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ABSTRACT

We have derived an X-ray luminosity function using parallax-based distance mea-
surements of a set of 12 dwarf novae, consisting of Suzaku, XMM-Newton and ASCA

observations. The shape of the X-ray luminosity function obtained is the most accurate
to date, and the luminosities of our sample are concentrated between ∼ 1030–1031 erg
s−1, lower than previous measurements of X-ray luminosity functions of dwarf novae.
Based on the integrated X-ray luminosity function, the sample becomes more incom-
plete below ∼ 3 × 1030 erg s−1 than it is above this luminosity limit, and the sample
is dominated by X-ray bright dwarf novae. The total integrated luminosity within a
radius of 200 pc is 1.48 × 1032 erg s−1 over the luminosity range of 1 × 1028 erg s−1

and the maximum luminosity of the sample (1.50 × 1032 erg s−1). The total absolute
lower limit for the normalised luminosity per solar mass is 1.81 × 1026 erg s−1 M−1

⊙

which accounts for ∼ 16 per cent of the total X-ray emissivity of CVs as estimated by
Sazonov et al. (2006).

Key words: cataclysmic variables – stars: dwarf novae – X-rays: stars – X-rays:
binaries – stars: distances – stars: luminosity function

1 INTRODUCTION

Cataclysmic variables, i.e. CVs consist of an accreting white
dwarf primary and a late-type main sequence star, and ac-
crete via Roche lobe overflow. CVs can be divided into sev-
eral subclasses of which so called dwarf novae (DNe) are the
most numerous subclass of CVs in our Galaxy. In these sys-
tems, the white dwarf has a weak magnetic field strength (B
. 106 G, van Teeseling, Beuermann, & Verbunt 1996) com-
pared to magnetic CVs, such as polars, and thus the for-
mation of an accretion disc is possible. From time to time,
the disc is seen to brighten by several magnitudes lasting
from days to several weeks. This brightening of the disc, i.e.
an outburst, is thought to be caused by disc instabilities,
which are described in detail in Lasota (2001). In quiescence,
DNe are sources of optical emission emanating from the ac-
cretion disc and the bright spot where the material from
the secondary hits the edge of the disc. Quiescent optical
spectra of DNe are characterized by strong Balmer emis-
sion lines and weaker He I lines with some heavier elements.
Also, DNe are sources of hard X-rays which are thought
to originate from an optically thin boundary layer during
quiescence. However, during an outburst hard X-rays are

⋆ E-mail: kjkb2@star.le.ac.uk

quenched as the boundary layer becomes optically thick and
thus a source of soft X-rays and EUV emission (Pringle 1977;
Pringle & Savonije 1979).

At the time of the discovery of the Galactic Ridge X-
ray Emission (GRXE) in 1982 (Worrall et al. 1982), dis-
crete point sources were thought to be the origin of the
GRXE emission. However, the origin has been debated
since, but observational evidence gathered to date since
the GRXE discovery supports the view that the GRXE is
not due to diffuse origin but due to discrete point sources,
such as CVs and other accreting binary systems (see re-
cent studies by e.g. Revnivtsev, Vikhlinin & Sazonov 2007;
Revnivtsev et al. 2008). More supporting evidence was given
by the recent Chandra study carried out by Revnivtsev et al.
(2009) who resolved over 80 per cent of the GRXE into point
sources in the 6–7 keV energy range during an ultra-deep 1
Msec observation.

Based on EXOSAT observations of the X-ray emission
in the Galactic Plane, Warwick et al. (1985) concluded that
if the GRXE is assumed to be originating from discrete point
sources, the bulk of the emission observed must be due to a
population of low luminosity X-ray sources (Lx < 1033.5 erg
s−1), such as CVs. Subsequently, Mukai & Shiokawa (1993)
suggested that DNe could significantly contribute to the
GRXE based on their study of an EXOSAT Medium En-

http://arxiv.org/abs/1006.5932v1
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ergy (ME) DN sample. According to this study, the space
density of DNe is sufficiently high to account for a signifi-
cant fraction of the GRXE. Later on, Ebisawa et al. (2001)
resolved sources down to 3 × 10−15 erg cm−2 s−1 in their
Chandra observation of the Galactic Ridge, equivalent to Lx

> 2.3 × 1031 erg s−1 at 8 kpc, concluding that the number
of resolved point sources above this level is insufficient for
them to be the major contributor to the GRXE. Since these
previous works have not completely resolved the contribu-
tion of CVs to the GRXE, further studies are needed. As
was noted by Mukai & Shiokawa (1993), unbiased and sen-
sitive surveys with accurate distance measurements of CVs
are needed. This way, accurate X-ray luminosity functions
(XLFs) can be obtained, and the contribution to the GRXE
estimated more precisely.

The motivation for our work was mainly given by
the inaccuracies in the XLFs of Galactic CV populations,
such as those by Baskill, Wheatley, & Osborne (2005) and
Sazonov et al. (2006). Baskill et al. derived an XLF using 34
ASCA observations of non-magnetic CVs (including 23 DN
observations). Their sample lacked accurate distance mea-
surements as only 10 sources had parallax-based distance
measurements. Furthermore, this sample was biased by high
X-ray flux sources since ASCA was intended to be a spectro-
scopic mission and the sources in the studied sample were
known to be X-ray bright. Also, the ASCA study was purely
archival without any sample selection (e.g. the distance was
not limited) as Baskill et al. chose all non-magnetic CV ob-
servations in the archive, they did not filter out sources
which were in an outburst state, or restrict the study to
one type of objects only. The XLF study by Sazonov et al.
(2006) focused on building up an XLF in the 2–10 keV range
combining the RXTE Slew Survey (XSS) and ROSAT All-
Sky Survey (RASS) observations of active binaries, CVs and
young main sequence stars in the luminosity range ∼ 1027.5

< Lx < 1034 erg s−1. However, uncertainties in the lumi-
nosities in this study were introduced by inadequate accura-
cies in the distances, for example, many of the intermediate
polars (IPs) in their sample had poorly known distances.
Only a few sources had parallax measurements from, e.g.,
the Hipparcos or Tycho catalogues (astrometric uncertain-
ties ∼ 1 mas) and ground-based parallax measurements from
Thorstensen (2003). In addition, the RASS luminosities had
50 per cent uncertainties in addition to statistical errors af-
ter conversion from the 0.1–2.4 keV to the 2–10 keV range.

The primary aim of this paper is to derive the most
accurate shape of the XLF to date by using a carefully
selected sample of DNe. In order to achieve this, we aim
to minimise the biases seen in other published XLFs by
using sample selection criteria described in Section 2.
One of the criteria worth mentioning here is that we
only use parallax-based distance estimates. The source
sample used in this study does not represent a complete
sample of DNe within 200 pc: the sample is more of a
”fair sample” which was not chosen based on the X-ray
properties of the sources, and which represents typical
DNe within the solar neighbourhood. We will consider
the possible effects of the optical selection, inherent in the
parallax sample, on the XLF which we derive in Section 6
(Discussion). The motivation for choosing a group of DNe
as the sample is based on observations of the Galactic CV
populations and previous CV population models. Various

authors, such as Howell, Rappaport & Politano (1997),
Pretorius, Knigge & Kolb (2007a) and Gänsicke et al.
(2009), have pointed out that binaries which are brighter
in X-rays and show frequent outbursts, may not represent
the true majority of Galactic CV population. The discovery
methods of CVs usually favour brighter systems, and
thus fainter CVs with low mass accretion rates are likely
to be under-represented. However, population models of
CVs predict that the majority of CVs are short-period
systems (Porb < 2.5 h) and X-ray faint (e.g. Kolb 1993;
Howell, Rappaport & Politano 1997). These models are
supported by observational evidence, e.g. Patterson (1984)
showed that a sample of CVs with a total space density
of 6 × 10−6 pc−3 was dominated by low mass accretion
rate, and thus short period, systems. Also, the SDSS study
by Gänsicke et al. (2009) showed that orbital periods of
intrinsically faint Galactic CVs accumulated in the 80–86
min range; they found that 20 out of 30 SDSS CVs in
this period range showed characteristics which implied
that they are low mass accretion rate WZ Sge type DNe.
As has been shown by these studies, less X-ray luminous
objects (such as DNe) dominated the studied volumes, and
thus we choose to focus on DNe in this paper. It is also
worth mentioning the study by Pretorius et al. (2007b)
who carried out the ROSAT North Ecliptic Pole (NEP)
survey using a purely X-ray flux limited and a complete
sample of 442 X-ray sources above a flux limit of ∼ 10−14

erg cm−2 s−1 in the 0.5–2.0 keV band (only five systems
were CVs). They concluded that if the overall space density
of CVs is as high as 2 × 10−4 pc−3, then the dominant CV
population must be fainter than 2 × 1029 erg s−1.

