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ABSTRACT

We present GALEX near-ultraviolet (NUV) and Two-Micron All-Sky Survey J-band photom-
etry for red-sequence galaxies in local clusters. We define quiescent samples according to a
strict emission threshold, removing galaxies with very recent star formation. We analyse the
NUV-J colour-magnitude relation (CMR) and find that the intrinsic scatter is an order of mag-
nitude larger than for the analogous optical CMR (~0.35 rather than 0.05 mag), in agreement
with previous studies. Comparing the NUV-J colours with spectroscopically derived stellar
population parameters, we find a strong (>5.50") correlation with metallicity, only a marginal
trend with age, and no correlation with the a/Fe ratio. We explore the origin of the large scatter
and conclude that neither aperture effects nor the UV upturn phenomenon contribute signifi-
cantly. We show that the scatter could be attributed to simple ‘frosting’ by either a young or a
low-metallicity subpopulation.

Key words: galaxies: elliptical and lenticular, cD — galaxies: stellar content — ultraviolet:

galaxies.

1 INTRODUCTION

The optical colour—-magnitude relation (CMR) shows that brighter
early-type galaxies are also redder (Visvanathan & Sandage 1977),
and is traditionally regarded as arising from the mass-metallicity
sequence (cf. Dressler 1984; Kodama & Arimoto 1997). Gas loss,
caused by supernova wind, occurs earlier in less massive galax-
ies. Therefore, a smaller fraction of gas is processed before being
expelled from the less massive galaxy (Mathews & Baker 1971), re-
sulting in lower average metallicities (Larson 1974). Bower, Lucey
& Ellis (1992) found a very small intrinsic scatter in the U — V
CMR (~0.05 mag) and, due to the sensitivity of the U band to the
presence of young stars, interpreted this as a small age dispersion.
Age and metallicity are observed to have the same effect on broad-
band optical colours, whereas spectral line indices can be used to
break the degeneracy (Worthey 1994). Kuntschner & Davies (1998)
claimed that the CMR is driven by metallicity variations with lu-
minosity, although Nelan et al. (2005) found evidence for a strong
age—mass relation in addition to this metallicity-mass trend (see also
Caldwell, Rose & Concannon 2003; Thomas et al. 2005).

The ultraviolet (UV)-optical CMR for non-star-forming galaxies
has an intrinsic scatter an order of magnitude larger than its optical
counterpart; ~0.5 mag compared to 0.05 mag (e.g. Yi et al. 2005).

*E-mail: t.d.rawle @dur.ac.uk
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Hot young stellar populations dominate the UV flux for ~100 Myr
after an episode of star formation (10 times longer than Ho emission
after star formation; Leitherer et al. 1999). The large intrinsic scatter
in the UV CMR is therefore often interpreted as differing quantities
of very recent, albeit low level, star formation (Ferreras & Silk
2000).

In intermediate-age populations (~1-3 Gyr), the near-UV (NUV;
2000-3000 A) flux is dominated by hot stars on the main-sequence
turn-off (e.g. O’Connell 1999). The sensitivity of the turn-off to the
epoch of formation emphasizes the importance of the UV bands for
age determination (Dorman, O’Connell & Rood 2003).

Old (~10 Gyr) metal-poor populations have a significant UV flux
contribution from very hot (T ~ 10 000 K) blue horizontal branch
(BHB) stars (Maraston & Thomas 2000; Lee, Lee & Gibson 2002).
However, these tend to reside in globular clusters or galactic haloes
(where Fe/H < —1), where they are useful age indicators (Kaviraj
et al. 2007b), rather than in relatively metal-rich elliptical galaxies.

The UV picture is further complicated by the presence of the
ultraviolet upturn (or UV excess, UVX) phenomenon. First ob-
served by Code (1969), this unanticipated upturn dominates the
far-UV (FUV; < 2000 A) in UVX galaxies. In contrast, the NUV
can be decomposed into two separate components: the blue end
of the main-sequence/subgiant branch, and the UVX contribution
(Dorman 1997). Burstein et al. (1988) found that the UVX can some-
times be appreciable at wavelengths as long as 2700 A: for example,
in NGC 4649 ~ 75 per cent of the NUV flux can be attributed to
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the UVX component. However, the UVX cannot be explained by
the BHB population, as the temperature required to fit the upturn
would be T = 20 000 K, whereas BHBs are usually no hotter than
Teir ~ 12000 K (O’Connell 1999).

Burstein et al. further reported that FUV flux (assumed to
trace the UVX) is strongly correlated with the Mg, line strength
(~metallicity) and also with the velocity dispersion, which is a
proxy for galaxy mass. However, more recent studies (e.g. Rich
et al. 2005) have weakened the case for a strong UVX versus metal-
licity relation. From analysis of internal colour gradients, O’Connell
et al. (1992) concluded that the FUV flux in most early types orig-
inates from old stellar components. Drawing on these results, the
source of the UVX is tentatively identified as hot, low-mass, helium-
burning stars, such as extreme horizontal branch (EHB) or ‘failed’
asymptotic giant branch (AGB) (AGB-manqué) stars and their
progeny (see Yi, Demarque & Oemler 1997, or the review O’ Connell
1999).

The Galaxy Evolution Explorer (GALEX; launched in 2003;
Martin et al. 2005; Morrissey et al. 2007) is revolutionizing
UV astronomy, with high-resolution imaging in two bands: near-
ultraviolet (NUV; Aer = 2310 10\) and far-ultraviolet (FUV; Aer =
1530 A). Using analysis of both NUV=V and FUV-V versus B—V
relations, Donas et al. (2007) suggest that the FUV-NUV colour
reflects an extension of the colour—metallicity relation into the UV,
as well as deducing that ~10 per cent of ellipticals have residual
star formation. Using the NUV-r colour, Kaviraj et al. (2007a) also
find non-negligible young stellar populations in morphologically se-
lected early-type galaxies. Salim et al. (2007) derive star formation
rates (SFRs) from broad-band photometry dominated by the UV,
and find good agreement with SFRs deduced from spectroscopic
indices (predominantly using He). However, they also confirm that
some galaxies with no Ha emission show signs of star formation in
the UV bands and attribute this to post-starburst galaxies.

