of the minimizing potential has been evidenced in a
centimeter-size torsional balance [43], which confirms the necessity for a detailed knowledge of the surfaces and their
preparation [44–47].
The finite temperature contribution added to the quantum fluctuations has originated a lengthy debate about the

interplay of the thermal contribution with the finite conductivity properties of the surfaces (see for instance [48–
59] for the initial steps of the debate). On the experimental side, attempts to evidence the thermal contribution
discriminating various models have been reported for the sphere-plane geometry [9], while proposals using torsional
balances in the parallel plane configuration [60, 61] are under development. A dedicated experiment in the parallel
plane configuration using microresonators [62] and a low-frequency heterodyne technique [63] has been limited so far
from patch charges [64].
Recently, the use of a configuration with intermediate features between the parallel plate and the sphere-plane

ones, i.e. the cylinder-plane geometry, has been proposed, and its experimental feasibility was investigated at gaps
of the order of 20 µm, limited by the roughness of the metallic surfaces [65–67]. This geometry is very relevant
from the theoretical viewpoint, since an exact solution for the Casimir force has been found [68, 69], also providing
another example of curved geometry in which PFA may be tested against numerical techniques [70, 71]. In this paper
we report on the results of electrostatic calibrations for an apparatus using the cylinder-plane geometry in a range
of distances of relevance for measuring the Casimir force. We observe a background originating frequency shifts of
amplitude large enough to overwhelm the downshift expected from the Casimir force. We also discuss the distance
dependence of the contact potential in both the cylinder-plane and parallel plates configurations. The minimizing
potential shows no significant distance dependence in the parallel plates configuration with respect to corresponding
cases of the cylinder-plane and sphere-plane configurations.
The paper is organized as follows: in Sec, II we briefly recall the Coulomb force in the cylinder-plane geometry, and

report on the upgrades to the apparatus with respect to the one described in [66], its overall sensitivity performance,
its geometrical characterization, and the parallelization technique. In Sec. III we describe results from electrostatic
calibrations, showing that in analogy to the sphere-plane case we observe that (a) the optimal exponent for fitting
the dependence of the Coulomb coupling on distance is not the one expected from the idealized situation, at least at
the smallest explored distances between the cylinder and the plane and (b) that the minimizing potential depends on
distance. We then describe the data analysis leading to force residuals after subtraction of the Coulombian contri-
bution. At the smallest explored gaps we observe residual frequency shifts of amplitude large enough to prevent the
measurement of the Casimir force. The presence of shifts neither of Coulomb nor of Casimir origin has been confirmed
by implementing a measurement strategy consisting in progressively approaching the two surfaces at constant bias
voltage, and measuring the resonator frequency. In Sec. IV we discuss possible explanations for the unexpected

FIG. 1: (Color online) (Left) Schematic view of the experimental set-up with two lateral piezoelectric actuators (PZTL and
PZTR) for fine adjustment of parallelization, and a central piezoelectric actuator (PZTC) for controlling the cylinder-plane
distance. On the top of the central actuator a platform is located with screws to adjust the horizontal position of the Au coated
cylindrical lens (C). The resonator (R) is on the top of the cylindrical lens, and below the optical fiber (F) which is attached
to a piezoelectric actuator (PZTF). (Right) Close-up image of the cylindrical lens and resonator region. The cylindrical lens
has a radius of curvature of a = 12 mm and a length L = 4 mm, smaller than the width of the resonator of 10 mm.
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FIG. 2: (Color online) Assessment of the parallelization through capacitance measurements. The cylinder-plane capacitance is
shown vs. the difference between the steps traveled by the left and right actuators in a differential mode. Each data point is
the average of 20 measurements with an integration time of 1 s. The error bar represents the mean standard deviation on each
data set.

scaling law of the Coulomb interaction with distance. We then describe in Sec. V electrostatic calibrations taken in
a parallel plane geometry aimed at evidencing the dependence on distance of the minimizing potential also in this
configuration, thereby completing the analysis for the three most common geometries of experimental interest. The
relevance of measuring and modeling the dependence of the minimizing potential on distance in order to detect the
thermal contribution to the Casimir force is discussed in Sec. VI. In the conclusion we put our findings in the more
general framework of the recent observations of systematic effects highlighting possible future developments for the
cylinder-plane geometry.

II. CYLINDER-PLANE CONFIGURATION: GEOMETRICAL CONSIDERATIONS

The theory related to the cylinder-plane geometry and a description of the apparatus have been the subject of a
former paper [66], while further details of the measurement technique have been reported in [38, 39, 67, 72]. The
main difference from the former tests is due to the use of high-quality Au-coated cylindrical lenses, with planarity
and roughness comparable to the ones of the resonator, therefore allowing us to reach submicrometer gaps.
The electrostatic force between a conducting cylinder (of length L, radius a, with L ≫ a) parallel to a conducting

planar surface, separated by a gap d and kept at a fixed electrostatic potential difference V is [73]

F
(0)
El =

4πǫ0LV
2

∆ ln2
(

h−∆
h+∆

) ≈ πǫ0
√
aLV 2

2
√
2d3/2

, (1)

where ∆ =
√
h2 − a2 and h = d+ a, with the approximate expression in the right-hand side (r.h.s.) valid in the limit

d ≪ a, also coinciding with the result expected from the PFA for electrostatics. Since both the cantilever and the
cylinder have finite size, the length L in the previous expressions should be replaced by an effective length Leff that
characterizes the relative exposure between the cantilever and the lens, (i.e. the minimum between the width of the
cantilever and the length of the cylinder). In our initial experimental attempts this corresponded to the cantilever
width. However, by visual and optical microscope analysis we noticed the presence of sharp irregularities at the
border of the cantilever, most likely originated by the laser cutting process of the Si wafer. We have then chosen
cylindrical lenses of length L = 4 mm smaller than the resonator width of 10 mm (see Fig. 1), as the lenses seem to
have more regular borders, as visible at the optical microscope. At this point we should note that the curvature of our
cylindrical lens is a = 12 mm, larger than its length L. This implies that border effects in the electrostatic interaction
between the cylinder and the cantilever can be important, and the exact logarithmic expression of the electrostatic
force in Eq.(1) should not hold in our configuration. However, as long as the conditions for the PFA hold (d ≪ a)
the approximate expression for the force as given by the r.h.s. in Eq.(1) should apply, irrespective of the relative
magnitude of L and a. Other important geometrical issues are the possible nonperfect parallelization between the
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cylinder and the cantilever and the use of a cylindrical lens rather than a full cylinder. In [66], the correction to the
PFA expression for the force [r.h.s. of Eq. (1)] due to nonparallelism was computed

F np
El = F

(0)
El

1

α

(

1√
1− α

− 1√
1 + α

)

≈ F
(0)
El

[

1 +
5

8
α2 +O(α4)

]

