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ABSTRACT
Optical imaging and spectroscopic observations of the z = 0.245 double galaxy cluster
Abell 2465 are described. This object appears to be undergoing a major merger. It is a double
X-ray source and is detected in the radio at 1.4 GHz. The purpose of this paper is to investigate
signatures of the interaction of the two components. Redshifts were measured to determine
velocity dispersions and virial radii of each component. The technique of fuzzy clustering was
used to assign membership weights to the galaxies in each clump. Using redshifts of 93 cluster
members within 1.4 Mpc of the subcluster centres, the virial masses of the north-east (NE) and
south-west (SW) components are Mv = 4.1 ± 0.8 × 1014 and 3.8 ± 0.8 × 1014 M�, respec-
tively. These agree within the errors with masses from X-ray scaling relations. The projected
velocity difference between the two subclusters is 205 ± 149 km s−1. The anisotropy parame-
ter, β, is found to be low for both components. Spectra of 37 per cent of the spectroscopically
observed galaxies show emission lines and are predominantly star forming in the diagnostic
diagram. No strong active galactic nucleus sources were found. The emission-line galaxies
tend to lie between the two cluster centres with more near the SW clump. The luminosity
functions of the two subclusters differ. The NE component is similar to many rich clusters,
while the SW component has more faint galaxies. The NE clump’s light profile follows a single
Navarro–Frenk–White profile with c = 10 while the SW is better fitted with an extended outer
region and a compact inner core, consistent with available X-ray data indicating that the SW
clump has a cooling core. The observed differences and properties of the two components of
Abell 2465 are interpreted to have been caused by a collision 2–4 Gyr ago, after which they
have moved apart and are now near their apocentres, although the start of a merger remains a
possibility. The number of emission-line galaxies gives weight to the idea that galaxy cluster
collisions trigger star formation.

Key words: galaxies: clusters: general – galaxies: clusters: individual: Abell 2465.

1 IN T RO D U C T I O N

Fundamental questions of current astrophysics involve the roles of
dark matter, baryonic matter and dark energy as driven by gravity
in the formation of the large-scale structure and galaxies. Double
or multiple galaxy clusters can potentially provide information on
the dynamics and structure formation on (r � 1 Mpc) scales, and
interest in them has grown from both the standpoints of modelling
and observation.

Although the presence of substructure in galaxy clusters has long
been known, compared to single galaxy clusters, the properties of
double and multiple clusters have received less attention owing
to their added complexity. Interest in the observed substructure

�E-mail: gaw@bellz.dartmouth.edu

of galaxy clusters was pioneered by e.g. Geller & Beers (1982),
and studies employing the radial infall model (Beers, Geller &
Huchra 1982; Beers et al. 1991) were used for rough dynamical
estimates.

With the realization of their importance, a growing number
of systems have now been more fully studied dynamically, from
weak lensing, and in X-rays. A partial list includes Abell 168
(Hallman & Markevitch 2004), Abell 399/401 (Sakelliou & Ponman
2004), Abell 520 (Girardi et al. 2008), Abell 521 (Ferrari et al.
2003), Cl0024+17 (Jee et al. 2007), the ‘bullet cluster’,
1E 0657−56 (Clowe et al. 2006), Abell 2146 (Russell et al. 2010),
RXJ 1347.5−1145 (Bradač et al. 2008a), A399 and A401 (Yuan
et al. 2005), Abell 2163 (Maurogordato et al. 2008), Abell 85
(Tanaka et al. 2010) and Abell 901/902 (Heiderman et al. 2009).
Okabe & Umetsu (2008) studied seven merging clusters using weak
lensing.
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Radio emission from merging clusters in the form of diffuse non-
thermal radio haloes or relics that arise from merger shocks in the
interactions of the colliding galaxy clusters has also been described
by several groups including Slee et al. (2001) and Feretti (2002) who
described several objects, Bagchi et al. (2006), Abell 3376; Orrú
et al. (2007), Abell 2744 and Abell 2219; Bonafede et al. (2009),
Abell 2345; and van Weeren et al. (2009), A2256. Skillman et al.
(2010) summarized the modelling situation.

Modelling galaxy cluster mergers and collisions predicts observ-
able signatures (e.g. Roettiger, Loken & Burns 1996, 1997; Ricker
1998; Takizawa 2000; Ricker & Sarazin 2001; Ritchie & Thomas
2002; Springel & Farrar 2007; Mastropietro & Burkert 2008; Poole
et al. 2008; Planelles & Quilis 2009). These simulations have mostly
focused on the behaviour of the baryonic and dark matter compo-
nents and used a range of initial profiles and conditions and impact
parameters which include both off-centre and head-on collisions.
These calculations predict differing behaviours for the baryonic and
dark matter components of the clusters at subsequent phases of the
collisions. In a typical merger, the dark matter and the baryonic gas
are elongated along the collision axis with a displacement between
the baryonic and dark matter components. The gas, in addition, is
shocked which results in multiple X-ray peaks and gas splashed
perpendicularly to the direction of the merger. This produces non-
isothermal temperature distributions, and the increased ram pressure
from the shocks could induce star formation in the member galaxies
as well as ‘sloshing’ (Markevitch & Vikhlinin 2007).

Several authors have attempted to extract information from dou-
ble and multiple galaxy clusters on the nature of gravity and dark
matter on galactic cluster (∼1 Mpc) distance scales, and up to now
this was mainly centred on analysing the 1E 0657−56 cluster. Farrar
& Rosen (2006), Brownstein & Moffat (2007), Angus & McGaugh
(2008), Schmidt, Vikhlinin & Hu (2009) and De Lorenci, Faundez-
Abans & Pereira (2009) are among those who investigated whether
modifications to gravity are needed to fit the available dynamical
data. Springel & Farrar (2007), Pointecouteau & Silk (2005) and
Hayashi & White (2006), however, indicated that modifications are
unneccesary. For studying the properties of dark matter, the situ-
ation is somewhat more definite. Clowe et al. (2006) used weak
lensing measurements of the bullet cluster to indicate direct proof
of the presence of dark matter in the offset between the X-ray gas
and the lensing centres. Shan et al. (2010) have studied further off-
sets between dark and ordinary matter in a further 38 lensed galaxy
clusters. Galaxy clusters have been employed to place limits on
neutrino masses (e.g. Tremaine & Gunn 1979; Natarajan & Zhao
2008; Angus, Famaey & Diaferio 2010) and to discuss whether or
not such particle masses are needed to save the modified Newtonian
dynamics formula.

Even if one dismisses such claims, a considerable amount of more
conventional information is obtainable from double galaxy clusters.
This includes possible modifications to luminosity functions (LFs),
mass profiles and velocity dispersion anisotropy measures (the β

parameter) as a result of their interactions. LFs contain information
on the galaxy formation history (e.g. Bingelli, Sandage & Tammann
1988) and have been studied in detail at a range of redshifts and
environments, mostly for single systems (e.g. Wilson et al. 1997;
Blanton et al. 2003; Christlein & Zabludoff 2003; De Propis et al.
2004; Goto et al. 2005). Generally single and double Schechter
functions (Schechter 1976), and Gaussian functions have been used
to fit the LFs. Collisions may modify these properties compared to
isolated single clusters at some level, but this question about the
effects of merging in double galaxy clusters, i.e. whether or not
their interactions produce or lower star formation along with AGN

activity, has not been answered yet. Hwang & Lee (2009) have
reviewed empirical and theoretical evidence for this and concluded
that observations support the importance of mergers. Haines et al.
(2009) and Chung (2010) have reported evidence of enhanced star
formation rates in interacting clusters including the bullet cluster.

Mergers can distort galaxy cluster mass profiles. Many investi-
gators have compared theoretical mass profiles with observations
(e.g. Biviano & Girardi 2003; Katgert, Biviano & Mazure 2004;
Pointecouteau, Arnaud & Pratt 2005; Kubo et al. 2007; Okabe &
Umetsu 2008). Although not all details of these models are agreed
upon, the Navarro–Frenk–White (NFW) profile (Navarro, Frenk &
White 1997) fits most observed profiles within the virial radius
with a concentration parameter c for galaxy clusters is in the range
of c = 4–6 in agreement with theoretical results (e.g. Zhao et al.
2003). In addition, for a spherical system with the NFW profile, the
anisotropy parameter β = 1 − σ θ/σ r (where σ θ is the azimuthal
velocity dispersion and σ r is the radial velocity dispersion) is pre-
dicted to be near 0 at the centre and to increase to about 0.3 beyond
the virial radius and can provide information on the properties of
the dark matter (Host 2009).

Many of the systems described in the literature are multiple and
complex or minor mergers where the mass of one component is
considerably larger than the other. The Abell 2465 double cluster
discussed in this paper has a relatively uncomplicated substructure
and shows some evidence for either a past collision or a commencing
merger between the two components. The mean redshift is z =
0.245. ROSAT (Perlman et al. 2002), XMM–Newton (2008) data
and redshifts show two physically related X-ray sources 5.5 arcmin
(1.2 Mpc) apart [hereafter the north-east (NE) and south-west (SW)
clumps]. As well, it is a 1.4-GHz radio source in the NRAO VLA
Sky Survey (NVSS) (Condon et al. 1998). Both the virial and X-ray
masses obtained in this paper indicate that the mass ratio of the two
clumps is close to 1:1. Therefore, Abell 2465 is an example of a
relatively rare major merger.