Here, we build upon these previous studies by exploring the rela-
tionship between the NUV-J colour and spectroscopic stellar pop-
ulation indicators for a sample of quiescent, red-sequence galaxies
in nearby clusters. This paper is organized as follows. Section 2 de-
scribes our two red-sequence samples and associated Two-Micron
All-Sky Survey (2MASS) and GALEX data sets. The criteria used
to remove galaxies with emission are described. In Section 3, we
show that a large intrinsic scatter is found in the NUV-J colours of
these quiescent cluster galaxies. Metallicity is shown to be strongly
correlated with the NUV-J colour, although there remains a large
residual scatter. Section 4 discusses possible explanations for this
scatter, showing that morphological abnormalities, aperture bias and
the UV upturn do not contribute significantly. We investigate sim-
ple ‘frosting’ models with a low-mass fraction of younger stars
(or alternatively a low-mass fraction population of low metallicity,
blue horizontal branch stars), and show that these could account
for the scatter. The uncertainties in the NUV K-correction are also
discussed. Our conclusions are given in Section 5.

2 DATA

We use two complementary samples of red-sequence galaxies in
local clusters: the first is explicitly red sequence selected by opti-
cal colour, and is a large sample, containing ~10 times the number
of galaxies; the second has the advantage of higher quality spec-
troscopy, and uses an emission-line cut (Section 2.3) to ensure a
red-sequence sample. Smith, Lucey & Hudson (2007), fig. 1, demon-
strates that Ho selection efficiently removes all galaxies bluer than
the red sequence and is more restrictive than a cut on colour.

2.1 Galaxy samples

2.1.1 NFPS sample

The NOAO Fundamental Plane Survey (NFPS; Smith et al. 2004;
Nelan et al. 2005) is a study of X-ray selected clusters distributed
over the whole sky and at redshifts between 0.015 < z < 0.072.
More than 4500 galaxies lying within 1 Mpc of the centre of each
cluster, and within 0.2 mag of the cluster red sequence on the B-R
CMR (see Smith etal. 2004, fig. 3), were observed spectroscopically.
Of these, 3514 have redshift, velocity dispersion and spectral line
strength measurements (from 2 arcsec diameter fibres).

2.1.2 Shapley Supercluster (SSC) sample

The second sample of galaxies concentrates on the core of the Shap-
ley supercluster (SSC; Abell clusters A3556, A3558, A3562 at z =~
0.049). This sample consists of 541 galaxies selected from NFPS
imaging but to a deeper limit (R < 18; Smith et al. 2007). Follow-up
spectroscopy for these targets were obtained using 2 arcsec diam-
eter fibres, equating to 2 kpc at the distance of Shapley. A set of
three non-redundant line indices were fit to the models of Thomas,
Maraston & Bender (2003); Thomas, Maraston & Korn (2004) in
order to estimate age, metallicity (Z/H) and «-abundance («/Fe) for
each galaxy. The primary tracer of age in this scheme is Hy F; for
metallicity, Fe5015 is used; Mgb5177 is the a-abundance indicator.
This method is described in detail in Smith, Lucey & Hudson (in
preparation).

2.2 GALEX and 2MASS data

GALEX NUV-band images are available for 26 (from a total of
93) NFPS clusters. Due to a detector fault, only some clusters have
associated FUV-band images. Most of the images are from our guest
investigator snapshot programme (GALEX GI1_004) which targeted
a subset of NFPS clusters with low-galactic extinction and having a
large number of spectra from Smith et al. (2004). In addition, a small
number of images of comparable depth from the GR2 GI archive,
medium imaging survey (MIS) and near galaxy survey (NGS) have
been used. Table 1 lists all the images analysed along with their
centre position and stacked exposure time. GALEX images have a
1225 diameter, but only the central 1°2 field has been analysed due
to the poor image quality at the edges. GALEX images have a plate
scale of 1.5 arcsec pixel™! and a point spread function (PSF) full
width at half-maximum (FWHM) of ~5 arcsec.

We analyse infrared tiles from the J band (A = 1.25 um) of the
2MASS (Skrutskie et al. 2006). We measure directly from the tiles,
rather than adopt photometry from the 2MASS extended source
catalogue (XSC; Jarrett et al. 2000), as some of our target objects
are unresolved. Additionally, we require the PSF to match that of
the NUV images (2MASS J PSF FWHM ~3 arcsec), and therefore
Gaussian smooth the 2MASS tiles before analysis. 2MASS tiles
have a plate scale of 1 arcsec pixel™!.

SEXTRACTOR (Bertin & Arnouts 1996) was employed in dual im-
age mode to detect all objects in the J band. Photometry was mea-
sured for all sample targets in both bands using a range of matched
apertures: a Kron-type aperture (SEXTRACTOR’S MAG_AUTO) and
seven apertures 3—34.5 arcsec in diameter (MAG_APER). Through-
out this work, J-band Kron apertures are used for total lumi-
nosity, and matched 12 arcsec diameter apertures for NUV-J
colours. Our J-band photometry is in good agreement with 2MASS
(~0.2 mag rms) for objects in the XSC.

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 385, 2097-2106
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Table 1. GALEX NUV images. cz (kms™!) is cluster redshift in the cosmic microwave background (CMB) frame. A single exposure is used
unless column 6 indicates the number of co-added images. Total exposure time for co-added images is given for NUV and (where the image is