We have carried out X-ray spectral analysis of our sam-
ple of 13 sources and derived an XLF in the 2–10 keV band
for 12 of them with reliable distance measurements based
on those of by Harrison et al. (2004), Thorstensen (2003)
and Thorstensen, Lépine, & Shara (2008). By using sources
with accurate distance measurements, we minimise the error
on the luminosity. Also, we have carried out timing analy-
sis for 5 sources in the sample which were recently observed
by Suzaku. At the time of writing this paper, the Z Cam
type star KT Per went into an outburst in January 2009,
and thus we also briefly report on the Suzaku observations
of KT Per during the outburst in Section 5.5.

2 THE SELECTION CRITERIA AND THE

SOURCE SAMPLE

Since we wanted to obtain accurate luminosities for the
sources (and thus an accurate shape for the luminosity func-
tion), the first step was to avoid selecting sources randomly
from the archive (see e.g. Baskill, Wheatley, & Osborne
2005) or selecting an X-ray flux limited source sample. The
aim was to have a distance-limited sample. Thus, sources
were not selected based on their X-ray properties, but we
chose only those DNe which have accurately measured dis-
tances based on trigonometric parallax measurements within
∼ 200 pc. Note that by using all available distance measure-
ment techniques, Patterson (priv. comm.) estimates that
currently there are 13 DNe within 100 pc, and ∼ 33 DNe
within 200 pc from the Sun, of which the latter count is
clearly incomplete. Above the 200 pc limit, ground-based
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parallax technique does not give accurate and reliable dis-
tance measurements. By using trigonometric parallax-based
distance measurements, we are more likely to avoid biases
in the distance measurements which are present in the pre-
vious, published X-ray luminosity functions. Due to the lack
of ground-based parallax measurement programme for the
Southern hemisphere, our sample is limited to northern and
equatorial objects. However, this selection should not intro-
duce any biases in terms of the optical or X-ray luminosities
in our sample.

The distance measurements of the sources chosen for
this work are based on astrometric parallaxes obtained by
the Hubble Space Telescope (HST) Fine Guidance Sensors
(FGSs) (Harrison et al. 2004), and trigonometric parallaxes
obtained by the ground-based 2.4 m Hiltner Telescope at
the MDM Observatory on Kitt Peak, Arizona (Thorstensen
2003; Thorstensen, Lépine, & Shara 2008) and Thorstensen
(in prep.). The first accurate astrometric parallaxes of DNe
(SS Cyg, SS Aur and U Gem) were measured in 1999 us-
ing the FGSs which can deliver high-precision parallaxes
with sub-milliarcsecond uncertainties (Harrison et al. 1999).
Trigonometric parallaxes derived by ground-based observa-
tions have uncertainties around 1 mas (= 10−3 arcsec) or
less (Thorstensen 2003; Thorstensen, Lépine, & Shara 2008)
which is almost as good as the uncertainty on the FGS par-
allax measurements.

The second selection criterion was to restrict the sample
to sources which had been observed by X-ray imaging tele-
scopes with CCDs in the energy range 0.2–10 keV. Once we
had obtained a list of targets with parallax measurements,
we then looked for archival data of pointed imaging X-ray
observations of these targets in the energy range ∼ 0.2–
10 keV. If the chosen targets did not have previous X-ray
imaging observations, we requested Suzaku X-ray observa-
tions. Finally, we wanted to constrain the sample to those
sources which were in their quiescent states during the obser-
vations in order to avoid biases in the luminosities, and thus
AAVSO1 light curves of the selected sources were inspected
to confirm that the sources were in quiescence during the
X-ray observations.

The final source sample consists of 9 SU UMa (including
2 WZ Sge systems), 3 U Gem and 1 Z Cam type DNe. The
main characteristic which separates these classes of DNe is
the outburst behaviour: U Gem type DNe outburst mainly
in timescales of every few weeks to every few months whereas
SU UMa stars show normal, U Gem type DN outbursts and,
in addition, superoutbursts with superhumps (variations in
the light curves at a period of a few per cent longer than
the orbital period) in timescales of several months to years.
The extreme cases, WZ Sge stars, only have superoutbursts
with outburst timescales of decades without normal DN out-
bursts. The defining characteristic for Z Cam stars is stand-
stills, i.e., it is possible that after an outburst, they do not
return to the minimum magnitude (unlike U Gem stars), but
remain between the minimum and maximum magnitudes for
10–40 days.

The sources, which were included in the calculation
of the X-ray luminosity function and when testing dif-
ferent correlations discussed later in this paper, were ob-

1 www.aavso.org

served with Suzaku (BZ UMa, SW UMa, VY Aqr, SS Cyg,
SS Aur, V893 Sco, and ASAS J002511+1217.2), XMM-

Newton (U Gem, T Leo, HT Cas and GW Lib) and with
ASCA (WZ Sge). Suzaku observations of BZ UMa, SWUMa,
VY Aqr, SS Aur, V893 Sco and ASAS J0025 were re-
quested as these observations were not in the archive.
Mukai, Zietsman & Still (2009) discuss the Suzaku observa-
tions of V893 Sco in more detail. We also included Z Cam in
the source sample since it has a parallax measurement, but it
appeared to be in a transition state during the observations.
Thus, we have only reported the results of the spectral anal-
ysis for Z Cam, but excluded it when calculating the X-ray
luminosity function, and when testing correlations between
different parameters. The system parameters for all the 13
sources are given in Table 1.

3 OBSERVATIONS AND DATA REDUCTION

The details of the Suzaku, XMM, and ASCA observations
are given in Table 2, and the data reduction methods are
described in the following sections.

3.1 Suzaku data reduction

Suzaku (Mitsuda et al. 2007), originally Astro-E2, was
launched in 2005 and is Japan’s 5th X-ray astronomy mis-
sion. In this paper, we will focus on the X-ray Imag-
ing Spectrometer (XIS) data. The XIS consists of four
sensors: XIS0,1,2,3 of which three (XIS0,2,3) contain
front-illuminated (FI) CCDs, and XIS1 contains a back-
illuminated (BI) CCD. The XIS0,2,3 are less sensitive to
soft X-rays than XIS1 due to the thin Si and SiO2 layers
on the front side of the XIS0,2,3 CCDs. Since November 9,
2006, the XIS2 unit has not been available for observations.
The Suzaku background is low and hardly affected by soft
proton flares often seen in XMM observations.

The unfiltered event lists of SS Cyg and V893 Sco were
reprocessed with xispi and screened in xselect with xis-

repro since the pipeline version for these observations was
older than v.2.1.6.15 which does not include correction for
the time- and energy-dependent effects in energy scale cali-
bration. For all the other Suzaku observations, the observa-
tions had been processed by more recent pipeline versions
and thus reprocessing was not necessary. Pile-up was not
a problem for our data since the source count rates were
safely below the pile-up limit (12 ct s−1) for point sources
observed in the ’Normal’ mode using Full Window2. The
Suzaku data reduction described below was carried out in a
similar manner for all the Suzaku observations. The cleaned
event lists were read into xselect in which X-ray spectra
were extracted for each source. Light curves were extracted
for SW UMa, BZ UMa, SS Aur, ASAS J0025, and VY Aqr
for timing analysis studies. To include 99 per cent of the
flux and to obtain the most accurate flux calibration, the
spectra and light curves were extracted using a source ra-
dius of 260” (250 pixels). The backgrounds were taken as an
annulus centred on the source excluding the inner 4’ source

2 http://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/abc/abc.html
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Table 1. The source sample used to derive the X-ray luminosity function (excluding *) with their inclinations, orbital periods, white
dwarf masses, distances and DN types. The types given in the last column are U Gem (UG), SU UMa (SU), WZ Sge (WZ) and Z
Cam (ZC). The references are: a) Thorstensen (2003), b) Thorstensen, Lépine, & Shara (2008), c) Harrison et al. (2004), d) Mason et al.
(2001), e) Urban & Sion (2006), f) Friend, Connon-Smith & Jones (1990), g) Ritter & Kolb (2003), h) Horne, Wood & Stiening (1991),
i) Preliminary distance estimate from Thorstensen (in prep.), and j) Templeton et al. (2006).