, (2)

where α = L sin θ/2d, θ is the deviation angle from ideal parallelism, and in this nonparallel case the distance d
between the cantilever and the cylinder is measured from the midpoint along the axis of the cylinder. The use of
a cylindrical lens rather than a full cylinder can be simply evaluated in PFA [72], resulting in a subleading PFA
correction (of the order of 5×10−2 for a typical separation of d/a = 10−3), and will be then discarded in what follows.
To calibrate the apparatus, a controllable electrostatic force is generated by applying bias voltages between the

cantilever and the cylindrical lens. At a given separation, the frequency of a resonant mode characterized by an
effective mass meff is measured both with (ν) and without (ν0) the presence of the voltage. This allows for the
evaluation of the square frequency difference ∆ν2 = ν2 − ν20 , related to the voltage V in the PFA (d ≪ a) as

∆ν2el = − 3ǫ0
√
aLeff

16
√
2πmeff

(V − V0)
2

d5/2

[

α−1

3(1− α)3/2
− α−1

3(1 + α)3/2

]

, (3)

where V0 is the minimizing potential. For small tilting angles α ≪ 1 the correction to the frequency shift due
to nonparallelism has a quadratic dependence on α, given as 1 + 35α2/24. The parallelization procedure is one-
dimensional, thereby simpler than in the case of two flat surfaces. Rather than measuring the frequency shift induced
by a constant bias voltage as discussed in [66], we have opted to monitor the cylinder-plane capacitance using a
capacitive AC bridge [72]. Using the PFA, the capacitance between the cylinder and the plane is given by

C =
2πǫ0Leff

√
a√

2d

(√
1 + α−

√
1− α

)

α
. (4)

The tilting angle θ (and therefore α in turn) is controlled through two motorized actuators acting in differential
mode, with the goal to keep the average distance d (the separation between the plate and the cylinder as measured
from the midpoint of the cylinder) constant while changing the tilting angle (see Fig. 1). The precision of the
achieved parallelism is then determined by the quality of the fitting of the capacitance versus differential steps
number, propagated to determine the dispersion on the number of steps at minima compatible with the fitting error.
The precision can be improved by minimizing stray capacitance between various contacts since the precision of

the capacitance meter is some percentage of the total capacitance in the system, usually 0.05%. An example of
parallelization through capacitance measurements is shown in Fig. 2. The use of long-range actuators has been
shown to be problematic due to large hysteresis, and therefore we have opted for a fine tuning with the use of two
piezoelectric actuators as in the schematics shown in the left plot of Fig. 1. An optical microscope allows to monitor
the quality and cleanness of the two surfaces and for a visual, qualitative assessment of the parallelization. An a

posteriori, off-line check is obtained by fitting the electrostatic curves of the frequency shift using Eq. (3), which
results in a value of θ compatible with zero within a fitting error of δθ = 10−3 radians.

III. ELECTROSTATIC CALIBRATIONS AND RESIDUALS ANALYSIS IN THE CYLINDER-PLANE

GEOMETRY

An important prerequisite to any Casimir force measurement is the execution of high-quality electrostatic calibra-
tions. Forces are always indirectly measured via their functional relationship to more accessible observables, such as
detection of deflection angles, voltages required to keep the apparatus at rest in closed loop schemes, or shifts of the
frequency of a mode of a resonator as in our case. It is then crucial to convert such quantities more directly observed
into the corresponding force signal by means of well-known and controllable physical signals, for instance by applying
external bias voltages and comparing the measured forces with the Coulombian interactions between macroscopic
conducting bodies.
The electrostatic calibration starts by finding the best parallelization condition at a given nominal cylinder-plane

separation d using the capacitance technique described previously. Then the parallelization is further fine tuned by
adjusting the two lateral piezoelectric actuators PZTL,R. Once the optimal parallel condition is obtained, PZTL,R are
left untouched, and the separation d is changed via the central piezoelectric actuator PZTC. This procedure keeps
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the parallelization at the optimal value. As seen previously, in the perfect parallel situation the frequency shift of the
cantilever due to pure electrostatics takes the form

∆ν2el = − 3ǫ0
√
aLeff

16
√
2πmeff

(V − V0)
2

d5/2
= −Kel(V − V0)

2. (5)

The displacement of the central piezo PZTC depends linearly on the voltage applied VPZT, and therefore the absolute
gap is given by d = β(V 0

PZT − VPZT), where β = (91.9 ± 0.9) nm/V is the actuation coefficient of the piezoelectric
transducer, and V 0

PZT is the PZT voltage required to make contact between the two surfaces. At a given distance, the
electrostatic calibration has been performed by measuring the frequency shift induced by a range of electric voltages
V applied between the two surfaces. The curvature coefficient Kel = 3ǫ0

√
aLeff/16

√
2πmeffd

5/2 and the minimizing
potential V0 can then be obtained by fitting the data with

ν2el = ν2el(V, VPZT) = ν20 −Kel(VPZT)× (V − V0)
2, (6)

Kel(VPZT) = γ(V 0
PZT − VPZT)

−5/2, (7)

where γ ≡ 3ǫ0
√
aLeff/16

√
2πmeffβ

5/2. This fitting procedure allows the determination of the absolute distance d
once the fitting parameter V 0

PZT is obtained, and the measurement of the contact potential V0 as a function of d. A
typical data plot of Kel vs. VPZT is shown in the left plot of Fig. 3. The blue curves are the best fits using Eq. (6),

and they deviate significantly from the data points, both including or excluding a curvature offset K
(0)
el representing

a hypothetical background electric field. Moreover, the effective mass calculated from the fitting parameter is 30-
50 times larger than the physical mass, much larger than the expected value of the effective mass which should
be comparable or smaller than the physical mass of the resonator. If instead the power exponent is left as a free
parameter, rather than being fixed at 2.5, a new fitting curve with the exponent in the 0.9 to 1.3 range is obtained
(the red curves in Fig. 3). This deviation from the expected exponent for the Coulombian force has been confirmed
to exist in all our electrostatic calibrations data.
Table I shows the fitting parameters of the electrostatic calibrations for five runs both when the exponent is fixed

and left as a free parameter. The effective mass for the latter case is not well defined because of the deviation of the
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FIG. 3: (Color online) (Left) Plots of curvature coefficient Kel vs. VPZT in cylindrical-plane electrostatic measurements obtained
with the curvature technique, and best fits with the expected Coulombian interaction having a 2.5 exponent (blue/dark gray
continuous curve), and with a power-law functional dependence in which the exponent is instead a free parameter (red/light
gray continuous curve). The dashed curves are obtained by also constraining to zero an offset for Kel, representing a possible
curvature present even at a large distance between the cylinder and the plane, for instance due to stray environmental electric
fields. (Right) Plot of the reduced χ2 obtained by dividing χ2 by the degrees of freedom (DOF) vs. the value of the power

exponent in the case of the offset K
(0)
el = 0. Data are taken as described in [38, 39], with a modification of the acquisition code

for faster data acquisition and smaller uncertainty from drift effects. In the routine used for data acquisition in [38, 39], the
bias voltage always returns to 0 V after each measurement. In the new routine instead, it changes from +Vb to −Vb in steps of
δV where Vb and δV (i.e. the maximum bias voltage and its minimum step of variation during the calibration) are specified in
advance in the code. This allows to double the acquisition speed for a targeted span of voltage values. Although this sacrifices
some accuracies in the subsequent fitting of the data, a shorter data acquisition time is preferable considering the relatively
large drift experienced during the entire duration of a typical run.
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Run 1 Run 2 Run 3 Run 4 Run 5
fixed exponent 2.5 2.5 2.5 2.5 2.5
V 0
PZT (V) 79.52±0.06 73.08±0.06 56.76±0.03 71.05±0.02 65.84±0.02

dmin (nm) 590 504 491 464 477
meff (g) 6.63 9.25 8.87 9.46 9.01
χ2/DOF 60 116 283 518 876
free exponent 1.30±0.03 0.97±0.01 0.93±0.01 1.00±0.01 0.94±0.01
V 0
PZT (V) 74.37±0.04 68.07±0.02 51.78±0.01 66.45±0.01 61.03±0.01

dmin (nm) 116 43 33 42 34
χ2/DOF 5.3 11 19 42 31

TABLE I: Fitting parameters of the electrostatic calibrations using the curvature technique.