available) FUV.
GALEX image Centre RA Centre Dec. Cluster(s) CZCMB Images Lexp (s)
(J2000) (J2000) (kms~1) co-added NUV FUV
GI1.004001_A2734 001121.6 —28 5100 A2734 18249 3 3535
GI1-067001_UGC0568-0003 0055 08.9 —010247 A0119 12958 1556 3024
MISDR1.16976_0422 011429.3 +1501 46 AO0160A 12794 1444 1444
GI1.004002_A0262_0001 015245.6 +36 08 58 A0262 4464 1698 1698
NGA_NGC1058 02 43 26.6 +36 25 39 A0376 14371 1265 1265
GI1.004003_A3104_0001 03 14 21.6 —452512 A3104 21560 1588 1588
GI1.004027_A3158_0001 034257.6 —533748 A3158 17542 1026 887
GI1.004004_A3266 04 3124.0 —612624 A3266 17713 2 1441 1441
GI1.004005_A0548 05 46 40.0 —253721 A0548A/B 12439 4 3155
GI1.004006_A3376 0601 43.2 —395924 A3376 14016 2 2176 2176
GI1.004007_A3389_0002 0621 57.7 —64 57 35 A3389 8075 976
MISDR1.24335_0270 1013 07.7 —002325 A0957 13 849 1703 1703
GI1.004025_A3528_0001 1253 57.6 —29 13 48 A3528A/B 16764 1697
GI1.004008_A1644_0002 1257 12.0 —1724 36 Al644 14478 1163
GI1_009003_HPJ1321m31_0001 1321 05.8 —-313220 A3556 14 660 1615
GI1.004010_A3556 1325 26.1 —313607 A3556, A3558 14 660 2 1805
GI1-004011_A3558_0001 1327 57.6 —313000 A3558 14 660 1676
MISDR1.33707_0586 14 42 46.3 +0339 11 MKW8 8449 1698 1698
GI1-004016_A1991_0001 1454 31.1 +18 38 23 A1991 17741 967
GI1.004026_A2063_0001 1523 36.0 +08 36 34 A2063 10444 1512
NGA_NGC6166 16 28 39.9 4393324 A2199 8872 1437 1437
GI1.004020_A3716 2051 57.5 —5246 48 A3716 13141 2 3179 1689
GI1-004021_A2399_0004 2157 19.1 —07 47 59 A2399 17046 1322
GI1.004022_A2589 232357.6 +16 46 47 A2589 12001 3 4252
GI1-004023_A4059_0003 2356 59.9 —34 4535 A4059 14 660 635

Table 2. Size of the galaxy samples, following the selection criteria
applied.

NFPS SSC
Original sample 4527 541
...with usable NUV and J photometry 1493 307
...with ¢z and log o data 990 267
.. .after emission-line cut 920 156
...... after optical apparent magnitude cut! 544 101
...... with stellar population parameters? - 87
...... with FUV and Hy F data? 222 -

Note: see! (Section 3.1), 2(Section 3.2) or (Section 4.2).

Targets with SEXTRACTOR apertures flagged as truncated, or with
a deblending error, have been removed from the sample, and only
confirmed cluster members with redshift and log o measurements
within the Smith et al. (2004) or Smith et al. (2007) data sets (NFPS
and SSC, respectively) are used in the analysis. Table 2 lists the
number of galaxies in the samples at this stage, and after subsequent
restrictions.

All colours and magnitudes are measured in the AB system (Jag =
Jvega + 0.91; Blanton et al. 2005), and have been corrected for
galactic extinction using the reddening maps of Schlegel, Finkbeiner
& Davies (1998); Aryy = 8.29 x E(B-V), Ayyy = 8.87 x E(B-V),
A; =0.902 x E(B-V) (Cardelli, Clayton & Mathis 1989; Schlegel
et al.).

Estimates of the K-correction in the UV bands are currently de-
rived empirically from poorly constrained spectra, and therefore
subject to large uncertainties. Kaviraj et al. (2007a, fig. 22) estimate

that the NUV—i correction would be ~0.1 mag throughout the range
in redshift considered here. We do not apply a K-correction in this
study. This issue is addressed further in Section 4.4.

2.3 Emission-line cuts

In order to construct a sample of emission-free red-sequence galax-
ies, a restriction is made on emission-line strengths. Mindful of the
effect of nebular emission ‘fill in’ for the age-sensitive Balmer lines
(HB, Hy and H$é), the preferred cut is on the He line. Unfortunately,
Ha was not measured for most NFPS galaxies, so the selection cri-
teria of the original NFPS reduction has been adopted (Nelan et al.
2005). Specifically, this involves a cut on the HB equivalent width,
EW(HB) > —0.6 A (negative EW denotes spectral line emission)
supplemented by a cut on O m A5007, EW(O 1 A5007) > —0.8 A.
The cut on the SSC sample, which has He measurements, follows
the prescription of Smith et al. (2007), which uses EW(Ha) > —0.5 A
[approximately equivalent to EW(HB) > —0.2A]. The O cut
would not remove any additional galaxies. These cuts ensure red-
sequence subsamples, free of galaxies with a sizeable star formation
component or an optically strong active galactic nucleus. The data
and photometry for the resulting subsamples are reported in Tables 3
and 4.

3 RESULTS

3.1 NUV-] colour relations

Fig. 1 shows the NUV—-J colour-(apparent) magnitude diagram for
the NFPS and SSC samples. Shown in grey are the galaxies removed

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 385, 2097-2106
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Table 3. Extract of data for galaxies in the NFPS sample. Galaxy position is encoded in the ID. czemp (kms™') is the mean cluster
redshift in the CMB frame. czhe) (kms™!) is galaxy redshift in the heliocentric frame. Magnitudes (Kron-type apertures) and colours (12
arcsec diameter apertures) are in the AB system and have been galactic extinction corrected, but not K-corrected.

Galaxy ID cluster Galaxy Apparent J NUV-J FUV-J
CZCMB CZhel

NFPJ043305.0-612235 17714 16 144 15.750 £ 0.071 6.732£0.142 7.205 £0.250

NFPJ043306.7-612614 17714 17702 14.898 £0.047 7.091£0.102 7.497+£0.184

NFPJ043307.6-611338 17714 16356 14.659 +0.042 6.979 £ 0.095 7.659£0.195

NFPJ054415.7-255429 12939 10674 14.693 £0.045 6.886 £0.077 -

NFPJ054431.6-255550 12939 13247 14.783 +£0.047 6.767 £0.086 -

Table 4. Extract of data for galaxies in the SSC sample. As in Table 3. Supercluster mean czcyvp = 14 660 km s ™! for all galaxies. Stellar population parameters

given where available (age in Gyr).

Galaxy ID CZhel Apparent J NUV-J log(age/Gyr) [Z/H] [a/Fe]
NFPJ132418.2-314229 13948 14.197 £0.035 7.088 £+ 0.085 0.944+0.03 0.27 +£0.02 0.24+0.02
NFPJ132423.0-313631 14642 14.847 £0.048 6.706 £0.103 0.89 +0.05 0.11£0.03 0.15£0.02
NFPJ132425.9-314117 13888 14.380 £0.038 6.604 £0.079 - - -
NFPJ132426.5-315153 14922 14.676 +0.043 6.575£0.081 0.95+0.04 0.23£0.03 0.24 £0.02
2MASXJ13250387-3132449 14266 14.792 £0.049 6.626 £0.109 - - -

NUV—J
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Figure 1. CM diagram for the samples (NFPS upper panel; SSC lower
panel). Grey points are those removed by emission-line criteria detailed in
Section 2.3. The larger tail of grey points for SSC results from the lack of an
explicit colour cut on the original sample. Solid lines are GALEX detection
limits and dashed lines are the applied J-band apparent magnitude cuts.
Median errorbars are ~0.05 mag in J band and ~0.1 mag in the colour.

by the emission cut from Section 2.3. Prior to the emission cut, SSC
has a larger colour range than NFPS. This is because NFPS was
explicitly selected on B—R colour while SSC only on total R-band
apparent magnitude. The Ha cut efficiently removes the very blue
objects.