Source Inclination Porb MWD Distance Type
deg h M⊙ pc

SS Cyg 40 ± 8 c 6.603 c 1.19 f 165+13
−11

c UG

V893 Sco 71 ± 5 a 1.82 a 0.89 d 155+58
−34

a SU

SW UMa 45 ± 18 g 1.36 b 0.80 e 164+22
−19

b SU

VY Aqr 63 ± 13 a 1.51 a 0.8/0.55 e 97+15
−12

a SU

SS Aur 40 ± 7 c 4.39 a 1.03 e 167+10
−9

c UG

BZ UMa 60–75 e 1.63 b 0.55 e 228+63
−43

b SU

U Gem 69 ± 2 c 4.246 c 1.03 e 100 ± 4 c UG

T Leo 47 ± 19 a 1.42 a 0.35 e 101+13
−11

a SU

WZ Sge 76 ± 6 c 1.36 a 0.90 e 43.5 ± 0.3 c SU/WZ

HT Cas 81 ± 1 h 1.77 b 0.8 e 131+22
−17

b SU

GW Lib 11 ± 10 a 1.28 a 0.8 e 104+30
−20

a SU/WZ

Z Cam∗ 65 ± 10 a 6.98 a 1.21 e 163+68
−38

a ZC

ASAS J0025 – 1.37 j – ∼ 175+120
−40

i SU

Table 2. The observation dates and the instruments used in the observations for each source. The exposure times for the Suzaku sources
have been obtained from the cleaned event lists, and the numbers in brackets for the XMM sources show exposure times after filtering
high background flares. The last column corresponds to the optical state of the source during the observations.

Source ObsID Instrument Tstart Tstop Texp State
ks

SS Cyg 400006010 XIS/Suzaku 2005-11-02 2005-11-02 39 Q
V893 Sco 401041010 XIS/Suzaku 2006-08-26 2006-08-27 18 Q
SW UMa 402044010 XIS/Suzaku 2007-11-06 2007-11-06 17 Q
VY Aqr 402043010 XIS/Suzaku 2007-11-10 2007-11-11 25 Q
SS Aur 402045010 XIS/Suzaku 2008-03-04 2008-03-05 19 Q
BZ UMa 402046010 XIS/Suzaku 2008-03-24 2008-03-25 30 Q
ASAS 403039010 XIS/Suzaku 2009-01-10 2009-01-11 33 Q
J0025
KT Per 403041010 XIS/Suzaku 2009-01-12 2009-01-13 29 OB
U Gem 0110070401 MOS1/XMM 2002-04-13 2002-04-13 23(22.4) Q

0110070401 MOS2/XMM 2002-04-13 2002-04-13 23(22.4) Q
T Leo 0111970701 PN/XMM 2002-06-01 2002-06-01 13(13) Q
HT Cas 0111310101 PN/XMM 2002-08-20 2002-08-20 50(6.9) Q
GW Lib 0303180101 PN/XMM 2005-08-25 2005-08-26 22(6.7) Q
WZ Sge 34006000 GIS,SIS/ASCA 1996-05-15 1996-05-15 85 Q
Z Cam 35011000 GIS,SIS/ASCA 1997-04-12 1997-04-12 41 T

region. The outer radii of the background annuli were deter-
mined according to how close the calibration sources were
to the target. The response matrix files (RMFs) and ancil-
lary response files (ARFs) were created and combined within
xisresp v.1.10. The XIS0,2,3 source and background spec-
tra and the corresponding response files were summed in
addascaspec to create the total XIS0,2,3 source and back-
ground spectra, and the total XIS0,2,3 response file. For the
light curves, the background areas were scaled to match the
source areas, and the scaled background light curves were
then subtracted from the source light curves in lcmath.

3.2 XMM data reduction

XMM-Newton (Jansen et al. 2001) is the cornerstone mis-
sion of the European Space Agency (ESA). It has been oper-
ating since 1999 with three X-ray cameras (EPIC pn, MOS1
and MOS2), the Optical Monitor (OM), and the Reflection
Grating Spectrometer (RGS) onboard. The X-ray cameras
cover the energy range 0.2–12.0 keV.

The data were obtained from the XMM-Newton Sci-
ence Archive (XSA) and the XMM-Newton data were re-
duced and analysed in the standard manner using theXMM-

Newton Science Analysis System sas version 8.0.0. Each
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observation was checked for high background flares in the
range 10–12 keV using single pixel events (pattern ==

0). The high background flares were cut above 0.35 ct s−1

for the MOS data and above 0.40 ct s−1 for the pn data.
The source and background extraction regions were taken
from circular extraction areas avoiding any contaminating
background sources. The radii of the source regions were
calculated by using the sas task region in order to derive
source extraction radii which include ∼ 90 per cent of the
source flux for each source. The background extraction re-
gion (rbg = 130 arcsec) was taken from the same chip as the
source extraction region, or from an adjacent chip in case
of a crowded source chip. When extracting the X-ray spec-
tra, only well-calibrated X-ray events were selected for all
the sources, i.e. for the pn spectra single and double pixel
events with pattern 6 4 were chosen, and in order to re-
ject bad pixels and events close to CCD gaps, FLAG == 0
was used. For the MOS, pattern 6 12 and #XMMEA EM
were applied.

For most of the observations, we analysed the pn obser-
vations only. Since the total effective area of the two EPIC
MOS cameras is nearly equal to the effective area of the
EPIC pn, the MOS spectra would not add any significant in-
formation to the pn spectra. The only exception was U Gem
pn observation which had been obtained in Small Window
mode. Thus, we used the MOS1 and 2 data which had been
obtained in Large and Small window modes, respectively,
and selected the backgrounds from the surrounding CCDs.
To form the total MOS spectrum for U Gem, the U Gem
MOS1 and 2 spectra were summed in addascaspec. All the
observations were checked in case of pile-up by using the
XMM sas task epatplot. Pile-up did not occur in any of
the observations, but the source PSFs of HT Cas and T Leo
were contaminated by out-of-time (OoT) events, introduced
by these two sources. Therefore, the background regions in
the HT Cas and T Leo observations were taken from the
adjacent chip in order to avoid the OoT events. These OoT
events were removed from the source X-ray spectra accord-
ing to the ’sas threads’3, i.e. the source spectra extracted
from the OoT event lists were subtracted from the source
spectra extracted from the original event list.

3.3 ASCA data reduction

The Advanced Satellite for Cosmology and Astrophysics

(ASCA, Tanaka, Inoue & Holt 1994) was Japan’s fourth
cosmic X-ray astronomy mission operating between Febru-
ary 1993 and July 2000 and was the first X-ray observatory
which carried CCD cameras. The main science goal of ASCA

was the X-ray spectroscopy of astrophysical plasmas. It car-
ried four X-ray telescopes with two types of detectors located
inside them: two CCD cameras, i.e. the Solid-state Imaging
Spectrometers (SIS0 and SIS1) with spectral resolution of 2
per cent at 5.9 keV at launch, and two scintillation propor-
tional counters, i.e. the Gas Imaging Spectrometers (GIS2
and GIS3).