exponent from 2.5, thus it is not listed. As shown in Table I, the exponent, when left as a free parameter, is always
smaller than the theoretical value of 2.5, with a reduced χ2 smaller by about an order of magnitude with respect to
the one expected from the Coulombian scaling. The relatively large value of χ2 also indicates that the errors may
be underestimated, although this does not affect our conclusions about the relative comparison between Coulombian
and optimal exponents. While small deviations from 2.5 are expected considering all the less than ideal conditions
such as imperfect parallelization and thermal and mechanical drifts, such a significant difference (an average value of
1.03 versus 2.5) cannot be explained as small deviations from ideality.
Electrostatic calibrations have also been performed with an alternative technique consisting in directly measuring

the resonance frequency as the separation gap is decreased maintaining a constant bias voltage. This so-called fast-

approach measurement technique has the advantage of a faster data acquisition, resulting in a mitigation of the long-
term thermal or mechanical drifts, and provides an alternative to check the distance dependence of the electrostatic
force. As shown in the left plot of Fig. 4, the optimal exponent obtained from the minimum of the reduced χ2 curve
is around 0.89. Although this technique seems to be slightly less sensitive to the exponent, as shown from the softer
dependence of χ2 (the value of χ2 for the exponent of 2.5 being only three times larger than the minimum χ2 obtained
at the exponent of 0.89), the optimal value of the exponent is consistent with the results from the previous technique
based upon electrostatic calibrations. The fact that a significant deviation of the exponent from 2.5 is still observed
even in fast-approach measurements limits or rules out the possibility that systematic effects, such as artifacts from
fitting the parabolic dependence in Eq. (5), or long-term drifts such as thermal expansions or relaxation of the PZT
actuator, may be responsible for this anomalous behavior.
As can be seen in Table I, the smallest distance achieved is of the order of 500 nm based on the fitting with a
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FIG. 4: (Color online) (Left) Squared resonance frequency versus VPZT for the fast-approach calibration technique. The data
were obtained using a measurement protocol in which a constant bias voltage equal to 4 V was applied across the two surfaces
and the resonance frequency was progressively measured from the farthest to the closest distances. The dashed blue curve is the
fitting with a 2.5 exponent while the continuous red curve is obtained leaving the exponent as a free parameter, whose optimal
value turned out to be about 0.89. In the inset the reduced χ2 is plotted versus the value of the free exponent. (Right) Test of
the electrostatic scaling law for the cylinder-plane geometry at large distances with the curvature technique. Plot of curvature
coefficient Kel versus VPZT. The red curve is the fit with 2.5 exponent, the blue is the fit with the optimal exponent 1.84. In
the inset the reduced χ2 is plotted versus the value of the free exponent, with a minimum of χ2 obtained for an exponent equal
to 1.84.
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FIG. 5: (Color online) Optimal exponents of five electrostatic calibrations versus the distance of the closest data point used in
the fitting, with the continuous line representing a spline curve obtained by considering all data points, weighted by their error
bars.

fixed exponent of 2.5. In a previous measurement using wider cylindrical lenses with a larger radius of curvature
the smallest distance reached was around 1 µm, and no significant deviation of power exponent from 2.5 has been
observed. This suggests that the exceptionally small exponent may be a result of the smaller gaps reachable with the
cylindrical lenses of smaller width and radius of curvature. Although the absolute distances obtained from the fitting
with exponent 2.5 cannot be fully trusted in light of the relatively inaccurate fitting, they can be still considered as
reliable enough to estimate the gap separation.
Electrostatic calibrations with the same lens were performed at relatively large distances, as shown in the right

plot of Fig. 4. In the data presented in Table I, the explored distances ranged from about 500 nm to 7.3 µm. The
new calibrations were instead performed in the range of about 5.1 to 21.6 µm. This obviously results in much smaller
frequency shifts and larger error bars in the values of Kel, yet it is evident from the fitting that an exponent of 2.5
is more satisfactory for these large-distance data. Furthermore, the fitting parameters with an exponent fixed at 2.5
gives an effective mass of 1.2 g which is much closer to the estimated physical mass of the resonator of 0.2 g. If the
power exponent is instead left as a free parameter, a value of 1.84±0.06 is obtained. The large-distance data span
smaller ranges of Kel and therefore are less sensitive to the power exponent and as shown in the inset on the left plot
of Fig. 4, the difference between the fitting curve of 2.5 exponent and that of 1.84 exponent is not very significant
(corresponding to a reduced χ2 of 2.3 versus 4.9). Nevertheless, the fitting makes evident that the optimal exponent
at large distance is almost two times larger than the one obtained from the small-distance data. We also investigated
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potential V0 versus VPZT from a typical electrostatic calibration measurement. (Right) Minimizing potential V0 versus distance
d from various runs.
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FIG. 7: Plots of the curvature coefficient Kel (left) and the minimizing potential V0 (right) versus time at constant VPZT. The
inset of the right plot is the histogram of V0 which shows that V0 roughly follows a Gaussian distribution centered around 0.163
V with a full width at half maximum of 0.023 V (standard deviation 0.01 V).

how the optimal exponent changes if a subset of data, rather than the entire set, is used in the fitting procedure.
In particular, we have fitted subsets of data obtained by progressively removing points at the smallest distances. As
shown in Fig. 5, all five runs share the same trend showing that the optimal exponent increases when the number of
the removed point of closest distance used in the fitting increases. The absolute distances in the plot were obtained
from the fitting with fixed 2.5 exponent. One feature which is noticeable in the figure is a relatively sharp increase
in the value of the optimal exponent for a distance range of 500 to 600 nm. This could explain why such a large
deviation of the optimal exponent from 2.5 has not been observed in our earlier measurements with a larger radius
of curvature cylinders in which we managed to reach minimum distances of only about 1 µm. We have also noticed
a strong correlation between the value of the effective mass meff and the exponent. The effective mass obtained from
the fitting increases when the distance between the two surfaces decreases. The dependence on distance of the optimal
exponent is in contrast to the case of the sphere-plane measurements in which a relatively constant optimal exponent
was observed uniformly over the entire range of explored distance [38, 39]. All fits are performed with a weight equal
to 1/σ2