All target galaxies were within the 2MASS J-band detection limit,
but the NUV band has a 5o detection limit of 22.5-23.5 mag, de-
pending on the co-added image exposure time. Fig. 1 (upper panel)

shows that for the NFPS, these limits result in a bias against faint
red galaxies. Assuming the brightest NUV detection limit, a sample
cut is applied to the J-band apparent magnitude at 15.0 mag. For
the SSC sample, all of the targets appear on just two NUV images
with similar exposure times, and a (5¢) detection limit of 23.2 mag.
Although in practice only two SSC targets have a non-positive flux
in the NUV band (compared to ~8 per cent in NFPS), for consis-
tency, SSC has been treated in a similar manner, with a cut applied at
15.8 mag. These cuts are shown as dashed lines in Fig. 1 and ensure a
complete sampling of the colour range over the selected luminosity
interval.

The colour-(absolute) magnitude diagrams for the low-emission
galaxies are presented in Fig. 2. There is a correlation between the
luminosity and colour; brighter galaxies tend to be redder. However,
there is a large scatter; rms dispersions of 0.37 and 0.30 mag for
NFPS and SSC samples, respectively. The smaller scatter within the
SSC sample is probably due to the slightly more restrictive Balmer
emission-line criteria (see Section 2.3). The scatter in each sample
does not increase by more than ~10 per cent unless the cut criteria
are relaxed beyond an equivalent width of —1 A. Only 5 per cent
of the scatter can be accounted for by photometric measurement
error. As intrinsic scatter dominates, all correlations in this study
are computed without error weighting.

Table 5 summarizes the CMRs for our two samples. Additionally,
the CMRs measured in three previous studies (Boselli et al. 2005;
Yi et al. 2005; Haines, Gargiulo & Merluzzi 2008) are shown for
comparison. Different sample selections were used for each of these
studies. Yietal. use a ‘UV-weak’ early-type galaxy sample, selected
from SDSS by concentration index and luminosity profiles, and then
by the flux ratios F(NUV)/F(r) and F(FUV)/F(r) both being less than
0.07. The sample covers a J-band luminosity range comparable to
our work. Boselli et al. use a volume-limited sample of galaxies
in the Virgo cluster, with a subsample defined as elliptical by vi-
sual classification. Haines et al. use a volume-limited sample of
local galaxies from SDSS, with the subsample (labelled ‘passive
red-sequence galaxies’) restricted by the emission-line criteria
EWHa) > —2 A.

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 385, 2097-2106
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Figure 2. NUV-J colour-absolute magnitude diagram for both samples,
with best fits in black. Relations from previous studies in grey: Yi et al.
(2005) = dashed, Boselli et al. (2005) = dotted, Haines et al. (2008) =

dash-dotted. Median errorbars are ~0.05 mag in J band and ~0.1 mag in
NUV-J.

Table 5. NUV-J CMRs.

Original Transformed rms

X y a b Dispersion
NFPS J NUV-J —0.11 445 0.37
SSC J NUV-J —0.23 1.93 0.30
Y05! r NUV-r —-0.23 1.88 0.58
B05? H NUV-H —0.07 4.89 0.47
HO73 r NUV-r —0.18 2.66 0.37

Notes: original x and y parameters are given for reference. a and b are
for relations in the form NUV- J = aJ + b, assuming the following
colours: (] - H)AB = 0.2, RAB =r — 0.21, (J — R)AB = —0.8.
! From Yi et al. (2005). 2From Boselli et al. (2005). *From Haines et al.
(2008).

Despite these selection differences, our derived relations are in
good agreement with the previous studies. The scatter is consistent
(~0.3-0.5 mag) given the different sample definitions, and consid-
erably large in comparison to that of the optical CMR (~0.05 mag;
Bower et al. 1992).

Velocity dispersion provides an alternative mass proxy to lumi-
nosity, and, for optical colours, the o correlation appears more fun-
damental (Bernardi et al. 2005). Fig. 3 presents the samples in terms
of their NUV-J colour and log o. There is a clear correlation, with
slopes of 0.73 £ 0.11 and 0.65 & 0.17 for NFPS and SSC, respec-
tively, but the rms scatter (0.36 and 0.32 mag) is indistinguishable
from that of the CMR.

Fig. 4 shows the fraction of ‘blue’ galaxies as a function of
log o for our two samples. Blue galaxies are defined by NUV- J <
6.4 mag, as used in Schawinski et al. (2006) who study SDSS galax-
ies probing to much lower density environments than our samples.
Their blue galaxy fractions are plotted in Fig. 4 and show a markedly
higher fraction for a given velocity dispersion. For example, our
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Figure 3. NUV-J versus logo for NFPS (upper panel) and SSC (lower
panel). Median errorbars are ~0.02 and ~0.01 for log o in the two samples,
respectively, and ~0.1 in the colour.
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Figure 4. Fraction of galaxies with NUV-J/< 6.4 as a function of logo.
NFPS: squares/solid line; SSC: triangles/dashed line. Estimates from fig. 1
of Schawinski et al. (2006) are given for comparison (circles/dotted line)
and show a much steeper increase in the number of blue galaxies with de-
creasing o.

two samples have a blue fraction of ~40 per cent only at the low-
est sigma (log o < 1.8), while the Schawinski et al. sample reaches
this blue fraction at logo = 2.2. At face value, this result sug-
gests a large difference between field and cluster galaxy populations.
However, the differences in sample selection have to be considered
(Schawinski et al. use a sample selected on morphology), which is
beyond the scope of this study.

