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Mermin inequalities for perfect correlations in many-qutrit

systems

Jay Lawrence

Department of Physics and Astronomy,

Dartmouth College, Hanover, NH 03755, USA and

The James Franck Institute, University of Chicago, Chicago, IL 60637

(Dated: revised July 31, 2017)

Abstract

The existence of GHZ contradictions in many-qutrit systems was a long-standing theoretical

question until it’s (affirmative) resolution in 2013. To enable experimental tests, we derive Mermin

inequalities from concurrent observable sets identified in those proofs. These employ a weighted

sum of observables, calledM, in which every term has the chosen GHZ state as an eigenstate with

eigenvalue unity. The quantum prediction forM is then just the number of concurrent observables,

and this grows asymptotically as 2N/3 as the number of qutrits N →∞. The maximum classical

value falls short for every N ≥ 3, so that the quantum to classical ratio (starting at 1.5 when

N = 3), diverges exponentially (∼ 1.064N ) as N → ∞, where the system is in a Schrödinger

cat-like superposition of three macroscopically distinct states.

PACS numbers: 03.67-a, 03.65.Ta, 03.65.Ud
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I. INTRODUCTION

Bell’s inequality [1] shows that no local hidden variable theory (HV) can duplicate the

quantum predictions for the correlations of two distant spin-1/2 particles (in Bohm’s model

[2] of the original EPR scenario [3]). Specifically, the maximum quantum value of a cer-

tain correlation operator exceeds the maximum value allowed by HVs, with both quantum

and HV predictions being probabilistic. It was not known for another quarter century

(1964-1989) whether a stronger theorem existed, allowing for a definite (non-probabilistic)

quantum prediction, until Greenberger, Horne, and Zeilinger (GHZ) [4] found one for a sys-

tem of three spin-1/2 particles [5]. Here, the product of three spin projections measured at

distant points is predicted to take a single definite value, despite the randomness of the local

measured values. The definiteness of the quantum prediction elevates HVs to the status of

EPR elements of reality, since knowledge of local observables at two distant points allows

prediction “with certainty” of that at the third point. On a practical level, this definite-

ness is essential in quantum information protocols such as quantum error correction [6] and

quantum secret sharing [7].

In 1990, Mermin [8] generalized the GHZ proof and supplied a Bell inequality for all

N ≥ 3 based on the perfect correlations predicted by quantum mechanics. This was done to

enable future experimental tests of GHZ contradictions by accounting for inevitable uncer-

tainty in actual measurements, despite their absence in principle. Experimental tests have

indeed made use of such inequalities (now called Mermin inequalities) to demonstrate GHZ

contradictions with a probability of many standard deviations. The first such test [9] came

a decade later; a recent test [10] describes the current state of the art.

Extensions of Mermin’s work within qubit sytems include GHZ contradictions based on

stabilizer groups of particular error-correcting codes [11], and Mermin-like inequalities based

on stabilizers for all graph states of N ≤ 6 [12]. In the latter work (2008), Cabello et. al.

defined a Mermin inequality as a Bell inequality for which (I) the Bell operator is a sum of

stabilizing operators that represent the perfect correlations in their simultaneous eigenstate,

and (II) the ratio of quantum to maximum classical value is a maximum for that state. We

shall propose a modest extension below.

Equally interesting for us are the extensions to higher dimensions (d), which differ for

even and odd cases. Extensions to higher even dimensions include GHZ contradictions and
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Kochen-Specker identities [13, 14] for odd N > d (2002), then GHZ contradictions for odd

N < d [25] (2006), and more recently (2013), GHZ contradictions and corresponding Mermin

inequalities [16] for systems of all N ≥ 4 (with even d), using GHZ-type graph states.

Regarding odd dimensions, Bell inequalities have been derived for systems of three [17] or

more [18] qutrits, as well as for higher odd d [19]. However, these are not Mermin inequalities;

their quantum predictions are not definite, so they do not establish an underlying GHZ

contradiction. In fact, prior to (2013), it was not known whether a GHZ contradiction

existed for any odd d. It is now known that they do exist [20, 21], and their discovery led to

the completion of the program to establish GHZ contradictions (theoretically) for all N ≥ 3

for every d ≥ 2 [21]. However, it is also known that these odd-d contradictions cannot be

based on stabilizer sets [22], as is typical in even dimensions – a conclusion drawn from

studies of the discrete Wigner function for odd dimensions [23, 24].

The newly discovered GHZ contradictions in odd-d systems [20, 21] are based on concur-

rent observables [25] - observables that are not compatible but have a common eigenstate.