This paper surveys the optical properties of the Abell 2465 cluster
and is organized as follows. Section 2 describes the new imaging
and spectroscopy, Section 3 gives estimates from spectroscopy of
virial masses and radii, and values of β and discusses available
X-ray and radio data and emission-line galaxies in the two subclus-
ters found from the spectra. Section 4 describes the determination
of the LFs and Section 5 compares the estimates of the light profile
and the corresponding mass profile. Section 6 discusses the results
in relation to a collision and Section 7 lists the conclusions. The
Wilkinson Microwave Anisotropy Probe (WMAP) 5-yr cosmologi-
cal parameters are used throughout this paper.

2 O BSERVATI ONS

Fig. 1 shows the central 8.1 × 8.1 arcmin2 section of the i′ Canada–
France–Hawaii Telescope image described below, containing both
clumps of Abell 2465 (SW and NE). Basic astronomical data are
given in Table 1. The centres of the two clumps are separated by
5.5 arcmin.

2.1 Imaging data

The main part of the imaging data used in this paper is based on
two sets of r′ and i′ images obtained by the quasi-stellar object
(QSO) group of the CFHT in 2009. Five dithered r′ images of 300-
s exposure each were taken on 17 August at a mean airmass of
1.765, and five dithered i′ images, each of 412 s, were observed on
23 August at a mean airmass of 1.36 using the Megaprime

C© 2011 The Author, MNRAS 413, 1333–1352
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Double galaxy cluster Abell 2465 – I 1335

Figure 1. A portion of the combined CFHT i′ Megaprime images of the centre of Abell 2465 showing the NE (upper left) and SW (lower right)
clumps. The vertical edges of the picture are 8.1 arcmin in length. North is to the top and east is to the left-hand side (plot made using ESO’s SkyCat,
http://archive.eso.org/cms/tools-documentation/skycat).

instrument.1 The ELIXER reductions of these images provided by
the CFHT, which included bias subtraction and flattening, were em-
ployed and the photometric zero-points and extinctions provided

1 A description of this instrument including filters and ELIXER reductions can
be found on the CFHT web page: http://ftp.cfht.hawaii.edu/Instruments/
Imaging/MegaPrime/

for the run were used, although these were checked as explained
below. The sets of dithered images were combined using the MS-
CRED programs in IRAF.2 The task MSCFINDER was employed to put

2 IRAF is distributed by the National Optical Astronomy Observatories, which
are operated by the Association of Universities for Research in Astronomy,
Inc., under cooperative agreement with the National Science Foundation.
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Table 1. Basic data for Abell 2465 used in this paper.

(1) (2)

NE XMM–Newton αJ2000 22 39 39.02
NE XMM–Newton δJ2000 −05 43 28.2

SW XMM–Newton αJ2000 22 39 24.65
SW XMM–Newton δJ2000 −05 47 15.0

NE BCG αJ2000 22 39 40.491
NE BCG δJ2000 −05 43 26.75

SW BCG αJ2000 22 39 24.572
SW BCG δJ2000 −05 47 17.37

Mean redshift za 0.2453 ± 0.0002
Luminosity distanceb 1224 Mpc
Angular size distanceb 791 Mpc
Distance modulusb 40.44 mag
Cosmology-corrected scaleb 230.06 kpc arcmin−1

Galactic extinction AI
b 0.077 mag

K-term KI (z)c 0.15 mag

aThis paper, mean of 149 redshifts. bFrom NED using the
WMAP 5-yr parameters. The NED is operated by the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
Administration. cBlanton & Roweis (2007) and Fukugita,
Shimasaku & Ichikawa (1995).

coordinates to the WCS scale using the USNO-b catalogue. The
program MSCIMAGE was used to make one single image from the
36 individual CCD images, and each of these was stacked to make
a final r′ and i′ image with the task MSCSTACK. The resulting full
width at half-maxima (FWHM) of stellar images in the vicinity of
Abell 2465 are 0.81 and 0.47 arcsec for r′ and i′, respectively.

2.1.1 Photometry

The photometry of the images was measured using the SEXTRACTOR

program (Bertin & Arnouts 1996; Holwerda 2005; Bertin 2009).
The single image mode was first used to scan the i′ image, which
was secured in better seeing, to locate objects and the double image
mode was secondly run for the r′ image. The MAG_AUTO option
and mostly default parameters recommended by Bertin (2009) for
measurements of galaxies were set in the SEXTRACTOR. The colour
zero-points and extinctions provided by the ELIXER processing were
employed. These were checked for the brightest galaxies using CCD
images of Abell 2465 obtained under photometric conditions from
the 1.3-m telescope at the MDM Observatory in Arizona with Kron–
Cousins R and I filters on the nights of 1995 November 18, 19 and
21 and 2009 October 15 and 16 and calibrated using Landolt (2009)
with the result that R = r′ − 0.13 ± 0.03 and I = i′ − 0.61 ± 0.05.
Jordi, Grebel & Ammon (2006) and Chionis & Gaskell (2008) gave
comparable values within the errors for objects in the early-type
galaxy colour range.

2.1.2 Star/galaxy separation

The SEXTRACTOR program provides the CLASS_STAR stellarity
parameter 0 ≤ s ≤ 1, whereby objects with s ≈ 1 are stellar-like and
s ≈ 0 are galaxy-like. The s grows increasingly imprecise for faint
sources due to seeing effects, so a better delineation between stars
and galaxies is to employ the relation between MAG_AUTO, the
Kron-like elliptical aperture magnitude, and MU_MAX, the peak

Figure 2. MU_MAX versus i′ MAG_AUTO from SEXTRACTOR for stellar-
like objects with s > 0.8 in the CFHT image. Dotted lines give the outlines
of the region used to reject stars.

surface brightness above background (Leauthaud et al. 2007; Penny
et al. 2010). Fig. 2 plots objects in the i′ image for which s ≥ 0.8.
The stellar locus and the outlined area used to determine which
objects were stars are shown. If an object lies in this region and has
s ≥ 0.8, it is classed as a star.

2.1.3 Red sequence

Using the objects classified as non-stellar or hence galaxies dis-
cussed above, the plot of i′ against (r′ − i′) colours centred on
Abell 2465 shows a well-defined red sequence. Fig. 3 shows the
magnitude–colour plot for the inner 18 × 12 arcmin2 rectangle
which contains the two subclusters. The red sequence is visible and

16 18 20 22 24
-2

0

2

4

i’ (mag.)

Figure 3. The red sequence for the objects classed as non-stellar in the
inner 18 × 12 arcmin2 central portion of the CFHT images. Dotted lines
give the outlines of the region used to select red sequence cluster members.
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Double galaxy cluster Abell 2465 – I 1337

the region used in the following is indicated. The chosen region
extends to fainter magnitudes and is widened to account for the
increasing magnitude errors.

2.2 Spectroscopic data

A more detailed dynamical analysis of Abell 2465 will be pre-
sented elsewhere as observations are still ongoing (Wegner et al.,
in preparation). Redshifts of galaxies centred on Abell 2465 were
measured in 2007–2009 from the MDM Observatory and the Anglo-
Australian Observatory (AAT) before the CFHT images were ob-
tained. The target list was constructed using B and R CCD images
from the MDM 1.3-m telescope of the inner 10 arcmin of the clus-
ter and the superCosmos Sky Survey (SSS),3 which is based on the
UK Schmidt BJRI photographic plates, to cover the entire 1 deg2

centred on the cluster. Sources flagged as galaxies (i.e. CLASS = 1)
were included. The zero-points of the SSS photographic photometry
were adjusted using the CCD data, and sources with colour indices,
1.5 ≤ (BJ − R2) ≤ 2.4, which are centred on the red sequence, were
included in the list.

Redshifts of 359 galaxies were obtained. Of these, 160 have
redshifts in the range 70 000 < cz < 77 000 km s−1 which includes
the cluster members. Of the remainder, 107 lie in the foreground
and 92 lie behind the cluster. An additional 57 objects were stars
and 93 targets did not have a high enough signal-to-noise ratio to
secure a redshift.

The MDM observations were obtained with a long slit at the 2.4-m
Hiltner telescope. The spectrograph was rotated in order to acquire
multiple galaxies, ranging in number typically from three to 10 ob-
jects, simultaneously. In 2007 and 2009, the CCDS spectrograph
with a 150 lines mm−1 grating was used. In 2007, the slit width was
1.3 arcsec and the wavelength covered was λλ4046–7245. In 2009,
a 2.1-arcsec slit and a wavelength coverage of λλ4671–8591 were
used. These set-ups yielded FWHM resolutions of 11 and 16 Å,
measured from night sky lines. In 2008, the MKIII spectrograph, a
2.36-arcsec slit and a 300 lines mm−1 grism covering λλ4358–8716
were employed, yielding an FWHM resolution of 17 Å.4 Three
20-min integrations were usually made with interspersed wave-
length calibrations. Standard data reductions of the CCD spectra
were carried out using IRAF, which includes bias subtraction, flat-
fielding and wavelength calibration.