3.2 Stellar population parameters in the Shapley sample

In order to investigate the physical origin of the large intrinsic scatter
found in the NUV-J colour, we examine the relationship between
colour and the stellar population parameters (age, metallicity and
a-abundance) for the SSC sample.

In the following analysis, involving only the SSC sample, the
derived limit on J-band apparent magnitude (Section 3.1) is not
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applied, allowing a larger number of galaxies. (It should be noted
that the subsequent conclusions are robust against the use of the
J-band cut.) The emission-line selection criteria are retained, and
the sample is further restricted by the overlap of the photometric
and spectroscopic data sets (see Table 2).

NUV-J versus log(age) is shown in Fig. 5 (upper panel). Galax-
ies with nebular emission have been removed via the emission-line
criteria. Therefore, if the UV sources also contribute to the opti-
cal flux and have strong Balmer lines, the NUV—-J and age for the
remaining objects would be correlated. We find only a marginal cor-
relation between age and NUV-J, with a slope of 0.46 + 0.25 and
an intrinsic scatter (after accounting for the measurement error) of
0.33 mag. From the upper panel of Fig. 5, it is also apparent that
more luminous, and by inference larger, red-sequence galaxies (J-
band luminosity is shown in Figs 5-7 by the symbol size) are not
solely confined to the redder NUV—-J colours, although they do tend
to be the oldest.

Fig. 5 (lower panel) shows the relation between age and B—R
colour for the same sample of galaxies (note the much smaller
range in the vertical scale). There is a strong correlation; a slope of
0.21 £ 0.04 and rms dispersion of 0.05 mag. This figure confirms
that the NUYV scatter is not due to contamination by optically blue
galaxies.

The analogous NUV-J correlation with the metallicity is given in
Fig. 6. There is a strong trend between [Z/H] and NUV-J, with
a slope of 1.27 £+ 0.23 and an rms dispersion of 0.32 mag
(~90 per cent of which is intrinsic scatter). The lack of galaxies
to the top left-hand side is not the result of a selection effect. Of the
two target galaxies undetected in the NUV band (see Section 3.1),
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Figure 5. NUV-J (upper) and B-R (lower; from Mercurio et al.) colours
versus log(age) for the SSC sample. Symbol size represents J-band lumi-
nosity; larger = brighter. Note that the lower panel has a much smaller range
in the vertical scale.
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Figure 6. NUV-J versus metallicity [Z/H]. Symbol size represents J-band
luminosity; larger = brighter.
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Figure 7. NUV-J versus a-abundance [«/Fe]. Symbol size represents
J-band luminosity; larger = brighter.

only one has a low metallicity. Assuming the non-detection is due to
a redder than average colour, this would add a single galaxy to the
upper left-hand side of the plot, but would not significantly affect
the fit. In general, the most luminous galaxies form a ridgeline at
redder colours, although there are significant bright outliers to this
trend (the most obvious being the bright, blue, metal-rich galaxy
on the right-hand side; NFPJ132729.7-312325). Lower metallicity
galaxies tend to be bluer and less luminous. This supports Rampazzo
etal. (2007), who use simulations to predict a correlation of NUV-IR
colour with metallicity, but little dependence on age in populations
greater than 2-3 Gyr after a star formation episode. However, the
slope of our observed metallicity trend is two to three times weaker
than that derived from theoretical spectra by Dorman et al. (2003).

Model evolutionary tracks suggest that stellar evolution depends
on «/Fe (Salasnich et al. 2000; Dotter et al. 2007). However, we
find no discernible relation between the NUV-J colour and the o-
abundance in this sample of red-sequence galaxies (rms scatter of
0.37 mag; Fig. 7).

Fig. 8 shows the residuals from the NUV versus metallicity re-
lation (Fig. 6) against log(age). Although the residuals are more
strongly correlated with age (~30) than the colours themselves
are, the rms dispersion is only reduced to 0.3 mag (~0.25 mag in-
trinsic scatter). This is in contrast to the case of the B—R colour where
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Figure 8. NUV-Jresiduals from the [Z/H] relation versus log(age). Symbol
size represents J-band luminosity; larger = brighter.

the majority of the scatter can be attributed to age and metallicity
(Smith, Lucey & Hudson, in preparation).

4 DISCUSSION

This section explores possible causes of the large intrinsic scatter
observed in the NUV-J colour. We investigate aperture bias, the UV
upturn phenomenon and ‘frosting” by young or metal-poor subpop-
ulations. Additionally, we comment on the uncertainty in the NUV
band K-corrections.

4.1 Aperture bias/morphology

The spectroscopy used to estimate the stellar parameters is derived
from 2 arcsec diameter fibres, whilst the NUV-J colours are from
12 arcsec diameter aperture photometry. Eliminating aperture bias
completely would require matched apertures for the photometry and
spectroscopy, but unfortunately the PSF of the 2MASS and GALEX
images is too large for reliable 2 arcsec aperture photometry.

Broad-band colours and spectroscopic  measurements
(e.g. Tamura & Ohta 2004; Sanchez-Bldzquez et al. 2007) show that
elliptical galaxies generally have flat radial profiles in age, and
regular metallicity gradients (decreasing [Z/H] with radius). The
aperture effect therefore flattens the NUV-J versus Z/H relation,
as larger, redder galaxies will tend to exhibit higher metallicities
within the fibre. However, the effect is small, with only ~0.1 dex
change in metallicity over a 1 dex difference in aperture radius.

Inspection of the galaxies in high-resolution images can ascer-
tain whether there are morphological peculiarities, or neighbouring
objects, contributing to an enhanced large radius NUV flux. Fig. 9
shows colour versus age and metallicity (as in Figs 5-6), highlight-
ing the few galaxies that have high-resolution Hubble Space Tele-
scope (HST)- Advanced Camera for Surveys (ACS) images avail-
able. Fortunately, one of these objects is the most obvious outlier
in the whole sample (NFPJ132729.7-312325); it is the reddest in
B—R, but has an unusually blue NUV-J colour for such a metal-rich,
luminous galaxy. In the HST-ACS image (Fig. 10), the galaxy ap-
pears to be a large elliptical with no abnormalities. There are also
no obvious contaminating objects that could be responsible for an
anomalous blue colour.