The ASCA data reduction was performed in the stan-
dard manner by mostly using the standard screening val-

3 http://xmm2.esac.esa.int/sas/8.0.0/documentation/threads/
EPIC OoT.html

ues for the GIS and SIS instruments as described in NASA
ASCA online manual4. For both instruments, intervals out-
side the South Atlantic Anomaly (SAA) were chosen, also
including intervals when the attitude control was stable with
the upper limit of the angular distance from the target set
to ang dist < 0.02 degrees. For the SIS instruments, the
bright earth angle of br earth > 10 was applied excluding
the data taken below the 10◦ angle. Times of high back-
ground were excluded when the PIXL monitor count rate
was 3σ above the mean of the observation. Also, the back-
ground monitor count rate of rbm cont < 500 was applied
(the standard screening value is rbm cont < 100). Events
which occurred before the first Day-Night transition and at
least 32 seconds after the Day-Night transition, and also be-
fore the passage of the South Atlantic Anomaly (SAA) and
at least 32 s after the SAA, were selected (T DY NT < 0

‖ T DY NT > 32 && T SAA < 0 ‖ T SAA > 32).
The source extraction regions for the SIS and GIS were

centred on the source. For the GIS, a ∼ 6 arcmin circu-
lar source extraction region was used for both Z Cam and
WZ Sge, while the SIS source extraction regions were smaller
so that they could be safely fitted within the chip. Thus, the
source extraction radii for Z Cam were 4.4 arcmin (SIS0) and
∼ 3.5 arcmin (SIS1) and for WZ Sge ∼ 4 arcmin (SIS0) and
∼ 3 arcmin (SIS1). The background extraction region for
the GIS was taken centred on the detector excluding a cir-
cular region of ∼ 8 arcmin centred on the source. The back-
ground extraction radii for GIS2 and GIS3 were 15.7 and
15.5 arcmin (Z Cam), and 15.4 and 13.8 arcmin (WZ Sge)
respectively. For the SIS background, blank-sky background
observations were used for Z Cam due to lack of space for a
local background region on the CCDs. For WZ Sge, the total
area of the two active CCDs excluding a 5.5 arcmin region
around the source was used as the background extraction
region.

The ancillary response files (ARFs) for the GIS and SIS
spectra were created with ascaarf and the SIS response
matrix files (RMFs) with sisrmg. Finally, the total SIS and
GIS X-ray spectra were created by combining SIS0 and SIS1,
and the GIS2 and GIS3 spectra in addascaspec, respec-
tively.

4 TIMING ANALYSIS

Since VY Aqr, SS Aur, BZ UMa, SW UMa and ASAS J0025
have not been subject to previous, pointed, imaging X-ray
observations before the Suzaku observations, we looked for
periodicities from the data of these sources. KT Per has been
observed by the Einstein Observatory (Córdova & Mason
1984), but no previous X-ray spectral or timing analysis
studies have been carried out for it. In order to ensure
that these objects are not intermediate polars (IPs) and
to look for orbital and spin modulation in the data, the
power spectra were calculated by using a Lomb-Scargle pe-
riodogram (Scargle 1982) which is used for period analysis
of unevenly spaced data. When searching over the frequency
range 0.00001–0.03 Hz, no significant periodicities were seen
at the 99 per cent confidence level.

4 http://heasarc.gsfc.nasa.gov/docs/asca/abc/abc.html
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5 SPECTRAL ANALYSIS

We carried out X-ray spectral analysis in order to study the
underlying spectra of the source sample, and, ultimately,
to calculate the fluxes and luminosities of the sources. To
employ Gaussian statistics, the X-ray spectra were binned
at 20 ct bin−1 with grppha and then fitted in Xspec11

(Arnaud 1996).
In CVs, the power source of X-ray emission is known

to be accretion onto the white dwarf. The accreted material
is shock-heated to high temperatures (kTmax ∼ 10–50 keV,
Mukai et al. 2003), and this material has to cool before set-
tling onto the white dwarf surface. Thus, the cooling gas flow
is assumed to consist of a range of temperatures which vary
from the hot shock temperature kTmax to the temperature
of the optically thin cooling material which eventually set-
tles onto the surface of the white dwarf (Mukai et al. 1997).
Thus, when fitting X-ray spectra of CVs, cooling flow spec-
tral models should represent more physically correct picture
of the cooling plasma, unlike single temperature spectral
models. Cooling flow models have successfully been applied
to CV spectra in previous studies by e.g. Wheatley et al.
(1996) and Mukai et al. (2003). In this view, the multi-
temperature characteristic is our motivation for emphasizing
the cooling flow model in the rest of this work. The differen-
tial emission measure dEM/dT for an isobaric cooling flow
can be described by (Pandel et al. 2005)

dEM

dT
=

5kṀn2

2µmpǫ(T, n)
, (1)

where mp is the mass of a proton, µ the mean molec-
ular weight (∼ 0.6), ǫ(T,n) total emissivity per volume in
units of erg s−1 cm−3, Ṁ accretion rate, n particle den-
sity, and k the Boltzmann constant. The source of the X-ray
emission above the white dwarf illuminates the surface of
the white dwarf and thus causes a reflection, which is seen
as Fe Kα iron fluorescence line at 6.4 keV (George & Fabian
1991). According to George & Fabian, an infinite slab reflec-
tor subtending a total solid angle of Ω = 2π where the X-ray
source is located right above the slab, produces an equivalent
width of up to ∼ 150 eV for the 6.4 keV Fe Kα fluorescence
line. The equivalent width of the 6.4 keV iron line depends
on the total abundance of the reflector (Done & Osborne
1997), the inclination angle between the surface of the re-
flector and the observer’s line of sight, and the photon index
of the spectrum of the X-ray emission source (Ishida et al.
2009).

Even though we believe that the cooling flow -type
multi-temperature model is the correct description of the
physics of the cooling gas flow in CVs, previous works
have often used single temperature plasma models. Thus,
in order to compare the effects of two different spec-
tral models on the spectral fit parameters, we fitted the
spectra with 1) a single temperature optically thin ther-
mal plasma model (mekal, Mewe, Lemen & van den Oord
1986; Liedahl, Osterheld & Goldstein 1995) and 2) a cool-
ing flow model (mkcflow) which was originally devel-
oped to describe the cooling flows in clusters of galaxies
(Mushotzky & Szymkowiak 1988), adding photoelectric ab-
sorption (wabs, Morrison & McCammon 1983) to both mod-
els. In order to investigate the equivalent width of the

Table 3. The equivalent widths of the Fe 6.4 keV line derived
by using the absorbed optically thin thermal plasma and cooling
flow models.

Name EW(mekal) EW(mkcflow)
eV eV

BZ UMa 67+42
−42 < 79

HT Cas < 81 < 91

SS Aur 73+37
−36 86+52

−53

SW UMa 201+124
−124 < 141

U Gem 50+25
−24 60+33

−32

T Leo 71+38
−38 < 73

V893 Sco 46+12
−11 45+11

−12

VY Aqr < 156 < 157

WZ Sge < 140 < 76

SS Cyg 75+9
−4 73+6

−7

Z Cam 120+42
−42 164+42

−43

ASAS J0025 < 220 < 200

6.4 keV iron emission line, a Gaussian line was added at
6.4 keV with a line width fixed at σ = 10 eV. The spec-
tral fits did not necessarily require the 6.4 keV line, e.g.,
for SS Aur the χ2

ν/ν = 0.96/629 when a Gaussian line at
6.4 keV was not included.

The Suzaku XIS1 and XIS0,2,3 spectra were fitted si-
multaneously for each source as well as the ASCA GIS and
SIS spectra of Z Cam and WZ Sge with the models men-
tioned above. Some data sets required additional compo-
nents to improve the fits. Three of the sources, HT Cas,
V893 Sco and Z Cam, required partial covering absorption
model, pcfabs, to reduce residuals in the low energy end (be-
tween ∼ 0.6–2 keV). To reduce residuals around 0.80 keV in
the SS Cyg spectrum, we added a Gaussian line at 0.81 keV
with a line width of 0.24 keV letting the line energy and
width both to vary free. For U Gem, single absorbed opti-
cally thin thermal plasma model yielded a χ2/ν = 2.23/403.
Since the fit was not statistically satisfactory, we added
a second optically thin thermal plasma component to im-
prove the fit and obtained χ2/ν = 1.34/401 which was good
enough for our analysis.

In the spectral fitting, the parameters of the spectral
models were tied between different instrument spectra but
let to vary free, apart from the Gaussian line energy at
6.4 keV and the line width σ which were fixed. In order
to estimate the abundances, the abundance parameter of
the models was let to vary free for most data sets. For those
sources for which abundance was significantly higher than
the solar value, it was fixed at 1.0. An example of a source
with a super-solar abundance is Z Cam for which the ob-
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Table 4. The fit results of the absorbed optically thin thermal plasma model with a 6.4 keV Gaussian line. The errors are 90 per cent
confidence limits on one parameter of interest. nH1

and nH2
are the absorption columns of the photoelectric absorption (wabs) and

partial covering (pcfabs) models, respectively. CFrac is the covering fraction of the partial covering model, kT the plasma temperature
and Ab the abundance.