The largest number of redshifts was collected through the Service
Observing Programme of the AAT with the AAOmega multi-object
spectrograph in 2008 May 31 and July 25. Four 30-min exposures
were obtained each night. The AAOmega simultaneously observes
the blue and red portions of the spectrum. For the blue, the 580V
grating which covers λλ3700–5800 was employed while for the
red, the 385R grating that extends across λλ5600–8800 was used.
The instrument nominally has 392 fibres of 2.0-arcsec diameter, and
this set-up gives an FWHM resolution of about 6 Å. Wavelength
calibration, flat-fields and biases were provided, and the preliminary
reductions were facilitated using the 2DFDR program.5 Subsequent
reductions were done with IRAF.

Absorption-line measurements employed the Tonry & Davis
(1979) cross-correlation method contained in the IRAF task fxcor.

3 http://www-wfau.roe.ac.uk/sss/index.html
4 Further details of these instruments can be found on the MDM Observatory
web page: http://www.astro.lsa.umich.edu/obs/mdm/technical/index.html
5 Descriptions of the AAOmega can be found at http://www.aao.gov.au/
local/www/aaomega/

KIII stars were initially used for velocity standards with the MDM
data, but for final reductions, the brightest cluster galaxies (BCGs)
in Abell 2465 were used. These objects are shown in Table 2 at
αJ2000 = 339.852 36, 339.918 64 and 339.919 16. All spectra with
R < 3 (Tonry & Davis 1979) and for which features could not be
verified by eye were rejected.

Emission lines were used when an absorption-line measurement
could not be obtained. If both emission and absorption velocities
could be secured, they were averaged. The strong H and K lines of
Ca II were also used as a check. A substantial number of galaxies had
emission lines in their spectra that could be accurately measured and
were used to verify the velocity scales of the AAT data. Compared
to the imaging data, all spectra are of bright cluster members; the
number of objects observed in the current set of spectra drops off
rapidly fainter than i′ = 20 which is a rough estimate of the limit of
the current spectra.

Table 2 presents a subset of the redshift data for cluster members
in the central regions of Abell 2465 which was used in this paper.
Columns 1 and 2 are the galaxies’ coordinates, Columns 3 and 4
are, respectively, the measured heliocentric redshift and its error,
Column 5 gives the number of spectra, Column 6 states which
telescope was used (A is for the AAT and M is for MDM), Column
7 is the i′ magnitude from Section 2 and Columns 8 and 9 are the
fuzzy weights explained in Section 3.1.

3 MASS ESTI MATES OF THE TWO CLUMPS

An estimate of the virial masses of the two clumps is made in the
following. Although one can question the validity of this method,
Poole et al. (2006) found that colliding clusters regain virial equi-
librium relatively quickly. Takizawa, Nagino & Matsushita (2010)
employed N-body simulations to compare virial mass estimates for
colliding galaxy clusters and found that when the mass ratio is larger
than 0.25, the estimated virial masses can be a factor of 2 too large,
and in general, X-ray mass estimates are more accurate. While for
the present, the question of virial equilibrium will be avoided, one
should note that the virial masses found in Section 3.3 agree within
their errors with those obtained from X-ray scaling relations.

3.1 Fuzzy clustering

A difficulty in dealing with galaxy clusters with overlapping compo-
nents is the separation of the members of each sub-clump, when not
all the phase space information can be known. For galaxy clusters
with multiple components, this becomes a problem when it is nec-
essary to resolve the members of the sub-clumps as in the present
case of Abell 2465. This subject belongs to the wider realm of
cluster analysis (e.g. Anderberg 1973; Höppner et al. 1999; Kauf-
man & Rousseeuw 2005; Gan, Ma & Wu 2007) and many au-
thors have discussed solutions to the galaxy cluster problem, each
with some success in their particular case, but at present, no single
method is known to give a complete and secure solution. Pinkney
et al. (1996) have reviewed several tests. Notable examples include
the 	-statistic (Dressler & Schechtman 1988), the DEDICA pro-
gram of Ramella et al. (2007), and additional methods described in
the papers of Salvador-Solé, Sanromà & González-Casado (1993),
Tully (1980), Serna (1996) and Diaferio (1999). Tully (1980), Serna
(1996) and Diaferio (1999) employed the single-link hierarchical
clustering technique and constructed dendrograms. For the affin-
ity parameter, Tully took the inverse of the attractive force, while
Serna (1996) and Diaferio (1999) used the projected binding energy

C© 2011 The Author, MNRAS 413, 1333–1352
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/413/2/1333/1069422
by Dartmouth College Library user
on 25 April 2018



1338 G. A. Wegner

Table 2. Redshifts for cluster members in the central regions of Abell 2465 SW and NE.

αJ2000 δJ2000 cz (km s−1) εcz (km s−1) Nobs Tel. i′ (mag) wi (SW) wi (NE)

339.758 08 −5.794 50 72 990 29 1 A 19.231 0.6540 0.3450
339.781 49 −5.757 72 72 540 196 1 A 19.114 0.6790 0.3200
339.796 00 −5.796 44 73 972 37 1 M 18.894 0.7900 0.2090
339.796 96 −5.832 81 72 338 63 1 A 18.394 0.7280 0.2710
339.802 19 −5.784 19 73 571 177 1 M 19.456 0.8310 0.1690
339.808 87 −5.744 50 73 949 9 1 A 19.269 0.7130 0.2860
339.812 99 −5.750 97 72 992 35 1 M 18.626 0.7900 0.2090
339.816 62 −5.799 06 73 586 192 1 A 18.795 0.9170 0.0820
339.821 41 −5.708 61 73 235 139 1 M 19.976 0.5470 0.4520
339.824 28 −5.744 00 74 204 108 1 M 19.846 0.7180 0.2810
339.826 97 −5.742 89 74 196 45 1 M 19.094 0.7220 0.2780
339.834 84 −5.826 44 72 171 213 1 M 18.867 0.8000 0.1990
339.834 99 −5.739 75 74 032 115 1 A 19.031 0.7060 0.2940
339.835 24 −5.755 08 73 520 110 1 M 18.984 0.8800 0.1190
339.835 42 −5.822 69 72 566 10 1 A 17.138 0.9230 0.0760
339.840 21 −5.821 14 74 470 58 2 2M 18.410 0.8820 0.1170
339.840 76 −5.809 64 74 604 113 1 A 18.826 0.8850 0.1140
339.843 11 −5.752 19 72 357 150 1 M 18.301 0.8370 0.1620
339.843 38 −5.791 00 72 788 69 2 1A1M 18.886 1.0000 0.0000
339.846 62 −5.756 25 73 655 14 1 M 18.652 0.9140 0.0850
339.847 25 −5.861 58 72 244 125 1 M 18.225 0.7260 0.2730
339.847 38 −5.741 64 74 152 40 1 A 18.629 0.6980 0.3010
339.847 84 −5.812 22 73 476 30 1 M 17.460 1.0000 0.0000
339.850 04 −5.749 21 73 575 93 2 2M 19.577 0.7930 0.2060
339.852 36 −5.788 06 73 533 1 5 2A3M 16.534 1.0000 0.0000
339.852 91 −5.786 72 73 522 126 1 M 19.512 1.0000 0.0000
339.854 16 −5.784 44 72 242 14 2 2M 17.879 1.0000 0.0000
339.855 26 −5.783 58 72 094 171 1 M 18.061 1.0000 0.0000
339.856 26 −5.785 08 73 561 113 1 M 18.351 1.0000 0.0000
339.856 54 −5.780 22 73 429 30 1 M 18.370 1.0000 0.0000
339.856 69 −5.761 96 72 686 141 2 1A1M 18.528 0.9430 0.0560
339.857 96 −5.669 72 72 573 240 1 M 18.873 0.3360 0.6630
339.859 22 −5.778 11 72 956 242 1 A 19.912 0.9610 0.0380
339.864 32 −5.888 22 73 537 76 1 M 18.776 0.6480 0.3510
339.865 08 −5.738 89 73 976 24 1 A 20.007 0.5240 0.4750
339.866 09 −5.794 50 73 592 23 1 M 17.487 1.0000 0.0000
339.867 28 −5.765 81 72 014 40 1 A 18.565 0.8410 0.1580
339.873 32 −5.806 14 73 914 168 1 A 19.535 0.9330 0.0660
339.873 96 −5.762 78 74 040 147 1 M 19.918 0.7570 0.2420
339.874 62 −5.693 11 73 193 28 2 2A 19.127 0.1460 0.8530
339.880 04 −5.672 17 73 317 160 1 M 19.517 0.1810 0.8180
339.880 92 −5.750 26 74 626 158 1 A 17.853 0.5010 0.4980
339.882 97 −5.686 17 72 702 190 1 M 19.378 0.1810 0.8180
339.883 24 −5.682 25 73 647 36 1 M 18.848 0.1070 0.8920
339.884 64 −5.686 31 73 239 114 1 M 19.236 0.1010 0.8980
339.884 64 −5.766 03 73 244 8 1 M 18.565 0.7930 0.2060
339.884 83 −5.762 92 73 306 22 1 A 19.680 0.7460 0.2530
339.885 86 −5.689 11 73 326 42 1 M 21.910 0.1390 0.8600
339.888 46 −5.800 75 74 298 76 1 M 19.315 0.8170 0.1820
339.892 09 −5.806 78 73 395 7 1 M 20.391 0.8510 0.1490
339.894 20 −5.812 67 73 756 58 1 M 18.386 0.8430 0.1560
339.897 71 −5.805 97 74 019 45 1 A 19.407 0.7810 0.2180
339.898 68 −5.820 36 73 171 47 1 M 19.533 0.7860 0.2130
339.898 79 −5.695 12 75 000 74 3 1A2M 17.497 0.0070 0.9920
339.899 08 −5.826 53 74 029 44 1 M 20.867 0.7320 0.2670
339.899 58 −5.706 17 73 388 179 2 1A1M 18.445 0.0000 1.0000
339.900 45 −5.830 00 74 071 78 1 A 19.588 0.7190 0.2800
339.903 79 −5.756 11 73 388 130 1 M 18.578 0.3500 0.6490
339.904 79 −5.747 42 73 297 56 1 A 18.833 0.1950 0.8050
339.904 82 −5.677 11 75 208 54 1 A 18.703 0.1820 0.8170
339.905 21 −5.689 31 74 709 51 1 M 18.841 0.0830 0.9160
339.908 05 −5.724 61 73 311 126 1 M 18.090 0.0000 1.0000
339.909 17 −5.770 36 73 698 13 1 M 19.507 0.5080 0.4910
339.909 25 −5.778 28 74 085 35 1 A 19.569 0.5670 0.4320
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Table 2 – continued