i , where σi is the standard deviation of Kel from the parabola fitting.
In our experiment we have also studied the possible distance variability of the minimizing potential V0 (i.e. the

voltage difference between the cylindrical and the planar conducting surfaces which is minimizing the electrostatic
force, as described for instance in [38, 39]). At larger gaps we have observed an approximate linear relationship
between the residual potential V0 and VPZT in the cylinder-plane configuration. With closer approaching (larger
values of VPZT), V0 tends to have a nearly flat dependence on the distance, as is visible in Fig. 6, both on a single
run (left plot) and on various runs obtained in different days (right plot).
To estimate the effect of long-term drifts we have studied the time dependence of the electrostatic curvature

coefficient Kel and the minimizing potential V0, without nominally changing the cylinder-plane gap distance, as
shown in Fig. 7. The curvature coefficient shows temporal variations of order 50 %, while the minimizing potential
V0 does not show any evident dependency, rather it fluctuates in a relatively small range of values.
From the electrostatic calibration measurements it is also possible to extract the electrostatic-free frequency ν0 as

can be seen from Eq. (6). In principle, when the distance between the two surfaces is small enough, one should expect
a downward shift of this residual frequency due to attractive Casimir forces. However, as can be seen in Fig. 8, no
significant downshift of ν0 has been observed, rather a sharp upshift was instead observed in one case. This upshift
indicates a very strong repulsive force between the two surfaces at small distances, which could be from either a

dmin − dtouch (nm) 0 92 184 276 368
Vbias = 3V -0.91±0.02 -1.52±0.10 -1.56±0.17 -1.91±0.32 -2.05±0.51
Vbias = 4V -0.89±0.03 -1.20±0.08 -1.73±0.19 -1.89±0.30 -1.83±0.36
Vbias = 5V -0.98±0.02 -1.70±0.04 -1.60±0.06 -1.61±0.10 -1.62±0.16

TABLE II: Optimal exponents for various values of minimum distance used in the fitting of the data from fast approach
measurements.
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FIG. 8: (Color online) Residuals from electrostatic calibrations with parabola method. (Left) Plot of residual frequencies from
various runs of electrostatic calibration measurements vs. distance. Because of the dependence of the resonant frequency on
temperature, different runs have different frequencies even at the largest gaps at which no residual force is expected. (Right)
Same plot but with a common baseline chosen in such a way that the data points at the farthest distance have a common
central value, with νs = ν0 − ν0(dmax).

repulsive component of the Van der Waals forces or simply a soft contact of the surfaces. To better understand the
short-distance behavior and to reduce the effect of thermal drifts, we have performed a series of measurements using
the fast-approach technique mentioned previously.
As shown in Fig. 9, with a constant bias voltage Vbias=4 V, the frequency of the resonator decreases as the cylindrical

lens approaches the resonator, as qualitatively expected for the attractive Coulomb force, then followed by a sharp
increase, most likely from contact of the surfaces. If the Coulomb force is the dominant force, then the downward
part of the curve can be fitted using Eq. 5. As mentioned earlier, a fixed exponent of 2.5 produces a marginal fit while
the optimal exponent is around 0.9. However, we should keep in mind that the exponent is not supposed to be 2.5
in the first place if at small distances some other forces (either the Casimir force, patch forces, or corrections to the
standard Coulomb interaction mentioned in the previous section) become large enough to compete with the Coulomb
force. Based on this remark, we further analyze the data by removing data points at the smallest distances, to test
the stability of the fit with the Coulomb force. In these conditions the optimal exponent increases, as shown in Table
II. In analogy to the previous analysis on electrostatic calibration data, although the optimal exponent is still smaller
than 2.5, the value is approaching 2.5 within the relatively large error bars. This indicates once again that the sources
of discrepancy between the data and the expected Coulomb force are localized at the smallest distances.
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FIG. 9: (Left) Plot of frequency versus VPZT with a constant bias voltage Vbias = 4 V obtained using the fast-approach method.
(Right) Plot of frequency versus VPZT with a constant bias voltage Vbias = 0.15 V approximately compensating the value of
the minimizing potential expected at the smaller gaps. No evidence for downshifts attributable to charge-independent forces is
visible until the frequency increases due to direct contact between the two surfaces.
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FIG. 10: (Color online) Residuals to the frequency shifts with the fast-approach technique. (Left) Plots of residual frequency
square (ν2 - ν2

fit) for a constant bias voltage Vbias= 4 V versus VPZT and different values of the maximum value of VPZT used for
the data analysis. (Right) Plot of the corresponding force versus distance. Both the absolute force and the absolute distance
are inferred by the Coulomb fitting at larger distances.

We then can investigate another kind of residual of the data to analyze the effect of data taken at the smallest
distances. Instead of relaxing the exponent finding its optimal value, the exponent is kept fixed at 2.5 when fitting
the larger distance portion of the data, and the residuals at small distances are evaluated. This residual analysis is
shown in Fig. 10 for one run, with the soft contact occurring around VPZT = 88.8 V. If the Coulomb force is the only
dominant force for the whole downshifted part before the soft contact, then the fitting curve obtained when excluding
a small region of data prior to contact, for instance all the data corresponding to a PZT voltage larger than VPZT =
87.8 V, should be able to predict the data obtained by excluding distances corresponding to a further Volt of VPZT

removed, with residuals centered around zero. However, by doing so there is clearly a nonzero downshift residual
before the soft contact takes over. In principle this residual could come from fitting artifacts, in particular it could
depend on the interval chosen for fitting the data with the Coulomb force. However, when more points were removed,
this nonzero residual appears to be stabilized. Considering that the frequency shifts with this fast-approach technique
may capture all possible forces acting on the resonator, this electrostatic residual analysis indicates that there are
forces other than the expected contribution from the applied constant bias voltage that caused a further downshift
in the frequency. To test whether the residual force is correlated to the external bias electric field, measurements
were also performed with Vbias = 0.15 V, corresponding to the average value of the residual potential V0 at small
distances as shown in Fig. 6. No noticeable downshift was observed, as seen in the right plot of Fig. 9. Furthermore,
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FIG. 11: (Color online) Fast-approach measurements with various values of the bias voltage. Plot of the resonator frequency
versus distance with bias voltage Vbias of 3 V (black circle points), 4 V (red square points), and 5 V (green diamond points).
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FIG. 12: (Color online) Plots of residual frequency square (ν2 - ν2
fit) from the fast-approach measurement with Vbias = 3 V

(black circle points), 4 V (red square points) and 5 V (green diamond points) versus VPZT (left) and distance (right). The
fittings were done after removing the closest 184 nm data.