On close examination, the other targets with HST-ACS images
also appear to be ‘normal’ ellipticals of various sizes, with no ob-
vious peculiarities or large radius NUV contributors. We conclude
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Figure9. Colour versus stellar parameters, highlighting galaxies with avail-
able HST-ACS images. Symbol size reflects J-band luminosity (larger =
brighter). In all cases, ACS confirms early-type morphology, uncontami-
nated by neighbours.

Figure 10. HST-ACS image of the outlier NFPJ132729.7-312325, with a
12 arcsec diameter aperture marked.

that a large scatter in NUV-J colour is present even in objects with
confirmed regular early-type morphologies and no contaminants.
Additionally, a scatter of ~0.3-0.35 mag is still obtained when
smaller matched apertures (4.5 arcsec diameter) are used for the
colour, despite the probability of a contaminating neighbour being
reduced by ~85 per cent.

4.2 UV upturn

Another possible explanation for the scatter in NUV-J colour is
NUYV contamination by the UV upturn (UVX). The Thomas et al.
(2003) models used in the stellar populations parameter calculations
include low-metallicity blue horizontal branch subpopulations and
thermal pulsing asymptotic giant branch stars, but they do not in-
clude the low-mass, metal-rich, helium-burning stars with small
envelopes currently thought to be the most likely candidate for the
UV upturn (O’Connell 1999). The UV upturn is one of the most
heterogeneous photometric properties of old stellar populations in
early-type galaxies, with a spread of up to ~4 mag in the FUV
(O’Connell 1999), so certainly seems a plausible explanation for
the scatter.

The hot UVX component appears in the spectra as a smooth
continuum with an absence of emission and absorption lines. Hence,
the FUV flux from a galaxy can be used to estimate the extent of the
contribution in the NUV-band (Burstein et al. 1988). Unfortunately,
none of the SSC galaxies have available FUV photometry, so in order
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to estimate the extent of the UVX contribution, the corrections are
calculated for all objects in the NFPS sample that have the necessary
FUYV data. However, stellar population ages have not been derived
for individual NFPS galaxies, so instead we compare the corrected
NUV-J colours to the traditional ‘age-tracing’ Balmer line HyF.
This line does not trace age cleanly, being affected to a small degree
by the metallicity.

HyF versus NUV-J for the NFPS sample is shown in Fig. 11.
Given the relative strengths of the colour versus age and [Z/H] re-
lations (Figs 5 and 6), the correlation seen here is most likely a re-
flection of the metallicity, rather than age, dependence of Hy F. For
comparison, the observations have been overlaid by age/metallicity
grids constructed from the models of Maraston (2005, M05; upper
panel) and Bruzual & Charlot (2003, hereafter BCO3; lower panel).
Both grids lie redward of the observed data, most likely due to nei-
ther model including EHB stars, although the BCO3 grid provides
the better description of the data. Previous studies (e.g. Salim et al.
2007) have noted that while the BC03 models do not explicitly in-
clude EHB stars, the UV light from old stellar populations (primarily
post-AGB stars) reproduce several of the correlations found in ob-
servational data, including the relation between FUV-NUV and B-V
colours (see Donas et al. 2007, particularly fig. 5).

Dorman et al. (2003) introduced corrections to their NUV-V
colours by considering the relative contributions of the hot and cool
(i.e. non-UVX) components at FUV,NUV and V. They assumed a
negligible contribution of the cool component to the FUV flux, but
allowed hot stars to contribute at V. Here, we use analogous correc-
tions for the NUV-J colours, which are simpler because it is safe to
assume no UVX contribution at J. The corrected colours are given
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Figure 11. NUV-J (without K-correction) against HyF Balmer index
for NFPS galaxies. Upper panel: MO05 grid (age = {5,12,15 Gyr},
[Z/H] = {—0.33, 0.00, + 0.35}). Lower panel: BCO3 grid (age = {5,12,
15 Gyr}, [Fe/H]= {-0.33, +0.09, +0.55}). (5, —0.33) is the bluest
(age,[Z/H]) grid point. Median errorbars are shown top right.
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Figure 12. NUV-J (without K-correction) against HyF Balmer index for
galaxies with available FUV data. Points indicate the corrected colour, with
the “tail” showing the correction vector. BCO3 grid as in Fig. 11 (lower panel).
Median errorbars are shown top right-hand panel.

by
(NUV = J)eon = —2.5 x log [10704NUV =/

—ax 1070A4(FUV7])0b5] D

where o & 0.3 is the ratio of NUV to FUV flux for the hot component
(appropriate for a Ter = 24 000 K star, see Dorman et al.).

The resulting corrections are shown as vertical lines in Fig. 12
(where the points indicate the value of the corrected colour). The
corrections move the colours redward as expected, but are only of
the order of ~0.2 mag, and do not reduce the scatter in the NUV-J
(0.29 mag before corrections, 0.30 mag after). Obviously there are
no extreme UVX galaxies with large hot component contributions
to the NUV flux in this sample, and as such the UVX phenomenon is
unlikely to responsible for the scatter in NUV—-J for NFPS. We spec-
ulate that the UVX effects in the SSC sample are smaller because,
on average, the galaxies have lower luminosities.

4.3 Stellar population ‘frosting’

The simple models can be generalized by constructing composite
stellar populations. A common invocation of this is residual star
formation in the form of ‘frosting’ galaxies with a small mass frac-
tion of young stars (Trager et al. 2000), which manifests itself in
the observables as a bluer colour and a younger age than the base
population. Frosting should not affect the spectroscopic metallicity
or «-abundance significantly as these are primarily driven by the
larger, older population (Serra & Trager 2007).

Fig. 13 shows the extent to which frosting can account for the
scatter, after the effect of metallicity has been removed using the
correlation of Fig. 6. Simple stellar population (SSP) tracks from
both the M05 and BC03 models are shown. The slope of the BC03
track fits the observed red envelope well, whereas MO5 predicts a
much steeper variation with age. Allowing for the systematic effects
of aperture bias and the UV upturn (~0.3 mag bluer in observed
NUV-J), ~30 per cent of the galaxies cannot be accounted for by
the SSP model.