αJ2000 δJ2000 cz (km s−1) εcz (km s−1) Nobs Tel. i′ (mag) wi (SW) wi (NE)

339.909 76 −5.753 39 73 857 80 1 A 18.885 0.2480 0.7510
339.909 82 −5.734 39 73 220 185 1 M 20.117 0.0970 0.9020
339.910 43 −5.692 72 74 636 48 1 M 18.059 0.0020 0.9970
339.911 47 −5.819 64 72 128 64 1 A 17.652 0.7160 0.2830
339.911 83 −5.684 17 74 958 4 2 2M 18.740 0.1180 0.8810
339.911 87 −5.633 33 73 217 115 1 A 19.722 0.2760 0.7230
339.912 26 −5.834 36 72 025 40 1 A 20.034 0.6270 0.3720
339.912 93 −5.794 92 73 180 37 1 A 17.488 0.6930 0.3060
339.913 88 −5.737 89 73 060 23 1 M 18.805 0.0720 0.9270
339.914 03 −5.731 67 73 361 76 1 M 19.879 0.0030 0.9960
339.915 22 −5.732 14 72 576 40 3 3M 18.076 0.2090 0.7900
339.918 64 −5.723 89 73 044 31 3 1A2M 17.070 0.0000 1.0000
339.919 16 −5.721 81 74 061 119 2 2M 17.898 0.0000 1.0000
339.920 84 −5.731 89 74 847 76 1 M 19.318 0.1950 0.8040
339.922 03 −5.734 17 74 721 121 1 M 18.378 0.1010 0.8980
339.928 71 −5.740 33 73 186 93 1 M 18.394 0.0890 0.9100
339.928 99 −5.707 03 72 670 142 1 M 19.281 0.0450 0.9540
339.932 53 −5.721 94 72 745 74 2 1A1M 17.960 0.0000 1.0000
339.935 42 −5.670 39 73 467 131 1 M 19.377 0.1130 0.8860
339.938 96 −5.755 25 73 063 63 2 1A1M 19.138 0.2750 0.7240
339.940 89 −5.717 42 73 814 21 1 M 18.773 0.0240 0.9750
339.944 03 −5.653 08 74 188 150 1 M 18.526 0.2250 0.7740
339.945 28 −5.762 56 73 828 42 1 A 19.616 0.3020 0.6970
339.945 89 −5.644 14 74 096 264 1 M 20.321 0.3160 0.6830
339.947 91 −5.629 86 73 698 77 1 M 17.763 0.2930 0.7060
339.954 75 −5.791 49 73 571 138 3 2A1M 19.103 0.4570 0.5420
339.966 58 −5.756 61 73 555 46 1 A 17.582 0.2830 0.7160
339.966 89 −5.644 08 73 549 75 1 A 20.273 0.3160 0.6830
340.000 00 −5.738 03 73 528 11 1 A 18.061 0.3430 0.6560

between two galaxies, i and j:

Eij = −G
mimj

|ri − rj | + 1

2

mimj

(mi + mj )
(vi − vj )2, (1)

where mi, ri and vi are, respectively, the mass, position on the sky
and the redshift for the ith galaxy.

The k-medoid method (KMM) has been employed by sev-
eral investigators (e.g. Colless & Dunn 1996; Kriessler & Beers
1997; Yuan et al. 2005) to separate cluster members. Kriessler &
Beers’ KMM results compared favourably with previous analyses of
56 clusters. The KMM assigns each object uniquely to one cluster
(Kaufman & Rousseeuw 2005), termed ‘hard clustering’, but given
the observational errors and ambiguities of the data, it is unlikely
that such a unique assignment is always accurate.

Consequently, the method of fuzzy analysis was explored to sepa-
rate the cluster members of Abell 2465 (e.g. Sato, Sato & Jain 1997;
Höppner et al. 1999; Kaufman & Rousseeuw 2005; Miyamoto, Ichi-
hashi & Honda 2008). Fuzzy clustering generalizes the KMM and
permits ambiguity in cluster membership by providing a ‘member-
ship coefficient’, wi, for each object, i, running from 0 per cent
for a non-member to 100 per cent for a member of only one
cluster. Assigning an object uniquely to a cluster by its largest
membership coefficient (i.e. wi ≥ 0.5) returns the hard clustering
result.

The fuzzy analysis algorithm (FANNY) and program of Kaufman
& Rousseeuw (2005) were employed for the analysis of the cluster
members. As in the above methods, one chooses the number of
clusters k, an affinity between pairs of objects (i, j) and derives
a dissimilarity matrix with elements d(i, j). This was obtained by

defining a projected binding energy:

bij = −mimj

|ri − rj | + 1.162 × 10−4S mimj

(mi + mj )
(vi − vj )2, (2)

using ri in Mpc, vi in km s−1 and mi in units of 1012 M�. A scaling
factor, S, was employed to lower the weight of the second term.
The mi were derived from the i′ magnitudes of the galaxies using
the formula of Cappellari et al. (2006) for the I band, (M/L) =
(2.35)(LI/1010 LI,�)0.32 and I = i′ − 0.61. The bij were converted
to dissimilarities using d(i, j ) = 1

2 [1 + erf(bij], which gives 0 ≤
d(i, j) ≤ 1 whereby nearby and tightly bound pairs with large neg-
ative bij have small dissimilarities, and distant unrelated pairs are
assigned positive dissimilarities.

Fig. 4 shows the resulting distribution of the galaxies in the two
clumps and Fig. 5 shows histograms of their corresponding veloci-
ties. In this hard clustering presentation, the result is approximately
what one intuitively expects as the galaxies are divided mostly into
the two groups near the outlines of the circles in Fig. 4, and using
the fuzzy weights in Fig. 5 the difference in the velocity peaks can
be seen.

3.2 Virial masses

Virial masses were estimated from the redshift data following e.g.
Carlberg et al. (1996) and Girardi et al. (1998). All quantities were
referred to the rest frame of the clusters. A weighted virial mass
estimator was used which reduces to the equation (4) of Heisler,
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Figure 4. Distributions of the galaxies in Abell 2465 with measured red-
shifts and assigned to each clump using the hard clustering (i.e. membership
coefficient, wi ≥ 0.5). Filled circles and asterisks denote the NE and SW
clumps, respectively. The dashed circles are centred on the BCG of each
clump near the X-ray centres and have radii of 2.75 arcmin or 0.63 Mpc
which is half the distance between the two centres.

Tremaine & Bahcall (1985) for unit weights:

Mv = 3π
∑

i wi

2G

∑
i wiV

2
zi∑

i<j wiwj/R⊥,ij

, (3)

where the wi are the fuzzy clustering weights, Vzi = (Vi−V̄ )/(1+z̄)
and R⊥,ij is the angular size distance between two galaxies i and j.

Galaxies within 1.4 Mpc of the clump centres and with redshift
velocities 72 000 < Vzi < 76 000 km s−1 were used to obtain Mv. The
galaxies and their redshifts, which were used, are given in Table 2.

For the NE clump, there are
∑

i wi = 49 galaxies within this
radius while for the SW clump,

∑
i wi = 44. The resulting virial

masses, Mv, for NE and SW, respectively, are

4.1 ± 0.8 × 1014 and 3.8 ± 0.8 × 1014 M�,

where the uncertainties are jackknife errors. Fig. 5 shows the his-
tograms of the velocities. The corresponding mean redshifts for
the two clumps are V̄NE = 73 593 ± 102 km s−1 and V̄SW =
73 388 ± 109 km s−1, which yields a velocity difference of 	V =
205 ± 149 km s−1.

The virial radii, according to the formula r200 =
√

10
3

σ 2

H (z)2

(Carlberg et al. 1996), are 1.21 ± 0.11 Mpc (NE) and 1.24 ±
0.09 Mpc (SW). This assumes that the virial mass is approximated
by M200 = (4/3)πr3

200	cρo(z), where ρo(z) is the critical density at
redshift z and 	c is the cluster’s density enhancement, set equal to
200.