to rule out possible changes of configurations (such as parallelism or distance drifts) in runs taken in different days,
fast-approach measurements were performed with different Vbias applied within the same run, (i.e., at each position
three values of Vbias were applied and the respective frequencies measured, as shown in Fig. 11 with bias voltages of
3, 4, and 5 V). This confirms that larger bias voltages result in larger frequency shifts at the same distance. The
residual analyses were carried out and the results with the fitting after removing the closest 184 nm data are shown
in Fig. 12. The extra downshifts were present in all three curves, with peak value approximately quadratic in the
external bias voltage.
Although this residual force Fres is attractive, it cannot be identified with the sought Casimir force. Apart from the

absence of a comparable signal in the residual frequency analysis with the electrostatic calibration technique (Fig. 8),
Fres seems to be dependent on the applied bias voltage as shown in Fig. 12. Moreover, best fits of this residual force
with power-law expressions indicate that it is required an exponent which is much larger than that of the Casimir
force. The fact that this extra force depends on the applied bias voltage indicates that it may also be present in
electrostatic calibrations and could lead to an anomalous exponent.
It should be noticed that within our statistics of runs performed with the fast-approach technique (about 20) we

have also observed a couple of runs in which residuals gave rise to short-distance upshifts. This could be explained by
the presence of anomalous distance drifts due to external factors such as the environmental temperature. To assess
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FIG. 13: (Color online) Plots of the resonator frequency versus time in the case of large separation (black upper points), and
small separation (red lower points), the latter obtained by imposing an external bias voltage of 4 V at a nominally constant
distance. While the first plot reflects the intrinsic resonator change, for instance due to temperature drifts or internal creeps,
the second also includes the effect of drifts over time in the cylinder-plane separation distance.
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FIG. 14: Optimal exponent vs. the distance of the closest data point used in the fitting of the capacitance vs. distance curve for
the numerical simulation of the finite size cylindrical lens in front of the finite size planar resonator, the geometry corresponding
to the actual experimental setup as shown in Fig. 1.

this effect and how much it affects the amplitude of the observed frequency shifts in the residuals, we show in Fig. 13
the typical amplitude of the frequency fluctuations. This allows for disentangling the intrinsic drifts due to changes
in the resonator frequency, obtained by monitoring the resonator with a distance from the cylinder large enough to
make negligible its influence, and drifts due to changes in the cylinder-plane distance, with a bias voltage of 4 V
intermediate between the two extreme values of voltages applied in the fast-approach measurements.

IV. POSSIBLE EXPLANATIONS FOR THE ANOMALOUS EXPONENT

In the following section we discuss possible causes of the anomalous exponent obtained in our electrostatic calibra-
tions of the cylinder-plane geometry. In particular, we consider edge effects, local deformations from the idealized
geometry, electric forces with steeper distance scaling than the Coulomb force, and electrostatic patch effects.

A. Edge effects

One possible reason for a deviation from the ideal Coulomb prediction of 2.5 for the exponent of the frequency
shift versus distance is the fact that a finite size cylindrical lens was used in the experiment, instead of a long whole
cylinder. In this situation edge effects may not be negligible, and Eq. (1) would not be a good approximation to
the actual electrostatic frequency shift. While edge effects have been discussed for Casimir forces with the general
world-line approach in [74], we have not found former discussions of this effect in the electrostatic calibrations in
Casimir experiments. Using the COMSOL numerical package, we have conducted numerical simulations in which the
precise geometry of the measurements was used, and the capacitance between the cylindrical lens and the resonator
was evaluated at different distances [75]. By neglecting edge effects, the power exponent for the capacitance versus
distance would be 0.5. We repeated the same analysis as shown in Fig. 5 with these data, and Fig. 14 shows how
the optimal exponent changes if data points at the smallest distances are progressively removed from the fitting. The
optimal exponent obtained for the capacitance from the COMSOL simulation for the finite-size geometry deviates
more from the ideal value of 0.5 as the cylinder-plane separation is increased (i.e. the regime in which edge effects
are more pronounced). In contrast, the optimal exponent obtained experimentally in our electrostatic calibrations
deviates more strongly from the ideal value as the separation is decreased. Therefore, border effects cannot explain,
either quantitatively or qualitatively, the anomalous exponent observed in our measurements.

B. Local geometrical deformations

Another possible reason for the deviation of the exponent with respect to the ideal value 2.5 is the presence of
geometrical deformations in the shape of the cylinder. As the experiment is performed with a very large cylinder
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FIG. 15: Two examples of deformations of the cylindrical surfaces. On the left we show a cylindrical lens with a flat deformation,
on the right, the cylinder has a tip (not to scale).

(a=12mm), the surface may present local deformations at the submillimeter scale, which could induce strong deviations
in the exponent. A similar point has been raised for the case of a large sphere in front of a plane in [40], where it
was remarked that departures from the ideal spherical surface may noticeably affect the exponent of the electrostatic
calibration.
To illustrate this point, we have computed the electrostatic force between a deformed cylinder and a plane using the

PFA. Let us first assume that, in the region of minimum distance between surfaces, the cylinder has a flat deformation
of width 2b (see left plot in Fig. 15). For simplicity we assume that the same deformation is all along the length L of
the cylinder. In this case it is possible to show that

∆ν2el = − ǫ0Leff(V − V0)
2

4π2meff

∂2

∂d2
[finc(d−

b2

2a
) + fpp(d)] , (8)

where

finc(d) =

√

2a

d
arctan

√

2ad

b2
(9)

is the contribution of the (incomplete) cylinder, and fpp(d) = b/d is the contribution of the flat deformation. Let us
assume that ∆ν2el = −A/dB. Depending on the relation between the size b of the deformation and the range of distances
d of the calibration, we expect that the exponent B will interpolate between the ideal value 2.5 (cylinder-plane) at
relatively large distances, and 3 (parallel plates) at short distances (although the interpolation is not necessarily a
monotonic function). When b = 102µm, and the fit is performed for d between 0.5 and 2 µm, the exponent becomes
B = 2.8, bigger than that of the ideal cylinder-plane geometry. Then this kind of deformation does not help to explain
the observed anomalous exponent.
On the other hand, if the cylinder has a deformation with the form of a tip (see right plot in Fig. 15), the exponents

are, in general, considerably smaller than the ideal one, and can explain at least part of the anomaly. Indeed, let us
assume that the deformation consists of a triangular tip of width 2b and height b′. In this case, PFA gives

∆ν2el = − ǫ0Leff(V − V0)
2

4π2meff

∂2

∂d2
[finc(d+ b′) + ftip(d)] , (10)

where

ftip =
b

b′
ln

(

1 +
b′

d

)

. (11)

If the height of the tip is much larger than d, the contribution of the incomplete cylinder is almost irrelevant, since
the cylinder is shifted upward and its electrostatic energy becomes almost independent of d in this regime. The
main contribution comes from the tip, and the mild logarithmic dependence of the energy with the distance implies
an exponent of around B ≈ 2. This can be easily confirmed by performing fits of Eq. (10). For example, for the
same parameters as previously, with b′ = b, we obtain an exponent B = 2.0. Sharper tips may produce even smaller
exponents, although the PFA becomes unreliable for very thin tips.
The main conclusion of the PFA estimations is that, as expected, deformations of the cylindrical surface may change

appreciably the exponent 2.5 of the electrostatic calibration. Although the previous examples do not explain the full
discrepancy between the ideal prediction and the experimental data, this is certainly a crucial point to be taken into
account in future experiments.
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C. Additional electric forces