Name nH1
nH2

CFrac kT Ab χ2
ν/ν Pnull

1020 cm−2 1020 cm−2 keV Z⊙

BZ UMa <0.19 – – 4.17+0.16
−0.17 0.51+0.07

−0.08 1.02/905 0.349

GW Lib 3.16+8.58
−3.16 – – 1.62+1.92

−0.68 0.20+1.23
−0.20 1.02/8 0.414

HT Cas – 15.36+2.13
−1.08 0.95+0.04

−0.04 6.43+0.60
−0.64 0.71+0.18

−0.17 1.07/259 0.207

SS Aur <0.56 – – 6.35+0.40
−0.40 1.0+0.14

−0.15 1.06/628 0.127

SW UMa <0.20 – – 2.77+0.12
−0.13 0.20+0.07

−0.05 1.23/470 5.36×10−4

U Gem 0.89+0.19
−0.20 – – 0.78+0.03

−0.01 1.05+0.12
−0.09 1.34/401 5.80×10−6

6.85+0.22
−0.23

T Leo 1.09+0.21
−0.21 – – 3.55+0.10

−0.11 0.50+0.06
−0.06 1.40/631 8.36×10−11

V893 Sco – 80.89+4.18
−3.87 0.86+0.01

−0.01 7.99+0.29
−0.27 0.76+0.04

−0.05 1.02/1936 0.245

VY Aqr <1.64 – – 5.06+0.43
−0.50 0.66+0.18

−0.17 0.90/445 0.942

WZ Sge 8.97+2.41
−1.92 – – 4.88+0.55

−0.54 0.33+0.17
−0.19 0.84/409 0.993

SS Cyg 2.98+0.14
−0.25 – – 10.44+0.16

−0.17 0.51+0.02
−0.01 1.24/2881 2.74×10−17

Z Cam 28.21+2.63
−2.62 292.41+99.42

−68.86 0.35+0.04
−0.05 8.68+0.84

−0.79 1.0 1.10/769 0.03

ASAS <0.84 – – 4.38+0.61
−0.53 0.56+0.29

−0.24 0.88/366 0.958

J0025

tained abundance was 1.46+0.34
−0.19 Z0 with the partial covering

+ photoelectric absorption combined with the cooling flow
model when the abundance was let to vary free.

The measured equivalent widths of the 6.4 keV line for
each source are given in Table 3, and the results of the
spectral fitting for the optically thin thermal plasma and
the cooling flow models are given in Table 4 and 5, respec-
tively. These results show that in general, better χ2

ν/ν val-
ues are achieved with the cooling flow model. For example,
the improvement with the cooling flow model was statisti-
cally significant for SW UMa and T Leo. Fig. 1 illustrates
the X-ray spectra of the new Suzaku XIS observations, i.e.
VY Aqr, SW UMa, BZ UMa, SS Aur, and ASAS J0025,
which have been fitted with the cooling flow model absorbed
by photoelectric absorption with an added 6.4 keV Gaus-
sian line component. Most of the X-ray spectra show that
the clearest, discrete emission feature seen in the spectra
of our source sample is the iron Fe Kα complex, except in
GW Lib, for which the signal-to-noise at ∼ 6 keV is too low
for a reliable measurement.

5.1 Absorption

Since the studied sources are all within ∼ 200 pc, i.e., within
the solar neighbourhood, the effect of interstellar absorp-
tion should be negligible. Thus, high measured absorption
columns would mainly be due to intrinsic absorption, associ-
ated with the sources. For most of the sources, the measured
absorption columns were typically of the order of a few ×
1020 cm−2, or even lower (1019 cm−2) which indicate low
intrinsic absorption.

The highest intrinsic absorption columns are found in
V893 Sco, Z Cam and HT Cas when compared to the rest
of the source sample. All these three sources have par-
tial covering absorbers nH2

with values of the order of
1021 – 1022 cm−2 depending on the model. In addition
to the partial covering absorber, Z Cam also has a sim-
ple absorption component with the highest nH1

value, nH1

∼ 3 × 1021 cm−2, within the source sample. Originally,
V893 Sco was found to have high intrinsic absorption by
Mukai, Zietsman & Still (2009), and has a partial X-ray
eclipse, also discovered by their study. Also, according to
the best-fit model of Baskill, Wheatley & Osborne (2001),
Z Cam had large amounts of absorption with nH = 9 ×
1021 cm−2 during the transition state. Baskill et al. sug-
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Table 5. The fit results of the absorbed cooling flow model with a 6.4 keV Gaussian line. The errors are 90 per cent confidence limits on
one parameter of interest. nH1

and nH2
are the absorption columns of the photoelectric absorption (wabs) and partial covering (pcfabs)

models, respectively. CFrac is the covering fraction of the partial covering model, kTmax the shock temperature and Ab the abundance.

Name nH1
nH2

CFrac kTmax Ab χ2
ν/ν Pnull

1020 cm−2 1020 cm−2 keV Z⊙

BZ UMa <0.87 – – 13.71+1.38
−0.81 0.57+0.13

−0.07 0.88/904 0.994

GW Lib < 3.76 – – 6.96+8.79
−3.12 1.0 0.60/8 0.782

HT Cas – 16.74+4.05
−2.49 0.92+0.05

−0.04 23.09+4.15
−5.33 0.78+0.27

−0.22 0.99/258 0.525

SS Aur 3.30+1.79
−1.51 – – 23.47+4.01

−3.02 1.0 0.95/628 0.832

SW UMa <0.67 – – 8.33+0.62
−0.99 0.41+0.08

−0.10 0.87/469 0.978

U Gem 0.76+0.28
−0.21 – – 25.82+1.98

−1.43 1.04+0.13
−0.11 1.23/402 1.1×10−3

T Leo 0.68+0.24
−0.21 – – 10.97+0.85

−0.67 0.50+0.07
−0.07 1.08/629 7.24×10−2

V893 Sco – 103.71+3.98
−3.07 0.90+0.01

−0.01 19.32+1.29
−1.40 0.94+0.05

−0.05 0.94/1934 0.973

VY Aqr 1.10+3.15
−1.10 – – 16.47+2.68

−2.22 0.69+0.25
−0.20 0.86/444 0.984

WZ Sge 11.58+3.96
−3.06 – – 13.31+3.01

−3.16 0.23+0.16
−0.13 0.83/408 0.996

SS Cyg 2.84+0.11
−0.11 – – 41.99+1.20

−0.76 0.61+0.03
−0.02 1.19/2883 4.80×10−12

Z Cam 31.92+4.77
−5.00 180.28+53.37

−35.14 0.47+0.07
−0.06 25.76+5.16

−2.39 1.0 1.08/768 0.06

ASAS < 2.67 – – 14.43+4.36
−2.69 0.68+0.44

−0.29 0.81/366 0.996

J0025

gested that this absorption was associated with a clumpy
disc wind.

5.2 Temperatures

The measured shock temperatures kTmax seem to be cor-
related with the white dwarf masses (Fig. 2) as one would
expect. In Fig. 2 it has been assumed that the white dwarf
mass of VY Aqr is 0.8 M⊙ (see Table 1). ASAS J0025 is
not included in Fig. 2 since the mass estimate is currently
unknown. SS Cyg appears to be located in the upper right
corner due to its high-mass white dwarf and thus high shock
temperature. The shock temperatures, kTmax, in Fig. 2 have
been derived from the spectral fits of the cooling flow model
for each source. The blue dashed line in Fig. 2 represents
the theoretical shock temperatures for given white dwarf
masses. The radii, R∗, of the given white dwarf masses, M1,
were calculated assuming the mass-radius relation for cold,
non-rotating and non-relativistic helium white dwarfs (see
Pringle & Webbink 1975)

R∗ = 7.7× 108x0.3767−0.00605 log(x) (cm), (2)

where x =
1.44M⊙

M1

-1. Subsequently, the theoret-
ical shock temperatures, Tshock, for non-magnetic CVs

were calculated according to Eq. 3 for optically thin gas
(Frank, King & Raine 2002)

Tshock =
3

16

GM1µmH

kR∗
, (3)

where mH is the mass of a hydrogen atom, µ the mean
molecular weight, and k the Boltzmann constant. As it ap-
pears from Fig. 2, sources with high shock temperatures and
low luminosities are not seen. This is sensible since the X-ray
luminosity is proportional to kTmax and the mass accretion
rate, i.e. the normalization of the cooling flow model (Eq. 1),
thus we would expect to see high shock temperatures and
high luminosities. Also, due to this proportionality, we ex-
pect to see an anti-correlation between Ṁ and kTmax which
indeed is seen for example in SW UMa (Fig. 3).