The masses of the two clumps calculated using the hard clustering
weighting (wi = 0 or 1) are 3.7 ± 0.7 and 3.0 ± 0.7 × 1014 M�,
respectively, for the SW and the NE clumps. For comparison, the
redshift difference between the two BCGs near the centres of the
NE and SW clumps is 489 km s−1. The unweighted average of
149 cluster members inside 1◦ of the cluster centre is 73 530 ±
58 km s−1.

A correction to Mv is required due to the whole cluster not being
included in the calculation (e.g. Girardi et al. 1998, and references
therein). This depends on the galaxy and velocity dispersion distri-

Figure 5. Histograms of redshifts of the two Abell 2465 clumps based on
the fuzzy clustering. The upper unfilled histogram shows the whole sample.
Lower shaded histograms show the weighted velocity distributions from the
fuzzy weights that were used in determining the virial masses.

butions with radius. A c = 6 NFW profile was assumed, and it was
found that the correction could be neglected for the present data.

3.3 Comparison with X-ray masses

The virial masses can be compared with those from X-ray scal-
ing relations. Both ROSAT and XMM–Newton observed Abell 2465
serendipitously. Contours of the ROSAT data are given in
Perlman et al. (2002). Fig. 6 shows the XMM–Newton image along-
side the 1.4-GHz radio data discussed in Section 3.4. Averaging
the unabsorbed ROSAT values in the (0.5–2.0) keV band according
to Vikhlinin et al. (1998) and Perlman et al. (2002) gives f X =
3.605 × 10−13 and 2.53 × 10−13 erg s−1 cm−2, respectively, for
the NE and SW clumps. The XMM–Newton values taken from the
2XMMi_DR3 catalogue in the (0.5–2.0) keV band are the ep_2 +
ep_3 fluxes and are 2.44 × 10−13 and 2.08 × 10−13, respectively.
These were multiplied by 1.07 to correct for absorption, using nH =
3.64 × 1020 atoms cm−2 [the mean of the Kalberla et al. (2005) and
Dickey & Lockman (1990) values implemented in HEASARC],
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Figure 6. The X-ray and 1.4-GHz radio images of Abell 2465. Both are at the same scale. The vertical border of each box represents 2.3 Mpc at the distance of
Abell 2465. North is at the top and east is to the left-hand side. Left-hand panel: 1–2 keV X-ray data near the cluster from a portion of archived XMM–Newton
image 0149410401003 from project of PI S. Mathur. Right-hand panel: 1.4-GHz contours provided by the NVSS Postage Stamp Server superimposed on the
i′ image of this paper.

Wilms, Allen & McCray (2000) for the X-ray absorptivity per H
atom in the interstellar medium and a 4-keV Raymond–Smith (Ray-
mond & Smith 1977) 0.3 solar metals model at redshift z = 0.245.

Many authorities find scaling relations among X-ray luminosity,
mass, temperature, etc. (e.g. Reiprich & Böhringer 2002; Popesso
et al. 2005; Rykoff et al. 2008). The results of Popesso et al. (2005)
for M200, in the (0.1–2.4 keV) band, were adopted. A multiplicative
factor of 1.60 was found to include the ROSAT and XMM–Newton
(0.5–2.0) keV data into this band using the 4-keV Raymond–Smith
model mentioned above. With the luminosity distance of 1224 Mpc
for Abell 2465, LX = 8.94 ± 1.44 × 1043 erg s−1 for NE and
LX = 6.84 ± 0.43 × 1043 erg s−1 for SW. The Popesso et al.
(2005) uncorrected relation for mass, log M200 = [log (LX/1044) +
1.15]/1.58, yields

4.4 ± 0.6 × 1014 and 3.6 ± 0.2 × 1014 M�

for the NE and SW clumps, respectively.
The LX–T relation, log TX = [log (LX/1044) + 2.06]/3.30

(Popesso et al. 2005), gives temperatures of

4.1 ± 0.3 and 3.75 ± 0.2 keV,

for NE and SW, respectively, where the errors include the range
in LX and the scatter of the relation. The mass-weighted M200–TX

relation found by Sanderson et al. (2003) gives nearly identical
values of TX.

Given TX, the cooling times of the two clumps provide additional
information. The bremsstrahlung cooling time for cluster gas of
temperature T and hydrogen density np is

tcool = 8.5 × 1010

(
T

108

)1/2 ( np

10−3 cm−3

)−1
(4)

(Sarazin 1986; equation 5.23). At the current temperature of T ≈
4 keV, np can be estimated from

ε = 3.0 × 10−27(Tg)1/2n2
p (5)

(Sarazin 1986, equation 5.21). Using that L/2 ≈ ε (4/3)πr3
c and the

core radii rc = 42 and 130 kpc for SW and NE (Vikhlinin et al. 1998),
tcool ≈ 4 and 20 Gyr for SW and NE, respectively. This indicates
that SW is a cooling core (CC) cluster. This shorter tcool in the SW
subcluster results from its smaller rc and is consistent with studies
of CC clusters showing that they have core radii rc

<� 100 kpc
(e.g. Chen et al. 2007). As already noted, there is no evidence for
strong AGN activity in either member of Abell 2465. It is tempting
to identify the CC as a result of the cluster’s merger, but O’Hara
et al. (2006) argued that major mergers do not evolve CCs from
their study of the scatter in scaling relations. However, Zu Hone &
Markevitch (2009) found that ‘sloshing’ produced in mergers could
be a source of heating in cluster cores.

3.4 Radio data

Abell 2465 appears to be detected in the 1.4-GHz NVSS (Condon
et al. 1998). The radio contours are shown in Fig. 6 where they
are superimposed on the i′ image. A source with a peak flux of
6.2 ± 0.6 mJy falls near the NE component and appears to be a
radio halo. A second elongated object with a peak flux of 3.1 ±
0.4 mJy is near the three early-type cluster members located about
3 arcmin north of the SW clump. No significant source lies in the
SW optical component. If the two radio sources are at the distance of
Abell 2465, their luminosities are 11 × 1023 and 6 × 1023 W Hz−1,
respectively. These are within the range of luminosity, temperature
and size for diffuse radio haloes and relics summarized by Feretti
(2002). The radio halo is centred near the NE subcluster which
might identify it as the primary component of Abell 2465.
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A more detailed analysis of the X-ray and radio data will be given
elsewhere (Wegner & Johnson, in preparation).

3.5 Cluster velocity dispersion measurements

The run of radial velocity dispersion with radius contains informa-
tion on the dynamics of the clusters. The results of measurements
for the two clumps are shown in Fig. 7, where the fuzzy weighting
was employed and errors given are jackknife errors.

The simplest case solves the spherical Jeans equation for the
anisotropy parameter, β, where β = 0 for isotropic orbits and β = 1
is the non-physical limiting case of purely radial orbits. The aperture
values of σ are shown in Fig. 7, where the formulae of Łokas &
Mamon (2001) were used for the mean velocity dispersion inside
an aperture of radius R:

σ 2
ap(R) = S2(R)

Mp(R)
, (6)

Figure 7. Radial profiles of the aperture-velocity dispersions for the two
clumps in Abell 2465. The abscissae give the projected radial distances
relative to the virial radius, rv, and the ordinates are the velocity dispersions
and their errors relative to the circular velocity, Vvir, defined in the text
inside of Rp. The different curves are for NFW models with c = 10 (SW)
and c = 4 computed using Łokas & Mamon (2001). Dotted curve: β = 1,
dot–dashed curve: β = 0.5 and solid curve: β = 0.

where Mp is described in equation (8) and S2 is

S2(R) = c2g(c)Mv

{ ∫ ∞

0

σ 2
r (s, β)s

(1 + cs)2

(
1 − 2β

3

)
ds

+
∫ ∞

R

σ 2
r (s, β)(s2 − R̃2)1/2

(1 + cs)2

[
β(R̃2 + 2s2)

3s2
− 1

]
ds

}
,

(7)

where s = r/rv, Mv = (4/3)πr3
v	cρo(z) is the virial mass and the

other quantities are defined in Section 5. Łokas & Mamon (2001)
gave analytical expressions for σ 2

r (s, β)/V2
v for constant β = 0, 0.5

and 1 and the Osipkov–Merritt (OM) model (Osipkov 1979; Merritt
1985), βOM = s2/(s2 + s2

a), which are used to evaluate the integral.
Fig. 7 compares curves for three values of β with the observed

values in terms of the virial radius circular velocity V2
vir = GMv/rv.

OM models with sa ≈ 4/3 lie nearby the lower β curves and are
not shown. Values of Vvir of 763 and 722 km s−1 were adopted for
the NE and SW clumps, respectively. It can be seen that the most
consistent anisotropy values are low, near β = 0, but agreement
with β = 1.0 is ruled out for small radii. These values of Vvir place
the data points on to the 0 and 0.5 β curves at the largest observed
radii. Using the masses and radii found above, the corresponding
values would be 1077 and 1043 km s−1, but given the error in the
value of Mv/rv which give Vvir, these differ from the adopted values
by less than 2 standard deviations.

The behaviour of β in the dark matter component of galaxy
clusters has been investigated by several authors with the idea that
this can probe its properties. For � cold dark matter (�CDM),
Thomas et al. (1998) found that β ≤ 0.3 inside the virial radius.
Hansen & Piffaretti (2007) obtained similar values for two clusters
as did Host (2009) and Host et al. (2009) for several X-ray clusters.
The values of β for the subclusters of Abell 2465 are consistent with
these results.