These are not the stabilizers usually associated with graph states, both because they lack

compatibility and because local measurement bases are not exclusively those of the gener-

alized Pauli operators. However, these aspects do not comprise experimental testing, for

which the essential distinction between Bell and Mermin inequalities is the definiteness of

the quantum predictions. Thus, it seems appropriate to broaden the definition of a Mermin

inequality by deleting the word “stabilizing” from statement I (paragraph 3) above.

The purpose of this article is to construct Mermin inequalities, in this broader sense, for

systems of N ≥ 3 qutrits, from sets of concurrent observables that share a GHZ eigenstate,

violations of which would establish the perfect correlations of GHZ contradictions. Entangled

multiple-qutrit states are now being investigated experimentally [26], and such inequalities

will enable experimental tests of GHZ contradictions. In the next section we present results

for all N ≥ 4; the exceptional case of N = 3 is presented in Sec. III, and in Sec. IV we

discuss conclusions and open questions.
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(a) GHZ states (b) Observables for N=4

FIG. 1: (a) GHZ states (Eq. 1), and (b) tensor product observables for N=4. Parentheses denote

the number of permutations. Black arrows define the concurrent subset (of five observables) whose

joint eigenstate is |Ψ0〉.

II. MERMIN INEQUALITIES FOR N ≥ 4

It will be useful to consider three choices of GHZ state that differ by relative phases of

components,

|Ψk〉 =
1√
3

(
|00...0〉+ αk|11...1〉+ α2k|22...2〉

)
, (k = 0, 1, 2), (1)

where α = exp(2πi/9). Envisioning the qutrits as spin-1 particles, Fig. 1a illustrates

that |Ψ1〉 is obtained from |Ψ0〉 (and |Ψ2〉 from |Ψ1〉) by rotations of 2π/9 = 40o. Such

“rotations” refer to any combination of individual qutrit rotations about their respective ẑ

axes, by increments adding up to 2π/9. A defining symmetry of GHZ states is that the

rotated state is independent of the distribution of these increments among qutrits [21].

The corresponding observable sets of which |Ψk〉 are joint eigenstates are also related by

compound rotations. The starting point is the basic observable,

X ≡ X⊗N = X1...XN , (2)

where each factor Xi is the qutrit Pauli matrix (X =
∑2

n=0 |n+ 1〉〈n|) that defines the first

local measurement basis. The second local basis (Yi) is defined by a 2π/9 rotation of Xi,

Y ≡ Z1/3XZ−1/3 =
2∑

n=0

|n+ 1〉α(1−3δn,2)〈n|, where Z =
2∑

n=0

|n〉ωn〈n|. (3)
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Compound rotations of the operator X (Eq. 2) through 2πk/9 generate tensor products in

which k factors of Y are distributed in all possible ways,
(
k
N

)
, among N − k factors of X.

These operators appear at points k = 0, ..., 8 in Fig. 1b.

Clearly, |Ψ0〉 is an eigenstate of X with eigenvalue 1. Rotational covariance of operators

and states [21] means that |Ψ1〉 is an eigenstate of all operators at the point 1, and |Ψ2〉 of all

operators at point 2 - in all cases with eigenvalue 1. Points 3 and beyond are then governed

by the periodicity property [21]: Any rotation of an operator through 2π/3 (eg, from 0 to

3) preserves its eigenstates, but multiplies its eigenvalues by ω. Therefore, |Ψ0〉 is a joint

eigenstate of operators at points 0, 3, and 6 (black arrows in Fig. 1); |Ψ1〉 of operators at

1, 4, and 7 (red arrows); and |Ψ2〉 of operators at 2, 5, and 8 (green arrows). In each case,

the eigenvalues are 1, ω, and ω2, respectively. We shall refer to equilateral triangles (0,1,2)

defined by each set of arrows, with concurrent operators at its vertices. (Not all vertices are

occupied when N < 8.)

The case of N = 3 is special because a third local measurement basis is required for

GHZ contradictions. Hence we defer that case and proceed here with N = 4, which is the

simplest case. Choosing the state |Ψ1〉, red arrows in Fig. 1b identify the concurrent subset

of five observables – the four cyclic permutations of Y XXX, each with eigenvalue 1, and

Y Y Y Y , with eigenvalue ω. These observables produce a GHZ contradiction [21]. For the

corresponding inequality, we define the Mermin operator,

M1 = (Y XXX + permutations) + ω2Y Y Y Y, (4)

of which |Ψ1〉 is clearly an eigenstate with eigenvalue MQ = 5. This “quantum value” is to

be compared with the maximum HV value. The general HV value, which we call v(M1),

depends on the values (1, ω, or ω2) assigned to each of the local factors [thence called v(Xi)

and v(Yi)], which must be the same in each of the five tensor products. It is easy to see that

|v(M1)| depends only on the local ratios,

Ri = v(Yi)/v(Xi), (5)

where, hiding an irrelevant overall phase factor, v(X), it is simply

|v(M0)| = |R1 +R2 +R3 +R4 + ω2R1R2R3R4|. (6)