Vectors of the frosting effect on NUV—-J colour and spectroscopic
age have been calculated using the BCO3 models. Frosting of a
15 Gyr base population by a 1.5 Gyr population with a mass fraction
n = 0.03, and by a 0.7 Gyr population of © = 0.01 are shown.
The MO5 models result in marginally steeper frosting vectors, as
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Figure 13. Simple stellar population tracks from the M05 and BCO3 models
shown in the context of the NUV-J colour (correcting to [Z/H] =0 using
the correlation from Fig. 6) versus log(age). Vectors indicate two BC03
frosting scenarios with minor populations of {u,age} = {0.03,1.5} and
{0.01,0.7 Gyr} (solid and dashed vector, respectively).

would be expected given the steeper SSP track. The vectors show
that frosting, even at a modest level of 1-2 per cent for a ~1 Gyr
population, could account for a sizeable portion of the scatter in
the NUV—-J colour. A young population of this size would not be
apparent in the B—R colours.

The spectroscopic age is sensitive to frosting via the increased
hot-star contribution to the Balmer lines, and for a given change to
the spectroscopic age, the UV colours are affected more strongly
by frosting than by lowering the age of a single-burst population.
This supports the assertion that UV colours are partly dependent
on low-level recent star formation (Ferreras & Silk 2000; Kaviraj
etal. 2007a; Salim et al. 2007). However, there are spectroscopically
old galaxies with blue colours (~10 per cent of the sample) which
cannot be accounted for by the frosting scenario described above.
Additionally, Rose Ca1l index results (Smith, Lucey & Hudson, in
preparation) appear not to support the presence of young stellar
populations (<1.5 Gyr) in the majority of red-sequence galaxies.

For most of this study, we have neglected the blue horizontal
branch (BHB) as cluster red-sequence galaxies have [Z/H] ~0. How-
ever, it is possible that a low-metallicity population with a BHB
morphology may be present in some galaxies (Maraston & Thomas
2000). Therefore, an alternative ‘frosting’ scenario consists of a
low-mass fraction, old, low metallicity, BHB stellar population em-
bedded in a [Z/H] = 0 galaxy. Estimates from the M0O5 models
show that ‘frosting’ by a 4-5 per cent mass fraction population with
[Z/H] = —1.35 could give an NUV-J colour ~1 mag bluer, while
changing the B—R by only ~0.03 mag. The effect of the low-
metallicity frosting on the derived spectroscopic age is likely similar
to the effect of frosting by a young component, since both cases are
driven by increased A star contribution to the Balmer lines.

4.4 NUV K-corrections

K-corrections for the UV bands are poorly constrained, as the spec-
tral shape of galaxies at wavelengths shorter than ~3000 A is not
well known. Previous studies of the UV CMR largely ignore the
K-correction, or in the case of Yi et al. (2005, who estimate correc-
tions of 0.1-0.2 mag for z = 0 — 0.25) apply corrections based on
the luminosity distance without considering the spectral shape of
galaxies.
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Figure 14. CMR residuals for the NFPS sample (Fig. 2; upper panel) ver-
sus heliocentric galaxy redshift. The filled squares and solid line show the
predicted trend if the K-corrections from the MO5 models were necessary,
but not applied.

Kaviraj et al. (2007a) compute NUVK-corrections for best-fitting
model SEDs derived from SDSS and GALEX photometry. Correc-
tions of ~0.1 mag were found for redshifts z < 0.1. However, cor-
rections for their model of a 9-Gyr old simple stellar population are
much larger (0.4-1.0 mag for 0.04 < z < 0.11).

As an illustration, we calculate K-corrections from the models
of Maraston (2005, M05) at various redshifts (0.015 < z < 0.072),
both for simple populations and galaxies in the ‘frosting’ scenario
described in Section 4.3. K-corrections of 0.2—1.2 mag are obtained,
depending on the metallicity and age (increasing either increases the
correction), and on the mass fraction of the young stellar compo-
nent. The corrections are dominated by the 2640 A spectral break
(cf. Eisenstein et al. 2003), which is redshifted completely out of
the NUV band by z &~ 0.07. In Eisenstein et al., who study the av-
erage spectra of 726 luminous, red, SDSS galaxies at 0.47 < z <
0.55, the break appears less prominent than in the M05 spectra (a
~50 per cent drop in flux as opposed to ~80 per cent).

Fig. 14 shows the regression-line residuals from the CMD for the
NFPS sample (Fig. 2; upper panel) plotted against the galaxy redshift
in the heliocentric frame. The solid line shows the expected trend if
the MOS K-corrections were necessary, but not applied. This implies
the uncorrected residuals should have a steep correlation with red-
shift, which is not observed. A flatter K-correction is preferred by
the data, as in Kaviraj et al. (2007a). Along with the Eisenstein et al.
spectrum described above, this result highlights the uncertainty in
the UV K-corrections (as well as the problems of stellar population
models in the UV).

5 CONCLUSIONS

Using GALEX UV and 2MASS J-band photometry, we have
investigated the relationship between UV-IR colours and
spectroscopically derived stellar population parameters (age, metal-
licity and «-abundance) for red-sequence galaxies in local clusters.

We select galaxies using strict emission criteria to avoid contam-
ination from galaxies with very recent star formation. We analyse
the NUV CMR for our two samples of quiescent galaxies (920 in
NFPS; 156 in SSC), and find rms dispersions of 0.37 and 0.30 mag
(intrinsic scatter of 0.36 and 0.29 mag), respectively. This is
similar to previously reported values of ~0.5 mag and is an
order of magnitude larger than the scatter in the optical CMR
(~0.05 mag).
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We compared the NUV-J colour to the spectroscopic stellar pop-
ulation parameters for 87 galaxies in the SSC sample and found the
following.

(1) There is a significant NUV—-J versus metallicity trend, with a
slope of 1.27 £ 0.23 and an rms dispersion of 0.32 mag.

(ii) There is only a weak NUV-J versus age trend after the metal-
licity effect has been removed, and no correlation with «-abundance.

(iii) There is a large intrinsic scatter (~0.25 mag) in the NUV-J
colour at fixed age and metallicity which cannot be easily accounted
for with simple stellar populations.

The unexpected blue colours of at least some objects, including
an influential outlier, cannot be attributed to large radius contami-
nation from other objects, and aperture bias cannot account for the
large scatter. Corrections for the UV upturn (UVX) phenomenon
are relatively small (~0.2 mag) and are similar galaxy-to-galaxy, so
do not reduce the intrinsic scatter.

We find that the large NUV-/J intrinsic scatter could be attributed
to galaxy ‘frosting’ by small (<5 per cent) populations of either
young stars or a low-metallicity blue horizontal branch.