3.6 Emission-line galaxies in Abell 2465

Of the 149 galaxies in Abell 2465, observed spectroscopically with
redshift 70 000 ≤ cz ≤ 76 000 km s−1, and within 1◦ of the cluster
centres, 55, or 37 per cent, show detectable Hα emission of which
38 also have measurable [N II], Hβ and [O III] and can be plotted
in the diagnostic diagram that separates star-forming galaxies, lin-
ers and AGNs. Equivalent widths were measured using the IRAF

SPLOT routine and independently measured twice to estimate errors.
The Hα and Hβ equivalent widths were adjusted for underlying
absorption. Following Wegner & Grogin (2008), Hα was corrected
by adding 2.32 Å to the measured emission and 2.02 Å was added
to the Hβ emission, which are the absorption equivalent widths of
these lines from galaxies that appear free of emission.

The resulting line ratios and their errors are given in Table 3,
where Columns 1 and 2 are the coordinates of the galaxies.
Columns 2–5 give the line ratio measurements and their errors.
In Column 6, A and M denote whether AAT or MDM spectra were
measured, and the last column is an estimated morphological type.

The morphological types of the emission-line galaxies were es-
timated from the i′ image. The largest proportion of these appeared
to be disturbed single objects without a visible companion. At least,
24 or 44 per cent have unusually asymmetrical discs or spiral arms.
Only about six of these galaxies have obvious companions or tidal
tails.
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Table 3. Line ratio data for the emission-line galaxies shown in Fig. 8.

αJ2000 δJ2000 log [N II]/Hα ε log [N II]/Hα log [O III]/Hβ ε log [O III]/Hβ Tel. Type

339.453 46 −6.185 31 −0.499 0.021 −0.217 0.501 A Sp
339.479 83 −6.202 42 −0.562 0.036 0.435 0.290 A S0 pec
339.643 58 −5.613 42 −0.320 0.016 −0.173 0.460 A Sa asy
339.646 12 −5.741 83 −0.353 0.012 0.049 0.251 A S0 pec
339.653 78 −6.166 89 −0.077 0.018 0.091 0.264 A S0
339.682 89 −5.837 81 −0.376 0.009 −0.410 0.193 A S0 pec
339.683 62 −5.921 78 −0.631 0.038 0.419 0.318 A S0
339.686 55 −5.888 31 −0.416 0.039 0.127 0.064 A S0 asy+S0
339.692 40 −5.925 32 −0.671 0.036 0.205 0.122 2A Sc
339.743 38 −5.945 25 −0.587 0.083 −0.038 0.011 A Sp asy
339.751 80 −5.988 58 −0.297 0.003 0.238 0.315 A SB0 rings
339.758 09 −5.794 50 −0.433 0.021 −0.370 0.108 A Sa asy
339.763 82 −5.974 94 −0.356 0.036 0.215 0.229 A SBc asy
339.787 41 −5.623 75 −0.785 0.003 0.542 0.179 A Sp edge-on
339.808 87 −5.744 50 −0.482 0.001 0.576 0.442 A Sa
339.815 14 −5.896 81 −0.368 0.089 0.417 0.017 MA S0
339.826 57 −5.400 69 −0.390 0.033 0.252 0.528 A Sa asy
339.837 68 −5.997 83 −0.594 0.054 0.389 0.322 A S0 (POSS2)
339.843 26 −5.752 22 −0.339 0.047 0.070 0.236 A SB0
339.850 74 −6.201 75 −1.309 0.111 0.720 0.051 A Sc
339.856 63 −5.761 89 −0.256 0.001 −0.307 0.079 A S0 asy
339.856 99 −5.892 56 −0.602 0.066 0.136 0.344 M Sa
339.865 08 −5.738 89 −0.377 0.007 0.273 0.224 A S0+companion
339.873 32 −5.806 14 −0.211 0.011 0.409 0.269 A Sp asy
339.880 25 −5.562 44 −0.611 0.010 0.303 0.345 A E+Sp
339.884 65 −5.686 19 −0.780 0.365 0.523 0.020 2M Sp+E
339.884 83 −5.762 92 −0.297 0.013 0.018 0.326 A SBc
339.885 86 −5.689 11 −0.912 0.074 0.303 0.298 M E?
339.891 72 −5.601 64 −0.517 0.015 0.355 0.499 A Sb pec
339.897 71 −5.805 97 −0.366 0.013 −0.135 0.053 A Sp asy
339.900 45 −5.830 03 −0.325 0.018 0.535 0.267 M S0
339.909 31 −5.778 29 −0.703 0.073 0.283 0.165 AM Sp tail
339.944 37 −5.653 39 −0.534 0.016 0.200 0.377 M S0 pec
339.945 28 −5.762 56 −0.233 0.053 0.158 0.039 A Sp asy
340.063 08 −5.583 47 −0.485 0.068 −0.334 0.041 A Sb asy
340.065 16 −5.621 83 −0.465 0.002 0.045 0.011 A Sa asy
340.108 55 −5.574 39 −0.497 0.015 0.434 0.382 A Sa asy
340.121 49 −5.953 19 −0.366 0.002 −0.494 0.033 A Sb asy

Note: asy – one side of object noticeably stronger; pec – disturbed and/or shells.

The positions of the galaxies that have detected Hα emission, but
the other emission lines are too faint to place them in the diagnostic
diagram, are listed in Table 4 along with their morphologies.

Fig. 8 shows the diagnostic diagram. The line separating the
Seyfert and liner regions is that given in Yan et al. (2006). The
solid and dashed curves demarcating the edge of the star-forming
region are from Kewley et al. (2001) and Kaufmann et al. (2003),
respectively. The emission-line galaxies in Abell 2465 are nearly all
star-forming objects. Only four objects lie on the border of the liner
or Seyfert region. There are no no definite Seyferts or AGN activity
dominating either clump.

The emission-line galaxies prefer to sit between the two subclus-
ters with more near the SW clump. In Fig. 9, the left-hand panel
shows the positions of all spectroscopically verified cluster mem-
bers. The right-hand panel plots only emission-line objects and is an
enlargement of the centre. The X-ray centres from Table 1 are indi-
cated as crosses. The line passing through the centres approximates
the cluster’s axis, and the lines labelled A, B and C define stripes
running perpendicular to this axis. The line B marks the distance
half-way between the two subcluster centres. Using this centre line,
of the 39 galaxies in the figure, 24 are on the SW side and 15 are

on the NE side. However, the asymmetry is stronger in the central
region of the cluster. In strip BC, 13 emission galaxies lie close to
the SW centre while only five are near the NE clump in strip AB.
For non-emission-line galaxies, the corresponding numbers are 20
and 15 galaxies, respectively.

This impression of asymmetry between the emission-line
and non-emission-line galaxy distributions was tested with the
two-dimensional Kolmogorov–Smirnov (KS) test (Fasano &
Franceschini 1987; Lopes, Reid & Hobson 2007). Using the KS2D2S

program (Press et al. 1992) for the two-sample test to compare the
emission and non-emission samples indicates weakly that the two
types of galaxies are slightly different at the 78 per cent significance
level.

There are more emission-line galaxies near the centre of
Abell 2465 than expected for single galaxy clusters. Balogh et al.
(2004) and Rines et al. (2005) found an inverse correlation between
the number of emission-line galaxies and density in galaxy clusters.
For their composite cluster, Rines et al. (2005; fig. 2) found that the
fraction of galaxies showing emission lines grows from 0 at the cen-
tre to 0.12 at Rp = 0.5R200 with a mean near 0.06. For Abell 2465,
the numbers of galaxies with observed spectra within the circles in
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Table 4. Additional galaxies with detected Hα emission.

αJ2000 δJ2000 Tel. Type

339.588 28 −5.931 92 A E
339.761 29 −5.871 31 A S0 pec
339.795 99 −5.796 44 M Sp tail
339.820 37 −5.858 08 M S0 asy
339.847 38 −5.741 64 A E
339.855 10 −5.781 22 M SBc asy
339.867 31 −5.765 81 A E
339.882 93 −5.686 17 M S0
339.884 61 −5.766 03 M S0
339.888 42 −5.800 75 M S0
339.904 84 −5.747 22 A S0
339.920 83 −5.731 92 M E
339.935 24 −5.670 08 A S0
339.938 99 −5.674 08 M Sa
339.948 91 −5.625 42 M E
340.109 77 −5.804 97 A Sp

Figure 8. The diagnostic diagram for the emission-line galaxies in Fig. 9.

Fig. 4, which are projected radii of Rp = 0.53R200 (0.63 Mpc) from
the subcluster centres, are 27 and 22 for SW and NE, respectively.
The corresponding numbers of emission-line galaxies are nine and
four giving fractions of emission-line galaxies within these circles
equal to 0.33 and 0.18. Even allowing for infall interlopers, these
fractions appear different for Abell 2465 and the other clusters.