It is easy to verify by explicit calculations that the maximum value, MHVM , is obtained

with either of two HV models: (i) uniform Ri (eg, Ri = 1), and (ii) a single departure from
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uniformity (eg, R1 = ω and all others = 1). This maximum value is

MHVM = |4 + ω2| =
√

13 ≈ 3.61, (7)

so that the ratio of quantum to maximum HV values is

A =MQ/MHVM = 5/
√

13 ≈ 1.39. (8)

Clearly the alternative choice, |Ψ0〉, together with operators at points 0 and 3, would result

in the same values of MQ and MHVM , while the choice |Ψ2〉, with operators only at point

2, would result in MQ =MHVM = 5, showing no GHZ contradiction. Therefore, M0 and

M1 are equally valid Mermin operators, according to the definition.

For arbitrary N > 4, we pick a state |Ψk〉 and identify its candidate Mermin operator

Mk as the sum all concurrent operators at the vertices of the corresponging triangle, with

weighting factors 1, ω2, and ω assigned to first, second, and third vertices traversed in

counterclockwise order. As above, the results (MQ and MHVM) depend on the choice

of k, and Table I shows those choices which maximize the ratio A and produce Mermin

operators. For even N , by symmetry, there are two such choices; for odd N , only one. The

corresponding quantum eigenvalues are given by

MQ =
1

3
(2N − 1) (even N); MQ =

1

3
(2N − 2) (odd N); (9)

equal to the total number of concurrent observables on the kth triangle.

The contrasting MHVM values are maxima of |v(Mk)|, given k on the Table, over the

local ratios Ri (Eq. 5). In the following six paragraphs, we show how these are determined,

including the proof of the following –

Theorem: Maximum values of |v(Mk)|, for k values listed on Table I, are attained with

uniform Ri in all cases except N = 5, 7, and 9, where the simplest nonuniform model

(R1 = ω, R2...RN = 1) narrowly prevails.

Proof: A closed-form expression for candidate Mermin operators (valid for k = 0, 1, or 2)

is [27]

Mk =
1

3

[
(X + α2Y )N + ω2k(X + ωα2Y )N + ωk(X + ω2α2Y )N

]
. (10)

To verify, one can easily see that certain powers of Y arising in the binomial expansions

cancel out because 1 + ω + ω2 = 0. With k = 0, for example, this cancellation leaves only

the powers 0, 3, 6, ..., exactly those terms residing on the vertices of the k = 0 triangle in
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TABLE I: Quantum and maximum HV values of the N -qutrit Mermin operator, and their ratio

A, as functions of N . Listed values of k are those which maximize A.

N k MQ MHVM A

4 0,1 5
√

13 1.39

5 1 10 7 1.43

6 1,2 21 3
√

19 1.61

7 2 42 24 1.75

8 2,0 85
√

2269 1.78

9 0 170
√

6892 2.05

10 0,1 341
√

29, 791 1.98

11 1 682 308 2.21

12 1,2 1365
√

385, 947 2.20

13 2 2730 1131 2.41

Fig. 1b; and similarly for k = 1 and 2. One can also verify that the relative vertex weighting

factors are (1, ω2, and ω), as required, once the higher powers of α have been reduced (eg,

α4 = ωα, etc.). (Note that Mk appears with overall multiplying factor α2k.)

The main utility of 10 is to make the Ri-dependence explicit in

|v(Mk)| =
1

3

∣∣∣∣∣
N∏
i=1

(1 + α2Ri)
N + ω2k

N∏
i=1

(1 + ωα2Ri)
N + ωk

N∏
i=1

(1 + ω2α2Ri)
N

∣∣∣∣∣ . (11)

If the Ri are uniform, then

|v(Mk)unif | = 1
3

∣∣(1 + α2)N + ω2k(1 + ωα2)N + ωk(1 + ω2α2)N
∣∣

= 1
3

∣∣BN exp(2πNi/9) + ω2kCN exp(−4πNi/9) + ωkAN exp(−πNi/9)
∣∣ , (12)

where the individual magnitudes are labeled so that A > B > C:

A = |1 + ω2α2| = 2 cos π
9
≈ 1.8794,

B = |1 + α2| = 2 cos 2π
9
≈ 1.5321,

C = |1 + ωα2| = 2 cos 4π
9
≈ 0.3473, (13)
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and the identity 1+eiθ = cos θ
2
eiθ/2 was used. If a single Ri differs from the rest (eg, R1 = ω,

others unity), then the effects on Eq. 12 are to permute the coefficients, B1 → C1 → A1 → B1

and to rotate each vector in the complex plane:

|v(Mk)R1=ω| = 1
3
| BN−1C exp(2πNi/9) exp(−2πi/3)

+ ω2kCN−1A exp(−4πNi/9) exp(πi/3) + ωkAN−1B exp(−πNi/9) exp(πi/3) |, (14)

where the rotation angles [(−2π/3), (π/3), and (π/3), respectively] are independent of which

Ri is chosen to be different.

Thus, introducing the nonuniformity decreases the two largest terms while increasing

only the smallest. This can produce a net gain in |v(Mk)| only if the rotations bring the

two largest terms into closer alignment. This unlikely scenario is actually realized in the few

cases, N = 5, 7, and 9.

To demonstrate, first consider odd N . With k values listed on Table I, it is easy to see

that the three vectors comprising v(Mk) in either 12 or 14 are collinear for every odd N ≥ 5.

In 12, the A term is aligned opposite to the B and C terms, so that

|v(Mk)unif | =
1

3

(
AN −BN − CN

)
. (15)

In 14, the C-like term is aligned opposite to the others, and so

|v(Mk)R1=ω| =
1

3

(
AN−1B +BN−1C − CN−1A

)
. (16)

The difference, (15 - 16), is an increasing function of N with a zero at No ≈ 9.26, so that

|v(Mk)unif | is the larger for all odd N ≥ 11, while |v(Mk)R1=ω| is the larger for 5, 7, and 9.

We still have to rule out more complex HV models – this is done below.

Now consider even N : Again with k values listed on Table I, one can easily see that the

three vectors in Eq. 12 (uniform Ri) are minimally aligned in the complex plane (angular

separations are 2π/3). Nonuniformity (14) shrinks the two longer vectors as above, while

the induced rotations improve their alignment somewhat (to the smaller of the angular

separations π/3, π/3, and 4π/3), but not enough to provide a net gain in |v(Mk)|: Keeping

the two dominant terms in each of Eqs. 12 and 14, whose angular separations are 2π/3 and

π/3, respectively, it is easy to show formally that |v(Mk)unif | − |v(Mk)R1=ω| is positive for

all N ≥ 6. For N = 4, the exact calculations described above show that both HV models

realize the maximum value. Hence |v(Mk)unif | provides the maximum for all even N .
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To rule out further HV models for all even and odd N ≥ 4: First consider the alternate

single departure, (R1 = ω2, others unity). The largest term is reduced sharply (by C/A), the

next largest is increased slightly (by A/B), while the relative alignment of these two remains

unchanged. So this model is ruled out trivially. Multiple departures from uniformity may be

viewed as sequences of single departures in which every step has the following properties: (i)

Either it reduces the two longest vectors, or it reduces the longest by more than it increases

the next-longest, and (ii) beyond the first step (which results in Eq. 14), it reproduces

angular separations already seen in Eq. 12 or 14. Thus it cannot increase |v(Mk)| beyond

the larger of |v(Mk)unif | and |v(Mk)R1=ω|.

This concludes the proof of the theorem stated above. To evaluate MHVM , one may

simply use Eq. 15 or 16 for odd N ; for even N use 12, knowing the the angular separations

are 2π/3 for the listed k-values. It is also instructive for smaller N to write the Mermin

operator directly from Fig. 1b and evaluate at {Ri} determined by the theorem. Table I

lists the exact maxima, MHVM , which are all integers or square roots thereof, along with

rounded values of A.

The asymptotic form ofMHVM at large N is given by the dominant term in 12, namely

lim
N→∞

MHVM =
1

3
AN ≈ 1

3
1.879N , (17)

so that the quantum to classical ratio (Eq. 9 to 17) diverges as 1.064N . This exponential

divergence is slow compared with Mermin’s (2N/2) for qubit systems [8]; nevertheless it

represents a superposition of three macroscopically distinct states.