In the residuals analysis of electrostatic calibrations described in the previous section, a residual force which seems
to depend on the applied bias voltage was observed. The presence of such a force could lead to an anomalous exponent.
Let us consider a hypothetical scenario in which the square of frequency shift ∆ν2hs for a cylinder-plane geometry has
the following dependence on distance:

∆ν2p = −
( α1

d2.5
+

α2

dp

)

(V − V0)
2. (12)

in which p > 2.5. This means that besides the expected electrostatic interaction between the two surfaces, there is
another electric force which follows a higher power law upon the cylinder-plane separation. Let us generate a set of
pseudo-data following Eq. (12), and let us try to fit the curvature coefficient Kp = α1d

−2.5 + α2d
−p with:

Kp = α(d − d0)
−q (13)

where α, d0 and q are fitting parameters. In Figs. 16 and 17 we show the results of the fitting using different
values of α2/α1 versus the distance of the closest point used in the fitting with p = 5. Not surprisingly, the optimal
value of q from the fitting approaches p at small distances, and approaches 2.5 at large distances. However, it is
not monotonically decreasing from p to 2.5 when the distance increases, but first goes below 2.5 and then slowly
approaches 2.5. The α2/α1 = 5 and 10 curves in Fig. 16 resemble the results from our electrostatic calibrations data
as shown in Fig. 5. Therefore it is possible that an extra force with a power law dependence on distance steeper than
the Coulombian one is responsible for the strong deviation of the optimal exponent from 2.5. The value of α from
the fitting also suffers from similar issues. In the electrostatic calibration measurement, the exponent is fixed at 2.5
and the calibration factor α is used to calculate the effective mass meff of the resonator. However, when α2 6= 0 there
is this extra force which is not included in the fitting formula, thus α obtained from the fitting is not equal to α1 as
can be seen in the top plots of Fig. 17 (α1 is chosen to be 104), and meff calculated from α would be incorrect. For
example, the α2/α1 = 5 and 10 curves show that α obtained from the fitting is smaller than α1 = 104. Since meff is
inversely proportional to α, a smaller α would result in a larger meff . This is in agreement with our observation that
the effective mass obtained from electrostatic calibration measurements is larger than expected. The inset of the top
right plot in Fig. 17 shows the calibration factor α versus the distance of the closest point used in the fitting with
experimental data from our electrostatic calibration measurements, showing qualitative agreement with the model.
The previous analysis indicates that with a carefully chosen combination of p and α2/α1, the existence of an extra

electric force could well explain the problems we experienced in our electrostatic calibration measurements. Another
very important result from this analysis is that unreliable values of d0 could be obtained from the fitting if there
exist forces other than the expected electrostatic force. As shown in the bottom plots of Fig. 17, positive values of
dfit0 were obtained, both when the exponent q is left as a free parameter or fixed at 2.5. Based on the way the data
were constructed, the correct value for d0 is 0 nm, and the difference between dfit0 and its corresponding null value
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FIG. 16: (Color online) Optimal exponent of the hypothetical scenario data versus the distance of the closest data point used
in the fitting. The data are constructed from Eq. (12) with p = 5, α1 = 104, and α2/α1 = 5, 10, 50, 100 for the black circle
points, red square points, green diamond points and blue triangle points, respectively.
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FIG. 17: (Color online) Plots of the calibration factor α (top) and contact distance dfit0 (bottom) of the hypothetical scenario
data versus the distance of the closest data point used in the fitting. The plots on the left are the results of the best fit when
the exponent q is a free parameter, and the plots on the right are the results when q is fixed at 2.5. The data are constructed
from Eq. 12 with p = 5, α1 = 10000, and α2/α1 = 5, 10, 50, 100 for the black, red, green and blue curve, respectively. The
insets on the right are the corresponding results using experimental data from our electrostatic calibration measurements. The
relationship between the distance and the PZT voltage is d− d0 = β(V 0

PZT − VPZT) where β is the actuation coefficient of the
piezoelectric transducer. The same labeling for the points as in the previous figure is used.

cannot be covered by the fitting uncertainty. This results in a further source of systematic error in the determination
of the absolute distance, which adds up to other sources, including the one recently discussed in [76]. It should also
be noted that there seems to be a strong correlation between the two fitting parameters α and dfit0 , which is indeed
also present in our electrostatic calibration measurements as shown in the insets in the bottom right plot of Fig. 17.

D. Electrostatic patch effects

As it is well known, all metallic surfaces in reality are not equipotential surfaces, showing instead voltage variations
of order 10-100 mV over micrometer distances. These patch potentials are typically due to local changes in the
work function associated to different crystallographic facets of the metal. Electrostatic patches are known to be an
important systematic in several precision measurement experiments, including those aiming at detecting the Casimir
force. Apart from the static component, patch potentials can also fluctuate in time, a dynamical process that has not
been studied in detail to date. It has recently been shown that by cooling a Au sample the electric-field noise above
the metal is substantially reduced, a process possibly due to thermal activation barriers in the surface potential [77].
Here we briefly describe the physics of electrostatic patches in the cylinder-plane geometry, and discuss whether they

could be partly responsible for the anomalous exponent in our electrostatic calibrations. Our considerations follow
closely the model and notation of [23]. A related effect is the fluctuation-induced interaction between monopolar
charge disorder within the dielectric slabs [24]. The electrostatic interaction energy between two parallel plates,
whose surfaces contain stochastic voltage variations Va(x, y) (a denotes the upper or lower plate) is

Upp =
ǫ0
2

∫

∞

0

dk
k2e−kd

sinh(kd)
S(k). (14)

This expression results from assuming zero-average patches, and an isotropic two-point correlation in the transverse
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plane-wave basis k given by 〈Va,k, Vb,k′〉 = δa,bCa,kδ
2(k− k

′). Here 〈. . .〉 denotes stochastic average, k = |k|, and the
power spectral density S(k) is defined as

∫

∞

0
dkkS(k) ≡ (1/8π)

∫

∞

0
dkk(C1,k +C2,k). The corresponding electrostatic

force due to these potential patches is given by Fpp = −∂Upp/∂d. To compute the patch effect on the force in
the cylinder-plane configuration we make use of the PFA to treat the curvature of the cylinder, which is a good
approximation in the limit d/a ≪ 1. We do not impose any restriction on the typical size of the patches (i.e. we leave
kd arbitrary). In the limit d/a ≪ 1 the electrostatic force due to patches in the cylinder-plane configuration is

Fcp =
πǫ0L

2
√
2
a

(

d

a

)1/2 ∫ ∞

0

dk
k3e−2kd

sinh2(kd)
S(k). (15)

Two simple limiting cases can be analyzed. In the large patch limit (kd ≪ 1) the force is given by