As it appears from Fig. 2, the white dwarf mass ob-
tained for T Leo by Urban & Sion (2006) is only 0.35 M⊙.
This mass estimate may be unreliable, since as Lemm et al.
(1993) argue, a low white dwarf mass would not allow super-
humps to develop. See also Patterson et al. (2005) who refer
to previous superhump studies which have shown that the
mass ratio q = M2/M1 has a key role in producing super-
humps where qcrit ∼ 0.3, although this value has not been
confirmed by observational evidence.
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Figure 1. The X-ray spectra of (a) VY Aqr, (b) SW UMa, (c) BZ UMa, (d) SS Aur, and (e) ASAS J0025 fitted with an absorbed
cooling flow model and a 6.4 keV Gaussian line (upper panels). The lower panel in each figure shows the residuals. The black spectra
correspond to the front-illuminated (FI) XIS0,3 and the red ones to the back-illuminated (BI) XIS1 spectra.

5.3 Abundances

We found that for most of the objects in the sample the
obtained abundances were sub-solar with both models. In
general, the abundances seem to be dependent on the spec-
tral model: abundances are slightly lower when the spectra

are fitted with the optically thin thermal plasma model. This
is due to the single temperature characteristic of the opti-
cally thin thermal plasma model, i.e. it is likely that the
abundances are underestimated because the best-fit tem-
perature usually converges close to the peak of the 6.7 keV
He-like Fe Kα emissivity, whereas the cooling flow model
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Figure 2. Mass of the white dwarf versus the shock temperature,
kTmax, of the source sample with 90 per cent uncertainties for
kTmax. The light blue dashed line represents the theoretical shock
temperatures for given white dwarf masses. The figure does not
include ASAS J0025 since a mass estimate does not currently
exist for this source.
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Figure 3. The 68, 90, and 99 per cent confidence contours of
SW UMa for the normalisation (Ṁ ) versus the shock temperature
kTmax of the cooling flow model.
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Figure 4. A histogram showing the X-ray luminosities of the
source sample in 2–10 keV.

consists of a range of temperatures outside the peak (see
Mukai, Zietsman & Still 2009).

5.4 X-ray fluxes and luminosities

The 2–10 and bolometric 0.01–100 keV fluxes and luminosi-
ties which were derived using the cooling flow model are
given in Table 6. This shows that most of the 2–10 keV X-
ray luminosities are concentrated around 1030 erg s−1. This
is also seen in Fig. 4 which shows a histogram of the X-ray
luminosities of our sample. Only one object, GW Lib, stands
out with a very low luminosity (4 × 1028 erg s−1). The mea-
sured luminosity of GW Lib is consistent with the results ob-
tained by Hilton et al. (2007). Byckling et al. (2009) showed
that GW Lib was still an order of a magnitude brighter (L ∼
1030 erg s−1) in X-rays during Swift observations two years
after the 2007 outburst than in 2005. But since the optical
magnitude had not reached the quiescence level (V ∼ 18) in
2009, we do not consider the Swift 2009 X-ray luminosity as
the quiescent luminosity. Thus, the higher X-ray luminosity
measured in the Swift data does not affect the results of this
paper.

One of the sources in our sample, SS Aur, has previ-
ously been listed in the RXTE All-Sky Slew Survey cata-
log where it appears more luminous in X-rays than in our
Suzaku observation (the RXTE flux of SS Aur in 2–10 keV
is ∼ 1.1 × 10−11 erg cm−2 s−1). We suspect that the higher
flux in the RXTE observation is due to other, bright sources
in the field which overestimate the flux. E.g., the ROSAT

Bright Source Catalogue lists a cluster of galaxies, Abell
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Table 6. Fluxes and luminosities in the 2–10 (absorbed) and 0.01–100 keV (unabsorbed) bands derived from the cooling flow model for
each source.

Source F(2–10 keV) L(2–10 keV) F(0.01–100 keV) L(0.01–100 keV)
x 10−12 erg cm−2 s−1 × 1030 erg s−1 x 10−12 erg cm−2 s−1 × 1030 erg s−1

BZ UMa 2.4+0.1
−0.2 14.9+10.8

−5.9 5.8 36.5

GW Lib 0.04+0.03
−0.01 0.05+0.10

−0.02 0.1 0.1

HT Cas 2.9+0.7
−0.4 6.1+4.2

−2.2 7.2 14.9

SS Aur 2.9+0.3
−0.3 9.6+2.3

−1.9 7.1 23.9

SW UMa 1.5+0.2
−0.1 4.9+2.2

−1.3 4.2 13.7

U Gem 6.9+0.3
−0.3 8.3+1.0

−1.0 17.1 20.6

T Leo 5.2+0.3
−0.3 6.4+2.3

−1.7 13.2 16.3

V893 Sco 17.3+1.1
−1.1 50.1+51.9

−21.4 45.7 133.0

VY Aqr 1.1+0.2
−0.2 1.3+0.8

−0.5 2.6 3.0

WZ Sge 3.1+1.2
−0.5 0.7+0.3

−0.1 7.7 1.8

SS Cyg 45.7+0.5
−0.8 150.0+29.0

−20.0 131.7 433.0

Z Cam 19.2+1.9
−2.6 61.6+74.4

−30.3 52.3 168.0

ASAS J0025 0.4+0.1
−0.1 1.6+3.8

−0.8 1.1 3.9

553, which is 53’ away from SS Aur and has a WebPIMMS5

estimated flux of ∼ 9.3 × 10−12 erg cm−2 s−1 in 2–10 keV
(bremsstrahlung kT = 4 keV, Galactic nH = 1.56 × 1021

cm−2 as in Ebeling et al. 1996). Thus, the higher RXTE flux
of SS Aur is very likely biased by the background sources
and not reliable.

5.5 The outburst of KT Per

We also analysed the Suzaku outburst data of KT Per ob-
tained in January 2009, and report the results here. KT Per
is a Z Cam type dwarf nova, and was seen as an X-ray
source by the Einstein satellite in 1979 (Córdova & Mason
1984). We employed the same models which were used for
the source sample above, i.e. an absorbed optically thin
thermal plasma model and an absorbed cooling flow model
with an added 6.4 keV line. Both models yielded accept-
able fits: χ2

ν/ν = 0.97/838 (thermal plasma) and χ2
ν/ν =

0.95/837 (cooling flow). Fig. 5 shows the XIS1 and the com-
bined XIS0,3 X-ray spectra of KT Per which have been fit-
ted with an absorbed cooling flow model with a 6.4 keV
Gaussian line. The spectral fit parameters for the opti-
cally thin thermal plasma and the cooling flow models
with fluxes, luminosities and fit statistics are given in Ta-
ble 7. The luminosities given in Table 7 are calculated for

5 http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html

the distance of 180+36
−28 pc (Thorstensen, Lépine, & Shara

2008). Baskill, Wheatley, & Osborne (2005) noted that cool-
ing flow models are often a good representation of quiescent
X-ray spectra of CVs (see also Mukai et al. 2003), but not
outburst spectra. Baskill et al. applied the Xspec multi-
temperature model cevmkl to their ASCA spectra in or-
der to fit a range of outburst and quiescent spectra with a
single simple model. We also investigated how this multi-
temperature model combined with photoelectric absorption
and a 6.4 keV Gaussian line would fit the outburst data of
KT Per, and obtained a statistically acceptable fit: χ2

ν/ν =
0.96/836, P0 = 0.819.