One question is whether the high fraction of star-forming galax-
ies could be due to a bias in selecting more emission-line galaxies
because it is easier to obtain their redshifts. With the current data,
this can be answered only roughly given the broad selection criteria
and the employment of different spectroscopic instruments. A lower
limit to the emission fraction can be estimated using the numbers
in Section 2.2. First, 199/359 = 0.55 of the galaxies with redshifts
should be cluster members. Secondly, if all 93 failed redshift tar-
gets are non-emission galaxies, 55 per cent or 51 would be cluster
members. Thirdly, adding this to the number of observed cluster
galaxies gives the lower limit to the fraction of star-forming cluster
members to be 55/(149+51), or 28 per cent. This is still in excess of
the fraction, with the mean being near 6 per cent for single clusters
discussed above.

4 LU M I N O S I T Y F U N C T I O N S O F T H E C L U M P S

In this paper, the statistical method of measuring all the galaxy
photometry in the field and then subtracting the contribution of
the background is employed using the nearly 1 deg2 CFHT im-
ages. The photometry of the cluster is confined to the inner 22.4 ×
18.0 arcmin2 portion of the images and the sky background is es-
timated from the outer part of the images. The data provided by
the program SEXTRACTOR (Bertin & Arnouts 1996; Holwerda 2005;
Bertin 2009) described above were employed for separating stars
and galaxies. The red sequence of the cluster described in Sec-
tion 2.1.3 was used to find the cluster members.

4.1 Background galaxy determination

The background, its errors and the incompleteness were estimated
in two steps. First, the resulting catalogue of galaxies was binned
in magnitude using no colour cut. The outer portion of the CFHT
i′ image was binned in 1-mag intervals running from i′ = 16.0 to
26.0. The total area used was 3069 arcmin2. The number of detected
objects and their colours was 89 579. The resulting number counts
of the background along with their

√
N errors are shown in Fig. 10,

where they are compared to the number counts given by McCracken
et al. (2001) from deeper CFHT i′ imaging and Wilson (2003) who
used Cousins I-band data from the same telescope.

These data agree well for 19 � i′ � 23. For i′ brighter than 19,
small number statistics dominate and it is assumed that the numbers
of detections are complete. For i′ fainter than 23, the completeness
is estimated by taking the ratio of the present measurements to
the McCracken et al. (2001) relation. The resulting estimate of
completeness is also shown in Fig. 10 and is 1.0 for i ′ = 17–22.
For fainter sources, it drops and this relation was adopted for the
completeness.

The second step was to apply the same colour cut found for
the red sequence to the background data. In addition to counting
errors, there are the effects of cosmic variance in the background.
To estimate these, the background was divided into four subsections
of average 771 arcmin2. The variance of these measurements was
used to estimate the error in the background.

4.2 Luminosity functions of the two cluster centres

The LFs of the SW and NE clumps of Abell 2465 differ. They were
obtained for the circular regions within 2.75 arcmin of the clus-
ter centres as defined in Table 1. Identical colour cuts and the
same background subtraction were applied to the data of both
clusters. The magnitudes MI are converted to luminosity using
LI = 10−0.4(MI −I�) where I� = 4.08 (Binney & Merrifield 1998)
and MI = i′ + DM − AI − KI(z), using the data in Table 1. Bins
fainter than i′ = 25 were rejected due to the large incompleteness
correction. The results shown in Fig. 11, where the error bars include
both background and counting errors, show a significant difference
between the two clumps, although both are within the range of LFs
found for different clusters.

The bright portions of the two LFs are similar, but the SW clump
has a substantially larger number of galaxies fainter than MI ≈ −21.
This can also be seen by visual inspection of the central regions of
the two clumps.

Although this statistical method provides a relative measure of
the LFs of the two clumps, it is less secure than using redshift-based
LFs. A possible explanation of the differing LFs of the two clumps
might be that a distant cluster lies behind the SW clump. Fig. 12
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Double galaxy cluster Abell 2465 – I 1345

Figure 9. Left-hand panel: positions of emission-line (solid dots) galaxies with detected Hα emission and non-emission-line (crosses) galaxies observed in
Abell 2465 with 70 000 ≤ cz ≤ 76 000 km s−1. Right-hand panel: positions of emission-line galaxies only, enlarged to show the central portion of the double
cluster. The XMM–Newton positions of the two X-ray clumps are marked with the crosses.

Figure 10. Left-hand panel: comparison of i′-band number counts found in
this study with McCracken et al. (2001) deeper counts shown as the line.
Right-hand panel: adopted i′ completeness function for the galaxy number
counts.

shows the distribution of redshifts centred on the SW peak and
although two weak peaks occur near cz = 53 000 and 80 000 km s−1

there is no significant structure for cz < 120 000 km s−1.
Were a substantial number of redshifts available for i′ fainter than

20, this possibility could possibly be sorted out.
Nevertheless, a distant cluster might show detectable differences

in centre and in shape compared to the foreground cluster. To look
for these effects, the galaxy sample was divided into bright (MI <

−20.0) and faint (−16.0 > MI ≥ −20.0) galaxies. Their values of
LI were converted from i′ as described above, and isophotes were
constructed using the Silverman (1986) adaptive kernel smoothing
method. Fig. 13 shows bright galaxies in the left-hand panel. Both

Figure 11. LFs for the central regions (Rp < 0.63 Mpc or 2.75 arcmin) of
the SW and NE clumps.

clumps show roughly circular isophotes and the peak of the SW
clump is the higher. The isophotes for the faint galaxies in the right-
hand panel differ. Here the NE clump is diminished relative to the
SW clump, which is stronger. Using the faint galaxies, the peak of
the SW clump is only slightly farther away from that of the NE
clump along the axis joining them by ≈0.◦02 or 0.3 Mpc.

The red sequence provides a second test for a distant cluster
behind the SW clump. Such a cluster might have a typical I-band
Schechter function (α = −1.27, M∗ = −21.66; e.g. Harsano &
De Propis 2009). Assuming that the SW clump’s LF is the same
as that of NE plus the Schechter function, the distance modulus
of the distant cluster should be larger by 	DM ≈ 3.2 mag, or its
distance modulus is 43.6, and z ≈ 0.85. Although such a cluster lies
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Figure 12. Redshifts of all galaxies centred on the SW clump. The strong
peak near z = 0.245 comes from the Abell 2465 galaxies.

beyond the currently available spectroscopy, at this z the change in
K-corrections alone would make the distant cluster’s (r′ − i′) colour
redder by about 1.3 mag (e.g. Fukugita et al. 1995). This effect is
well illustrated by Gilbank et al. (2008) for composite clusters
in (R − z′) for z = 0.4–0.9 which include evolutionary effects.
This shifting of the red sequence could distort the shape of the red
sequence of the SW region relative to the NE. One complication is
that at increasing z, the blue sequence grows stronger and by z =
0.85 it lies near the low-redshift red sequence. However, the red
sequence remains the stronger and should still be detectable.

To look for the shifted red sequence of a distant cluster, galaxies
with 20.0 ≤ i′ ≤ 24.4 were binned in (r′ − i′) for both clumps
within 2.75 arcmin of their centres. As shown in Fig. 14, there is
no apparent enhancement in (r′ − i′) near 1.7 for the SW region
compared to the NE. Applying the two-sample KS test (Press et al.
1992) supports the null hypothesis that the two samples are the same
at the 99.8 per cent level, so a substantial cluster directly behind
the SW clump seems unlikely. In the future, bluer colours would
provide a more sensitive test.

In a test to fit different LFs to each clump, two approaches
were employed. The first uses the prescription of Bingelli et al.
(1988), also similar to Wilson et al. (1997). The E, S0 and spi-

Figure 14. Histograms of the colour distributions for galaxies within
2.75 arcmin in the two clumps of Abell 2465 with apparent magnitudes
20.0 ≤ i′ ≤ 24.4.

ral constituents are fitted by Gaussian functions and the dEs and
dIrr follow Schechter functions. Here the fitting values of Jerjen &
Tammann (1997) are used for the Gaussians and those of Bingelli
et al. (1988) for the Schechter functions. The B-band magnitude
zero-points were adjusted using mean (B − I) colours for each
galaxy type from Fukugita et al. (1995) and Smail et al. (1998) for
the dEs. In Fig. 15, reasonable fits to the observed LFs of the two
clumps are achieved. The relative proportions of the galaxy types
given in Table 5 are similar for the two clumps, whilst the relative
number of dEs is approximately five times higher in the SW clump
compared to the NE. It should be noted that α = −1.35 for the dE
Schechter function is employed rather than the steeper α ≈ −1.6 to
−2 predicted by �CDM.

The second approach uses the double Schechter function
(Popesso et al. 2006) and others found that fits many clusters. Using
published parameter values, these LFs do not agree well with those
of Abell 2465. Other authors, e.g. Wolf et al. (2003) and Christlein
et al. (2009), also found that simple LFs do not fit available data and
obtain LFs similar in shape found here. They interpret the LFs as
the sum of early types plus a rising late-type component composed
of mostly faint blue star-forming galaxies.

Figure 13. I-band isophotes for galaxies in the field of Abell 2465 constructed with the adaptive kernel method. Left-hand panel: all galaxies on the red
sequence shown in Fig. 3 brighter than MI = −20.0. Right-hand panel: all the fainter galaxies with −16.0 > MI ≥ −20.0. The dominance of the SW clump
compared with the NE clump is notable. The scale of the isophotes is in arbitrary units.
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Double galaxy cluster Abell 2465 – I 1347

Figure 15. Fits to the LFs in Fig. 11 using the prescription given in Table 5.
Long dash–dotted: ellipticals, short dash–dotted: S0s, dots: spirals and short
dashes: dEs. The solid curve is the sum of the individual components.