ACKNOWLEDGMENTS

TDR is supported by the STFC Studentship PPA/S/S/2006/04341.
RIS is supported by the rolling grant PP/C501568/1 ‘Extragalactic
Astronomy and Cosmology at Durham 2005-2010’. Based on ob-
servations made with the NASA Galaxy Evolution Explorer. GALEX
is operated for NASA by California Institute of Technology under
NASA contract NAS-98034. This publication makes use of data
products from the Two Micron All Sky Survey, which is a joint
project of the University of Massachusetts and the Infrared Process-
ing and Analysis Centre/California Institute of Technology, funded
by NASA and the National Science Foundation. We thank Chris
Haines and the SOS team for providing the B—R colours used in
Figs 5 and 9.

REFERENCES

Bernardi M., Sheth R. K., Nichol R. C., Schneider D. P., Brinkmann J., 2005,
ApJ, 129, 61

Bertin E., Arnouts S., 1996, A&A, 117, 393B

Blanton M. R. et al., 2005, AJ, 129, 2562

Boselli A. et al., 2005, ApJ, 629, L29

Bower R. G., Lucey J. R, Ellis R. S., 1992, MNRAS, 254, 601

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 (BC03)

Burstein D., Bertola F., Buson L., Faber S. M., Lauer T. R., 1988, ApJ, 328,
440

Caldwell N., Rose J. A., Concannon K. D., 2003, AJ, 125 289

Cardelli J. A., Clayton G. C., Mathis J. S., 1989, AplJ, 345, 245

Code A. D., 1969, PASP, 81, 482

Donas J. et al., 2007, ApJS,173, 597

Dorman B., 1997, in Arnaboldi M., Da Costa G. S., Saha P., eds, ASP
Conf. Ser. 116, The Nature of Elliptical Galaxies. Astron. Soc. Pac., San
Francisco, p. 195

Dorman B., O’Connell R. W., Rood R. T., 2003, ApJ, 591, 878

Dotter A., Chaboyer B., Ferguson J. W., Lee H.-C., Worthey G., Jevremovic
D., Baron E., 2007, ApJ, 666, 403

Dressler A., 1984, ApJ, 281, 512

Eisenstein D. J. et al., 2003, ApJ, 585, 694

Ferreras 1., Silk J., 2000, ApJ, 541, L37

Haines C. P, Gargiulo A., Merluzzi P, 2008, MNRAS, in press
(doi:10.1111/j.1365-2966.2008.12954.x) (arXiv:0707.2361)

Jarrett T. H., Chester T., Cutri R., Schneider S., Skrutskie M., Huchra J. P.,
2000, AJ, 119, 2498

Kaviraj S. et al., 2007a, ApJS, 173, 619

Kaviraj S., Rey S.-C., Rich R. M., Yoon S.-J., Yi S. K., 2007b, MNRAS,
381,74

Kodama T., Arimoto N., 1997, A&A, 320, 41

Kuntschner H., Davies R. L., 1998, MNRAS, 295, 1.29

Larson R. B., 1974, MNRAS, 169, 229

Lee H.-C., Lee Y.-W., Gibson B. K., 2002, ApJ, 124, 2664

Leitherer C. et al., 1999, AplS, 123, 3

Maraston C., 2005, MNRAS, 362, 799

Maraston C., Thomas D., 2000, ApJ, 541, 126

Martin D. C. et al., 2005, ApJ, 619, L1

Mathews W. G., Baker J. C., 1971, ApJ, 170, 241

Mercurio A. et al., 2006, MNRAS, 368, 109

Morrissey P. et al., 2007, ApJS, 173, 682

Nelan J. E., Smith R. J., Hudson M. J., Wegner G. A., Lucey J. R., Moore
S. A. W,, Quinney S. J., Suntzeff N. B., 2005, ApJ, 623, 137

O’Connell R. W,, 1999, ARA&A, 37, 603

O’Connell R. W. et al., 1992, ApJ, 395, L45

Rampazzo R. et al., 2007, MNRAS, 381, 245

Rich R. M. et al., 2005, ApJ, 619, 107

Salasnich B., Girardi L., Weiss A., Chiosi C., 2000, A&A, 361, 1023

Salim S. et al., 2007, ApJS, 173, 267

Sanchez-Blazquez P., Forbes D. A., Strader J., Brodie J., Proctor R., 2007,
MNRAS, 377, 759

Schawinski K. et al., 2006, Nat, 442, 888

Schlegel D. J., Finkbeiner D. P., Davies M., 1998, ApJ, 500, 525

Serra P., Trager S. C., 2007, MNRAS, 374, 769S

Skrutskie M. F. et al., 2006, ApJ, 131, 1163

Smith R. J. et al., 2004, ApJ, 128, 1558

Smith R. J., Lucey J. R., Hudson M. J., 2007, MNRAS, 381, 1035

Tamura N., Ohta K., 2004, MNRAS, 355, 617

Thomas D., Maraston C., Bender R., 2003, MNRAS, 339, 897

Thomas D., Maraston C., Korn A., 2004, MNRAS, 351, L19

Thomas D., Maraston C., Bender R., Mendes de Oliveira C., 2005, ApJ, 621,
673

Trager S. C., Faber S. M., Worthy G., Gonzalez J. J., 2000, AJ, 120, 165

Visvanathan N., Sandage A., 1977, ApJ, 216, 214

Worthey G., 1994, ApJS, 95, 107

Yi S., Demarque P., Oemler A. Jr, 1997, AplJ, 486, 201

Yi S. K. et al., 2005, ApJ, 619, L111

SUPPLEMENTARY MATERIAL

The following supplementary material is available for this article.

Table 3. Data for galaxies in the NFPS sample. Galaxy position is
encoded in the ID. czemp (kms™!) is the mean cluster redshift in
the CMB frame. czy,e; (kms™') is galaxy redshift in the heliocentric
frame. Magnitudes (Kron-type apertures) and colours (12 arcsec
diameter apertures) are in the AB system, and have been galactic
extinction corrected, but not K-corrected.

Table 4. Data for galaxies in the SSC sample. As in Table 3. Super-
cluster mean czemp = 14660kms~! for all galaxies. Stellar popu-
lation parameters given where available (age in Gyr).

This material is available as part of the online paper from: http://
www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2966.2008.
12967.x

(this link will take you to the article abstract).
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