III. THE CASE OF N = 3

This may be the most interesting case experimentally. It is singled out here because its

GHZ contradictions require three local measurement bases [21, 28]. So, while we consider

the same three GHZ states (1), the concurrent operator sets must now incorporate a third

local basis, a natural choice being given by rotation of individual X factors through 4π/9:

W ≡ Z2/3XZ−2/3 =
2∑

n=0

|n+ 1〉α(2−6δn,0)〈n| (18)

(compare 3). The observables generated by rotations of XXX now include all combinations

of X, Y , and W factors, and are classified in Fig. 2 according to total rotation angles,
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Observables for N=3

WWW   (1)

XXX   (1)

YYX …
WXX ...   (6)

YXX …   (3)

YYY
WYX…   (7)

WYY …
WWX ...   (6)

WWY …  (3)
0

4

3 2

1

8
7

6

5

FIG. 2: Tensor product observables for N=3 form three concurrent subsets. Each produces a

Mermin inequality with MQ = 9 and MHVM = 6.

2πk/9. Again these fall into three concurrent subsets, each associated with an equilateral

triangle and its own joint eigenstate in Fig. 1a. In this case all three Mermin operators

Mk produce the same outcome: MQ = 9 and MHVM = 6. Let us demonstrate with the

simplest example:

M0 =

[
XXX+ω2(Y Y Y +XYW +XWY +Y XW +WXY +YWX+WYX)+ωWWW

]
,

(19)

with weight factors (1,ω2, ω) applied as required. Recall that the HV magnitude depends

only on ratios, defined here as Ri = v(Xi)/v(Yi) and Si = v(Wi)/v(Yi). So, hiding an overall

irrelevant phase factor v(Y Y Y ),

|v(M0)| = |RRR + ω2(111 +R1S +R1S + 1RS + SR1 + 1SR + S1R) + ωSSS|, (20)

where the subscripts of Ri and Si are implied by their positions, eg, R1S = R1S3. Now

suppose the ratios are uniform, and Ri = Si = 1. Then, |v(M0)| = |1 + 7ω2 + ω| = 6. To

increase this value, one would require an HV assignment that brought the first and/or last

term into equality with the seven other terms, without losing an equal number (or more) of

those terms. It is easy to see that there is no such assignment.

Finally, it is interesting to note that |v(M1)| and |v(M2)| yield the same maximum, but

both require nonuniform HV assignments, eg., (R1 = S1 = ω with all others unity) for the

former, and, for the latter, (S1 = ω with all others unity).
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IV. CONCLUSIONS AND OPEN QUESTIONS

We have presented Mermin operators and associated inequalities for systems of N ≥ 3

qutrits. The exceptional case of N = 3 requires three local measurement bases; all other

cases require two. The eigenvalue of the Mermin operator (the definite quantum prediction

of its measured value), is given by Eq. 9 and diverges as 2N/3 for large N . The maximum

HV values are illustrated in Table I and reflect optimal HV assignments derived in Sec. II.

These diverge as 1.879N . The ratio of quantum to maximum HV values diverges as 1.064N .

Ironically, the structure behind the inequalities derived here forms a close parallel with

Mermin’s, despite the compatibility of his observable sets as compared with the mere con-

currence of those used here. This is because his Pauli tensor products and their eigenstates

are related by the same rotational covariance that forms the basis of the treatment given

here. It is a simple exercise to write down two alternative compatible Pauli subsets (one of

which is Mermin’s), and their corresponding joint GHZ eigenstates, on diagrams analogous

to Fig. 1, in which the basic angular interval is π/2 rather than 2π/9. Moreover, Mermin’s

derivation of HV maxima is based on a formula like our Eq. 10, in particular

Md=2
k =

1

2

[
(X + iY )N + (−1)k(X − iY )N

]
, (21)

obtained by replacing ω → −1 and α → exp(iπ/4). The two choices k = 0 and 1 produce

identical MQ and MHVM values, resulting in A = 2N/2 (even N), and 2(N−1)/2 (odd N).

A comparison of Eqs. 10 and 21 suggests why our exponential growth A → 1.064N is

less dramatic than Mermin’s. The maximum length of any factor in the HV expression

for qutrits (11) is A = |1 + ω2α2|1/2 = 2 cosπ/9 ≈ 1.8794, no matter how HV values are

assigned. The analogous length factor in the qubit case is
√

2. This corresponds to the

different angular resolutions of vector factors in Eqs. 10 and 21, showing minimum angles

in the complex plane of π/9 vs π/4. These differences reflect the greater freedom of qutrit

HVs over qubit HVs in aiming for the quantum results.

The above comparison raises the question whether Mermin inequalities exist for systems

of higher odd dimensions d, where compatible observables do not produce GHZ contradic-

tions. It seems plausibible that a similar construction would succeed for any higher prime d,

although one would expect still weaker violations of local realism for the reason given above.

For higher composite dimension, a similar but more complex construction might succeed
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based on the smallest prime factor of d.
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