5.6 Calculating the height of the X-ray emission

source above the white dwarf surface

The method which is used for calculating the height of the
X-ray emission source above the white dwarf, has been ex-
plained by Ishida et al. (2009) for SS Cyg. We have adopted
the same method here in our work. As was explained in
the beginning of Section 5, an equivalent width of up to
∼ 150 eV can be expected for the fluorescent Fe Kα line
at 6.4 keV. In this work, we have assumed that the re-
flection originates from the white dwarf surface only, thus
the reflection from the accretion disc is Ωdisc/2π = 0. The
equivalent width of 150 eV calculated by George & Fabian
(1991) was assumed under the solar abundance conditions of
Morrison & McCammon (1983) where [Fe/H] = 3.2 × 10−5.
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Figure 5. The X-ray spectrum of KT Per fitted with an absorbed cooling flow model and a 6.4 keV Gaussian line. The lower panel
shows the residuals. The black spectrum corresponds to the front-illuminated (FI) XIS0,3 and the red one to the back-illuminated (BI)
XIS1 spectrum.

Table 7. The fit parameters of KT Per derived by using an ab-
sorbed optically thin thermal plasma and absorbed cooling flow
models with a 6.4 keV iron line. The errors are 90 per cent errors
for one parameter of interest.

Parameter Thermal plasma Cooling flow

nH 14.40+1.60
−1.54 15.70+2.05

−1.78

× 1020 cm−2

kT 5.11+0.32
−0.31 12.60+1.47

−2.29

(keV)

Abundance 0.40+0.07
−0.07 0.42+0.09

−0.08

EW 52+39
−38 45+44

−44

(eV)

Flux(2–10 keV) 2.55 2.62
× 10−12 erg cm−2 s−1

Flux(0.01–100 keV) 5.60 6.19
× 10−12 erg cm−2 s−1

Luminosity(2–10 keV) 1.0 1.03
× 1031 erg s−1

Luminosity(0.01–100 keV) 2.19 2.42
× 1031 erg s−1

χ2
ν/ν 0.97/838 0.95/837

P0 0.730 0.819

We have employed the abundances of Anders & Grevesse
(1989) which are the default abundance values built in the
Xspec cooling flow and optically thin thermal plasma emis-
sion models. For the solar abundances of Anders & Grevesse,

the [Fe/H] composition is 4.68 × 10−5. Ishida et al. (2009),
who also employed the Anders & Grevesse abundances, cor-
rected this abundance difference (see their Eq.3) using their
measured iron abundance of 0.37 Z0. For solar abundance,
the observed equivalent width of the 6.4 keV line is

EWobserved = 150×
4.68 × 10−5

3.2 × 10−5

(ΩWD

2π

)

Z (eV )

= 220
(ΩWD

2π

)

Z (eV ), (4)

where Z is the measured elemental abundance in so-
lar units Z⊙ and ΩWD the solid angle of the white dwarf
viewed from the plasma of the boundary layer. In our sam-
ple, the observed equivalent widths (Table 3) are mainly
below 150 eV and this implies that the X-ray source is lo-
cated at a height h above the white dwarf surface. In the
following, we use the values of EWobserved and abundances
calculated from the cooling flow model. As an example, the
EWobserved for SS Aur is 86 eV and the abundance is 1.0,
thus Eq. 4 gives ΩWD/2π = 0.39. If the X-ray source is
point-like, the height h of the X-ray source above the white
dwarf of a radius RWD is h < 0.14 RWD. As another ex-
ample, we obtain ΩWD/2π = 0.22 and h < 0.64 RWD for
V893 Sco (EWobserved = 45 eV, Z = 0.94 Z0).

6 DISCUSSION

We have derived an X-ray luminosity function for 12 dwarf
novae using archival Suzaku, XMM-Newton, and ASCA ob-
servations, and obtained new observations for BZ UMa,
SW UMa, VY Aqr, SS Aur, V893 Sco and ASAS J0025
with Suzaku as originally, they were not available in the
archive. Our results show that the 2–10 keV luminosities,
presented in Table 6, span a range between 4 × 1028 and
1.5 × 1032 erg s−1, and that most of the source luminosities
in the sample are located within 1030 erg s−1, see Fig. 4,
whereas, the X-ray luminosities of the ASCA sample by
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Baskill, Wheatley, & Osborne (2005) were mainly concen-
trated on higher luminosities between 1031 and 1032 erg s−1.
This difference is most likely due to the fact that we did not
apply X-ray selection criteria to our sample. Also, the ob-
jects observed by ASCA were known to be X-ray bright, thus
the sample of Baskill et al. is very likely biased by sources
which are X-ray bright.

In order to derive the integrated X-ray luminosity func-
tion (XLF), N(> L), for 12 sources within a distance of d
= 200 pc, we assumed that the luminosity function is char-
acterized by a power law N(> L) = k(L/Lt)

−α (see Fig. 6
where the best-fit parameters α = -0.64 and k = 2.39 ×
10−7, corresponding to a threshold luminosity of Lt = 3
× 1030 erg s−1). The histogram illustrates the cumulative
source distribution per pc3 in which a break is seen at ∼ 3
× 1030 erg s−1. This can be due to two possible scenarios:
1) a single α power law describes the luminosity function of
DNe, but the sample becomes more incomplete below ∼ 3
× 1030 erg s−1 than it is above this limit, or 2) the shape
of the true XLF of DNe is a broken power law with a break
at around 3 × 1030 erg s−1. From these two scenarios, the
first one is more likely since the sample contains only a few
sources below ∼ 1030 erg s−1. Also, as was shown by, e.g., the
study of Gänsicke et al. (2009), more fainter CVs, such as
WZ Sge types, are expected to exist. Based on the obtained
power law slope, the sample is dominated by the brighter
DNe: this is probably caused by the parallax measurement
method which favours optically brighter DNe which usually
have high X-ray luminosities.

When calculating the total, integrated luminosity of
the sample, we restricted the calculations to the distance
of 200 pc, thus excluding BZ UMa. Integrating between the
luminosities of 1 × 1028 and the maximum luminosity of
the sample (Lmax = 1.50 × 1032 erg s−1), yields the total
integrated luminosity of 1.48 × 1032 erg s−1, whereas the
integrated luminosity between the threshold luminosity 3 ×
1030 and Lmax is 1.15 × 1032 erg s−1. These two results show
that there are uncertainties in the integrated luminosities,
most likely caused by the small number of sources in the
sample. In order to obtain more accurate value for the in-
tegrated luminosity, the power law slope (α = -0.64) should
be better established. If the obtained slope is not far from
the true power law slope of DNe in the solar neighbour-
hood, estimating the integrated luminosity more accurately
and constraining the bright luminosity end (1032 erg s−1)
requires more DNe to be included in the sample. Since the
source density at ∼ 1032 erg s−1 is ∼ 3 × 10−8 pc−3 ac-
cording to Fig. 6, we would need to survey within a volume
of 1 × 109 pc3 to find ∼ 30 SS Cyg -type DNe and thus
find a statistically significant constraint for the brighter lu-
minosities in the sample. This volume would correspond to
a distance of ∼ 620 pc with a flux limit of ∼ 3.2 × 10−12

erg cm−2 s−1.

Following this, we estimated how easy it would be to
hide typical DN luminosities in the solar neighbourhood. As-
suming a typical dwarf nova with a 5 keV bremsstrahlung
and a low Galactic nH = 1 × 1020 cm−2 in WebPIMMs

yields a 2–10 keV flux of 5 × 10−13 erg cm−2 s−1, corre-
sponding to the ROSAT PSPC count rate of 0.04 ct s−1

which is just below the detection limit (0.05 ct s−1) of
ROSAT PSPC (Voges et al. 1999). Thus, luminosities above
2.4 × 1030 erg s−1 within 200 pc or above 6 × 1029 erg s−1

28 29 30 31 32

-8

-7

-6

-5

Log(L(2-10 keV), erg/s)

Figure 6. The cumulative source distribution (histogram) and
the integrated power law luminosity function N(> L) as a func-
tion of X-ray luminosity in log L in the 2–10 keV energy band.
The error bar on the top right represents a typical error on the
luminosities.

within 100 pc should have been found by ROSAT and thus
should be in the RASS. However, given that sources with lu-
minosities of 1030 erg s−1 and below at a distance of 100 pc
were too faint for the RASS, and that our XLF peaks at
∼ 1030 erg s−1, we conclude that there is no existing X-ray
selected sample that we can use for this line of research.