Fcp ≈ πǫ0L

2
√
2

a1/2

d3/2
V 2
rms, (16)

with V 2
rms =

∫

∞

0 dkkS(k). This expression is exactly equivalent to the r.h.s. of Eq. (1) with V 2 replaced by V 2
rms,

as expected for large patches. In the small patch limit (kd ≫ 1) the force is exponentially suppressed because the
patches are small and change sign rapidly, resulting in a vanishing net interaction between the plates. It should be
noticed that the patch force depends on distance as an inverse power law (with exponent 1.5) only in the small-patch
limit. The smaller the patches, the faster the decay (bigger exponent). More importantly for our purposes is the fact
that the electrostatic patch force (16) is independent of the applied voltage V between the cylinder and the plane.
Therefore, it cannot explain the anomalous exponent of the electrostatic calibration, that stems from the V -dependent
contribution to the force. The patch force (16) is, instead, a background force that could possibly show up in the
analysis of the electrostatic residuals, that is, the force after the subtraction of the Coulomb-like V -dependent terms.
It could be argued that the presence of strong electric fields in the gap between the plates may, in principle, redis-

tribute the spatial configuration of the patches, and then the question is whether the force between the redistributed
patches depends on V 2 (note that if this were the case, there might be some hope that the anomalous exponent is
partially due to patches). Equation (16) was obtained assuming that the two plates had only stochastic potentials
fluctuating around zero. If an external fixed potential difference V is applied between the plates, the linearity of
Laplace’s equation implies that the total force will be the sum of the usual V 2 term plus the V -independent term
given in (16). In principle, for sufficiently large external fields in the gap, the power spectrum S(k) could depend on
the external voltage V , but it is unclear if, and how, such an effect can account for the anomalous exponent in our
electrostatic calibrations, at least in the ones performed by maintaining the electric-field approximately constant in
the explored distance range.

V. MINIMIZING POTENTIAL IN THE PARALLEL PLATES GEOMETRY

We have also performed in the same experimental conditions measurements in the plane-plane configuration using
flat coated mirrors facing the resonator. Considering that the sphere-plane geometry has been the subject of former
work [38, 39], this allows us to complete the picture on the relationship between the distance-dependent minimizing
potential and the specific geometrical configuration. Three mirrors with different coatings (Au, Ag and Al) were used
to also investigate the possible relationship between V0 and the nature of the substrate. Although the parallelization
is obtainable with a good level of approximation in one direction only, we can introduce an off-line parallelization
correction in the data fitting. We analyze separately in the following results on the three substrates. The data of V0

from four runs were merged in the same plot for each of the three mirrors as shown in Fig. 18 where they appear
versus the curvature coefficient Kel instead of the distance. This is because the range of Kel achieved is not very large
especially in the case of aluminum mirrors due to limited parallelization and smaller conductivity from oxide layers
on the surface of the mirror, and consequently the usual fitting procedure to find the absolute distance would produce
rather unstable and inaccurate results. Since there is a one to one mapping between Kel and the distance, Kel is used
here as a fair indicator of the distance for all runs.
In the case of Au mirrors, V0 fluctuates around 100 mV without any noticeable trend. The fluctuation is bigger at

large distance partly because the frequency shifts tend to be small also for relatively larger bias voltage, this being
reflected in the error bars in the fitting procedure. As the distance gets smaller, V0 seems to converge to a constant
value. The minimizing potential V0 shows a similar behavior in all runs, and the values of V0 are also comparable,
with runs 1, 2, and 4 all around 0.1 V, and run 3 slightly lower at around 0.4 V. In Table III, the average value and
the standard deviation of V0 for each run is obtained using the six data points with largest Kel value from each run.
We see that the standard deviation is reasonably small indicating that V0 is mostly constant.
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FIG. 18: (Color online) Plots of the minimizing potential V0 versus curvature coefficient Kel from various runs in plane-plane
geometry with three different coatings of the mirror, Au (left), Ag (middle), and Al (right), all facing the Au-coated resonator.

Using Ag mirrors instead, a noticeable difference evident from the electrostatic measurement is that we achieve
values of Kel smaller than in the case of Au mirrors. This is possibly due to the fact that Ag is easily oxidized once
exposed in air prior to the insertion into the vacuum chamber. Of course, we cannot rule out the possibility that
this could also be partly due to slightly different parallelization configurations. In terms of residual potential V0, the
Ag mirror shares the same behavior as gold mirror, as V0 fluctuates randomly remaining constant especially at small
separation gap. However, in this case the V0 value is noticeably higher that that of the Au mirror.
Finally, with an Al coating, the lowest value of Kel achieved is much smaller than that of the Au and Ag mirrors.

This may be due to the easiness to form oxide layers, and it could also be related to the smaller conductivity with
respect to Al and Au. In this case the residual potential V0 is also constant at small separation gaps as it can be seen
in Fig. 18, and it is manifest that V0 is significantly larger than that for Au and Ag mirrors. A more quantitative
analysis is precluded by the strong dependence of the work function of Al on the exposure time in air [78].
A comparison among the various minimizing potentials V0 and physical parameters of the substrate is shown in the

second part of Table III. The average values of V0 are obtained by averaging three runs from each mirror weighted by
their variance. From the table it is clear that V0 for mirrors coated with Au, Ag, and Al are significantly different.
For a rough theoretical comparison, the work function and the Fermi energy as well as their difference are also listed
in the table. The work function of a metal is closely related to its Fermi energy, but due to the presence of defects
and impurities on the surface these two quantities do not coincide, with their difference largely due to the surface
charge distribution and surface dipole distribution. From Table III we can see that Au has the smallest difference
between its work function and Fermi energy while Al has the largest. Since this difference indicates the magnitude
of the surface charge and dipole distribution which may be directly related to the residual potential V0, it could be
used to explain the different value of V0 measured using mirror with different coatings. In fact the average V0 values
for Au, Ag, and Al mirrors is consistent with the order of this difference. Regarding the best fitting exponent for the
scaling of the curvature coefficient with distance, we have obtained the expected one from Coulomb force, although
it should be noticed that the range of distances was limited to a minimum value of about 3 µm.

Run V0 (V) σV0
(V ) 〈V0〉 (V) W (eV) EF (eV) EF −W (eV)

Gold 1 0.113 0.025 0.048 5.1-5.47 5.53 0.06-0.43
2 0.089 0.017
3 0.041 0.006
4 0.113 0.008

Silver 1 0.145 0.017 0.194 4.52-4.74 5.49 0.75-0.97
2 0.182 0.044
3 0.264 0.044
4 0.264 0.023

Aluminum 1 1.177 0.033 1.151 4.06-4.26 11.7 7.44-7.64
2 1.169 0.097
3 1.118 0.036

TABLE III: Average measured value of V0 for mirrors made of various substrates, weighted average value of V0, and comparison
with tabulated data for the work function W and the Fermi energy EF .
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VI. ON THE IMPORTANCE OF THE MEASUREMENT AND THE MODELIZATION OF THE

MINIMIZING POTENTIAL IN CASIMIR FORCE MEASUREMENTS

Our emphasis on measuring the minimizing potential at all the explored distances for the sphere-plane configuration
[38, 39], and for the cylinder-plane and parallel planes configurations described here, is due to the fact that the
understanding of the minimizing potential dependence on distance and time is crucial for the assessment of the
accuracy of the Casimir force measurements at small (below ≃ 1µm) distances, and for determining the thermal
contribution at large (in the 1-5 µm range) distances. In Table IV we report the formulas for the ideal (perfect
reflectors, zero temperature) Casimir force and for the Coulomb force in the three different geometries. Following
[79], let us define the equivalent Casimir voltage as the external bias voltage that can simulate the ideal Casimir force.
Due to the different scalings with distance of Casimir and Coulomb forces, this equivalent Casimir voltage must be
specified at each distance. It is, however, important to point out that the difference between the various geometries
is just a numerical factor which makes this equivalent voltage for the sphere-plane configuration about half the value
of the parallel plane case (with the cylinder-plane, as is customary, in between the two extreme cases even from this
point of view). The formula for the equivalent Casimir voltage is

V eq
Cas(d) =

(

π2

ξ

)1/2 (
~c

ǫ0

)1/2
1

d
, (17)

where ξ=360, 192, and 120 for the sphere-plane, cylinder-plane, and parallel plate configurations, respectively.
In the numerical example presented in the last raw of Table IV, at a distance of 1 µm, which can be considered the

borderline between the short-distance regime and the long-distance regime in which the thermal contribution starts to
play a significant role, this equivalent Casimir voltage ranges between 10 and 17 mV depending on the geometry. At
3 µm, where the thermal contribution is expected to contribute as 10-20 % of the total force signal, with an absolute
value still large enough to be detectable in various apparata, the equivalent Casimir voltage is three times smaller
(i.e. between 3 and 6 mV). This voltage is of the same order of magnitude of the variation of the minimizing potential
in a range of few micrometers. To take into account this contribution to properly subtract it from the data, it is
therefore necessary to model the minimizing potential at the few percent level accuracy. Unfortunately, such stringent
theoretical characterization of the minimizing potential is not yet available.
A further degree of uncertainty is also related to the fact that, as pointed out in [39], the minimizing potential may

depend on time, a fact that, for instance, could be attributed to temperature drifts. It has been experimentally shown
in [80] using a heated atomic force microscope tip that the contact potential depends on temperature, with a slope
estimated to be of the order of 4 mV/0C. To perform high-precision tests of the Casimir force, one therefore needs a
stringent temperature stability of the apparatus during the entire measurement run. In [43], the observation of fast
changes in the contact potential have been conjectured as due to the effect of background cosmic rays impinging on
the apparatus. For a release of about 10−11 C/cm2 through ionization by cosmic rays at sea level, and considering
the small values of the capacitances (order of hundreds pF), sudden changes of order 0.1-1 mV could be expected
(see [81] for a related discussion). A careful control of the minimizing potential will then require also surrounding
the apparatus with lead shields to reduce the radiation background or particle detectors to veto the apparatus during
large ionization events, especially for apparata using microspheres.
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d7/2
π2

240
~c S

d4

Coulomb πǫ0
R
d
V 2 πǫ0

2
√

2

La1/2

d3/2
V 2 ǫ0

2
S
d2

V 2

V eq
Cas(d)
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(
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(
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V eq
Cas (1 µm) 9.85 mV 13.5 mV 17.1 mV

TABLE IV: Summary of relevant formulas for the ideal Casimir force and the Coulomb force in the cases of the sphere-plane,
cylinder-plane, and parallel plane geometries, with both forces in the first two geometries evaluated using PFA. In the third
row the equivalent Casimir voltage, i.e. the voltage which needs to be applied in order to simulate the Casimir force at a given
distance d, is reported. In the last row the concrete value of the equivalent Casimir voltage is reported in the case of a typical
gap distance of 1 µm.
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VII. CONCLUSION

In this paper we have summarized the main outcomes from our effort to measure the Casimir force in the cylinder-
plane configuration. The presence of uncontrollable frequency shifts of electric origin at the smallest explored gaps,
evidenced both from the analysis of the residuals of the electrostatic calibrations and a fast-approach technique,
prevent us from identifying a Casimir-like contribution at small distance. At large distances thermal drifts are large,
if compared to the expected Casimir force, and a careful control of the dependence of the minimizing potential on
distance is also required to extract meaningful information about the Casimir force and its thermal corrections. While
unsuccessful, our search for the Casimir force in this geometry, apart from the development of some data taking and
analysis techniques applicable elsewhere, has evidenced a number of features which may be of more general interest,
as we try to summarize in the following.
First, we have observed anomalous behavior for the best fitting exponent with which the electrostatic coefficient

is scaling as a function of the cylinder-plane separation. The exponent is significantly smaller than the Coulombian
one at small distances, while it retains its expected value at the largest explored gaps. In the case of the sphere-
plane measurements, the exponent was slightly smaller than the expected value but it retained its value in the entire
explored range of distances, this last being smaller than in the cylinder-plane case due to the smaller electrostatic
signal available in the sphere-plane configuration [38].
Second, we have observed a dependence of the minimizing potential on the cylinder-plane distance, similarly to

the sphere-plane case. Although its dependence is milder at small distances, it still retains a strong dependence on
distance at larger gaps, and this requires a careful modeling to subtract its contribution when studying forces in the
1-5 µm range of interest to discriminate among the various models proposed to incorporate the thermal contribution.
Finally, we have also explored the case of flat surfaces with a rough parallelization and we have found that in this case

no anomalous behavior is observed for both the scaling exponent and the minimizing potential, even using different
substrates for the surfaces. The range of explored distances is definitely limited by the approximate two-dimensional
parallelism achievable with our setup, and it is therefore unclear if anomalous scaling could be instead observed as in
the case of the smaller explored gaps in the sphere-plane and cylinder-plane configurations. Both apparata built to
study the Casimir forces in a parallel plane configuration have not observed dependence of the minimizing potential
on distance [3, 64].
Our findings should be then related to recent outcomes from various experiments confirming the presence of nontriv-

ial, formerly unidentified systematic effects in the electrostatic calibrations [38, 39, 41, 42]. Several recent experiments
are also showing that the observation of Casimir or Casimir-Polder forces is less trivial than previously stated, for
instance, with regards to the dependence on the optical properties of the substrates [82] and the presence of dielectric
layers on the substrates [83]. Theoretical arguments have been recently provided for the nontrivial interplay between
thermal fluctuations and geometry [84], thermal, conductivity, and roughness corrections [85, 86] and the role of the
statistical properties of the conducting surfaces [24]. Deviations from the pure Coulombian contribution and from the
hypothesis of a constant minimizing potential have also been observed in atomic force microscopy for sharp tips, for
instance, due to capillary forces [87, 88].

Acknowledgments

The work of DARD was funded by DARPA/MTO’s Casimir Effect Enhancement program under DOE/NNSA
Contract DE-AC52-06NA25396, and the work of FCL and FDM was supported by UBA, CONICET, and ANPCyT
(Argentina).

[1] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
[2] M. J. Sparnaay, Physica 24, 751 (1958).
[3] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
[4] P. H. G. M. van Blokland and J. T. G. Oveerbeek, J. Chem. Soc. Faraday Trans. I 74, 2637 (1978).
[5] S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[6] U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 4549 (1998); B. W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62,

052109 (2000).
[7] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, Phys. Rev. Lett. 87, 211801 (2001); D. Iannuzzi,

I. Gelfand, M. Lisanti, and F. Capasso, Proc. Nat. Ac. Sci. USA 101, 4019 (2004).
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