How far is the total luminosity of our sample from ac-
counting for the total CV X-ray emissivity? In order to es-
timate this, we calculated the absolute lower limit for the
luminosity per cubic parsec volume (Lx/vol). For a distance
of r = 200 pc, the volume V = 4/3 × π × (200 pc)3 =
3.3 × 107 pc3, and the total summed luminosity Lx of the
sample is 2.39 × 1032 erg s−1 (without BZ UMa). Thus, the
total absolute lower limit Lx/volume = 7.24 × 1024 erg s−1

pc−3. Normalising this value to the local stellar mass den-
sity 0.04 M⊙ pc−3 (Jahreiß & Wielen 1997) yields 1.81 ×
1026 erg s−1 M−1

⊙ in the 2–10 keV range. For comparison,
Sazonov et al. (2006) obtained (1.1 ± 0.3) × 1027 erg s−1

M−1
⊙ (2–10 keV) for the total CV X-ray emissivity per unit

stellar mass. Thus, our sample would account for ∼ 16 per
cent of this value.

And finally, how much would our sample account for
the GRXE? The Galactic Ridge X-ray emissivity estimated
by Revnivtsev et al. (2006) in the 3–20 keV range was Lx/M
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∼ (3.5 ± 0.5) × 1027 erg s−1 M−1
⊙ , meaning that our sample

would account for 5 per cent of the Galactic Ridge X-ray
emissivity. As we estimated the X-ray emissivity of all CVs
within 200 pc, we used the exponential vertical density pro-
file

ρ(z) = ρ0e
|z|/h, (5)

of CVs with a scale height for short period systems (h
= 260 pc) as in Pretorius et al. (2007b), where z = d sin b
is the perpendicular distance from the Galactic plane and b
Galactic latitude. Integrating Eq.5 over a sphere with a ra-
dius of 200 pc gives ∼ 280 as the total number of DNe within
200 pc. If the space density of DNe follows the space den-
sity of CVs as in Pretorius et al. (2007b), i.e., ρ0 = 1.1+2.3

−0.7

× 10−5 pc−3, and if a typical DN has an X-ray luminosity
corresponding to the mean luminosity (2 × 1031 erg s−1)
of our sample of 11 sources (BZ UMa excluded), then the
2–10 keV X-ray emissivity of all DNe in the solar neighbour-
hood would be 5.5+11.5

−3.5 × 1027 erg s−1 M−1
⊙ (these account

for the uncertainty on the space density, assuming that this
is the dominant source of uncertainty for the X-ray emis-
sivity of DNe). This would account for more than 100 per
cent of the GRXE emissivity. If DNe were uniformly dis-
tributed in the solar neighbourhood, the X-ray emissivity
would be overestimated also in this case (by 20–30 per cent).
However, in both cases, one should remember that the cal-
culated X-ray emissivity of all DNe within 200 pc is likely
overestimated by the brighter sources in our sample, thus
the calculations give excess emission.

6.1 Correlations between X-ray luminosity and

other parameters

In order to understand whether the X-ray luminosity and
the various parameters (inclination i, orbital period Porb,
shock temperature kTmax and white dwarf mass MWD) are
correlated, we carried out Spearman’s rank correlation test.
Plotting X-ray luminosity versus a few of these parameters (i
and Porb) shows that GW Lib seems to appear as an outlier
compared to the rest of the sample (Fig. 7 and 8). Thus, to
explore how the presence/absence of GW Lib affects the test
results, two test cases were used: 1) GW Lib was included,
and 2) GW Lib was excluded from the rest of the sample.
In addition, we investigated whether a correlation between
the white dwarf masses MWD and the shock temperatures
kTmax (Fig. 2) exists, although in this case, GW Lib seems
to follow the rest of the sample, thus, carrying out test case
2) was not necessary.

A strong correlation was found at the 99.95 per
cent significance level (2.8σ) between the X-ray luminosi-
ties and orbital periods (Fig. 7) when GW Lib is in-
cluded in the sample. The correlation still holds when
GW Lib is excluded (significance is 99.67 per cent).
Baskill, Wheatley, & Osborne (2005) noted that there was a
weak correlation between the X-ray luminosities and the or-
bital periods in their ASCA sample, concluding that the X-
ray luminosity probably also correlates with long-term mean
accretion rate.

The X-ray luminosity and the inclination i are not cor-
related in either case (Fig. 8). The correlation between these

0 2 4 6
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SW UMa

VY Aqr

ASAS
J0025

T Leo

BZ UMa

U Gem

V893 Sco

WZ Sge

HT Cas

Orbital period [hours]

Figure 7. The X-ray luminosities (2.0–10.0 keV) versus orbital
periods of the source sample.

parameters was measured when the inclination of BZ UMa
was set to 65◦, and altering the inclination between 60◦

and 75◦ did not affect the result. Since no correlation was
found, this result is in contrast with the discovery of anti-
correlation between the emission measure and inclination
found by van Teeseling, Beuermann, & Verbunt (1996). It
is worth noting that the ROSAT bandpass was very narrow,
covering only 0.1–2.4 keV where the softer X-ray emission
(and more luminous emission) is probably intrinsically ab-
sorbed by the sources. In addition, an anti-correlation be-
tween the X-ray luminosity and inclination was also seen by
Baskill, Wheatley, & Osborne (2005) in the ASCA sample,
although, Baskill et al. noted that the inclinations might be
uncertain, and this can also be the case in our sample.

Finally, the white dwarf masses MWD and the shock
temperatures kTmax correlate with a significance of 98.5 per
cent when the mass of VY Aqr is 0.80 M⊙, but becomes less
significant (97.4 per cent) if the mass is 0.55 M⊙. Of the rest
of the parameters, i.e. the X-ray luminosity Lx versus kTmax

and MWD, kTmax showed evidence of correlation with Lx at
a significance of 97.6 per cent when GW Lib was included in
the sample, but Lx and MWD had a much lower correlation
significance (69 per cent) when including GW Lib. For the
latter correlation test (Lx versus MWD), the result was the
same with bothMWD values for VY Aqr. Excluding GW Lib
decreased the significance to 91 per cent (Lx versus kTmax)
and to 63 per cent (Lx versus MWD).

7 CONCLUSIONS

We have analysed the X-ray spectra of 13 dwarf novae with
accurate parallax-based distance estimates, and derived the
most accurate shape for the X-ray luminosity function of
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Figure 8. The X-ray luminosities (2.0–10.0 keV) versus inclina-
tions of the source sample.

DNe in the 2–10 keV band to date due to accurate distance
measurements and due to the fact that we did not use an
X-ray selected sample.

The derived X-ray luminosities are located between ∼
1028–1032 erg s−1, showing a peak at ∼ 1030 erg s−1. Thus,
we have obtained peak luminosities which are lower com-
pared to other previous studies of CV luminosity functions.
The shape of the X-ray luminosity function of the source
sample suggests that the two following scenarios are possi-
ble: 1) the sample can be described by a power law with a
single α slope, but the sample becomes more incomplete be-
low ∼ 3 × 1030 erg s−1 than it is above this limit, or, 2) the
shape of the real X-ray luminosity function of dwarf novae
is a broken power law with a break at around 3 × 1030 erg
s−1.

The integrated luminosity between 1 × 1028 erg s−1

and the maximum luminosity of the sample, 1.50 × 1032 erg
s−1, is 1.48 × 1032 erg s−1. In order to better constrain the
integrated luminosity and the slope of the X-ray luminos-
ity function, more dwarf novae need to be included in the
sample. Thus, we suggest more future X-ray imaging obser-
vations of dwarf novae in the 2–10 keV band with accurate
distance measurements. The total X-ray emissivity of the
sample within a radius of 200 pc is 1.81 × 1026 erg s−1 M−1

⊙

(2–10 keV). This accounts for ∼ 16 per cent of the total X-
ray emissivity of CVs as estimated by Sazonov et al. (2006),
and ∼ 5 per cent of the Galactic Ridge X-ray emissivity.

The X-ray luminosities and the inclinations of our sam-
ple do not show anti-correlation which has been seen in
other previous correlation studies, but a strong correlation
is seen between the X-ray luminosities and the orbital peri-
ods. Also, evidence for a correlation between the white dwarf
masses and the shock temperatures exists. In the future,

larger dwarf nova samples are needed in order to confirm
these results.
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