Table 5. Relative normalization factors
for the LFs and assumed (B − I) colours.

E S0 Sp dE

(B − I) 3.16 2.79 2.16 2.5
SW clump 0.5 2.5 1.0 4
NE clump 0.35 1.75 0.7 0.2

Independent of the fitting method, the outstanding feature is
the difference in the numbers of faint galaxies following the dE
Schechter function. There is an excess in the SW clump which is
more luminous and slightly less massive, while the NE clump has
fewer faint galaxies. Additional spectroscopic data are needed to
establish the nature of the faint galaxies in the SW clump.

5 LIGHT P ROF ILES OF THE C LUMPS

The LF data are also employed to construct the light profiles. The
apparent i′ magnitudes were converted to absolute MI Cousins mag-
nitudes using the transformation in Section 4.2. The total light, LP,
within circular apertures of radius RP was measured starting from
the cluster centres increasing the radius in 0.15-arcmin steps for
projected radii. For Rp ≤ 2.75 arcmin circular areas were taken but
for larger radii, the areas were corrected for the area of the missing
segment that overlaps the other clump. The sums inside the aper-
ture radii or growth curves give smoother curves than the projected
luminosity.

The choice of the cluster centre affects results near the origin,
but its influence decreases with radius. The BCGs and the X-ray
centres of the NE clump differ by ∼22 arcsec. Therefore, the aper-
ture profiles were constructed several times taking different centres
within ±22 arcsec and averaged. This affects the central few points,
but becomes negligible for radii larger than ∼0.45 arcmin, where
the background’s uncertainty dominates. The errors are estimated
from the variance of the different counts and the counting statistics.

The resulting curves are shown in Fig. 16 where they are compared
with NFW growth curves for different concentration indices.

Several profile functions are known to fit galaxy clusters (e.g.
Katgert et al. 2004). Although the purpose here is not to deter-
mine the optimal profile function, it is convenient to compare NFW
profiles (Navarro et al. 1997) to the data in Fig. 16. The curves,
assuming that M/L ≈ constant, are for different concentration
parameters, c, computed using the formula for the projected mass:

Mp(R) = g(c)Mv

[
C−1[1/(cR̃)]

|c2R̃2 − 1|1/2
] + ln

(
cR̃

2

)]
(8)

(Łokas & Mamon 2001), where R̃ = R/rv, Mv is the virial mass,

g(c) = 1

ln(1 + c) − c/(1 + c)
, (9)

and C−1(x) = cos −1(x) for R > rs and cosh −1(x) if R < rs. The best-
fitting NFW profile was found using the KS test (Kreyszig 1991;
Press et al. 1992) on the projected growth curve in Fig. 16. Note
that data are displayed in a semilog plot whilst the KS test is done
linearly. In these determinations, the spectroscopic values of r200

were used. SW follows curves with c = 4 ± 2 and NE lies closer
to c = 10 ± 5. However, although the single NFW profile fits the
NE region relatively well, agreement is poorer for the SW clump,
particularly near Rp/r200 ≈ 0.3 where the data rise compared to the
nearby smooth NFW curves for different values of c.

Viewing Fig. 1, this rise should result from the bright BCG com-
plex near the centre of the SW clump. Consequently, a more com-
plicated composite profile containing a bright core yields a better
fit. However, which combination of profiles is the best is difficult to
decide with the present data. One possibility shown in Fig. 17 is to
add two NFW profiles, one with c = 120 which gives a sharp core
and the other with c = 1.0 which produces an extended outer region.
This confirms that the SW clump is more centrally concentrated as
it is also in X-rays.

Measurements of c based on mass give somewhat different values
for c. Katgert et al. (2004) found c = 4+2.7

−1.5 from a cluster ensemble,
while Biviano & Girardi (2003) found c ≈ 5.6 and Carlberg et al.
(1996) obtained c ≈ 4. Thus, c for the SW component might lie
within the normal range except for its core, but for NE clump c is
larger. Theoretical values of c based on the buildup of dark haloes
in CDM models (e.g. Zhao et al. 2003) agree with the lower value
of c, so the higher value for NE is difficult to explain, although the
value of c depends on the accretion rate of the cluster.

The value of c does depend on the choice of r200. However, to
achieve a fit resulting in c = 5 for the NE clump requires lowering
r200 to half its spectroscopic value, or 6σ . If the mass distributions in
the subclusters of Abell 2465 differ from those found here for light,
this may imply that they may have been disturbed by the merging
process.

As seen in Fig. 16, the total luminosities are LI = 4.4 ± 0.6 ×
1012 L� for SW and LI = 3.8 ± 0.7 × 1012 L� for NE. Using the
mean of the virial and X-ray masses gives mass-to-light ratios (M/L)
in the I band of M/L = 84 ± 12 and 112 ± 20, respectively. Noting
that (R − I) ≈ 0.7 for early-type galaxies, in the R band (Fukugita
et al. 1995), ϒR ≈ 1.9ϒ I so the mass ratios lie marginally within
the range for single galaxy clusters which is ϒR = 200 ± 50 in the
R band (Binney & Tremaine 2008). The more massive NE clump
has the higher M/L while the SW clump has the more concentrated
core.
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Figure 16. The total projected light inside radius Rp for the two clumps of Abell 2465 and their errors. Curves for NFW profiles with different concentration
indices are superimposed; from top to bottom: c = 100, 40, 20, 10, 5 and 2. SW has Lp = 4.4 × 1012 L� at r200 = 1.21 Mpc and fits with c ≈ 4, while NE has
Lp = 3.8 × 1012 L� at r200 = 1.25 Mpc with c ≈ 10.

Figure 17. Fit to the growth curve of the SW clump of Abell 2465 data
given in Fig. 16 using the double model discussed in the text. The dashed
curve is for an NFW profile with c = 1.0 and the dotted curve is for c =
120. The solid curve is their sum.

6 D ISCUSSION

The mass ratio near unity indicates that the components of
Abell 2465 are undergoing a major merger. However, the question
that needs to be answered is whether Abell 2465 is beginning the
merger or if a collision has already occurred. The main properties of
this double galaxy cluster have both some normal and some unusual
properties. On one hand, the masses and virial radii are similar to
single clusters as are their velocity dispersion anisotropies. On the
other hand, the differences in their LFs, M/L and the presence of
many star-forming galaxies located between the two clumps offer
additional clues to the processes involved in their earlier interaction
which tend to favour the past collision hypothesis.

6.1 Separation of the baryonic and collisionless components

After pericentric passage in galaxy cluster collisions, a generic re-
sult is that the highly heated baryonic gas is temporarily retarded
relative to the collisionless dark matter and galaxies with the out-
come that the X-ray centres are closer together than the dark mat-
ter centres. The separation is expected to be smaller for nearly
equal mass clusters than it is for higher mass ratios (e.g. Tormen,
Moscardini & Yoshida 2004; Poole et al. 2006). The gas cools and
re-merges with the collisionless components at later times. These
effects are observed in several recent (τcoll � 0.1–0.3 Gyr) colli-
sions with higher mass ratios, notably 1E 0657−56 (Clowe et al.
2006), Abell 2146 (Russell et al. 2010) and MACS J0025.4−1222
(Bradač et al. 2008b), where X-ray emission is between the dark
matter clumps as revealed by lensing and the galaxies.

For Abell 2465, the X-ray and BCG centres are shown in
Table 1. Displacements occur along the axis in Fig. 9 joining the
two clumps, putting the X-ray peaks between the BCGs. These
amount to 22.1 arcsec (85 kpc) for the NE and 2.4 arcsec (9 kpc) for
the SW. The isophotal peaks from the galaxies in Fig. 13 are more
unreliable. These change by ∼±25 arcsec depending on whether
different magnitude ranges or galaxy numbers are used to construct
the contours. These place the centres of the galaxy distributions near
or slightly inside the X-ray peaks along the axis. Relative to the
5.5 arcmin separating the clumps, displacements are small com-
pared to the above colliding clusters. Thus, while the separation of
the components is consistent with a past collision, using the X-ray
and BCG locations, their small separations suggest that the NE and
SW subclusters have not recently collided.

6.2 Nature of the interaction

The radial infall model (Beers et al. 1982) has often been used
as a first approximation to study head-on collisions, despite its
obvious limitations, including neglect of dynamical friction and gas
dynamics. It is an analytic solution based on the Einstein–de Sitter
cosmological model and has been employed by many investigators
(e.g. Gregory & Thompson 1984; Beers et al. 1991; Scodeggio
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Double galaxy cluster Abell 2465 – I 1349

Figure 18. Radial infall model solutions for Abell 2465. The rightmost
(dot–dashed) curve is the limit of bound solutions; solutions to its right are
unbound. Solutions for 8 × 1014 M� (solid) and 9 × 1014 and 7 × 1014 M�
(dotted) lie on either side. The vertical dashed line shows the measured value
of V r and circles mark the three possible solutions indicated by the numbers.

et al. 1995; Colless & Dunn 1996; Mohr & Wegner 1997; Donnelly
et al. 2001; Yuan et al. 2005; Hwang & Lee 2009) and will only be
outlined here. Briefly, two mass points with total mass, M, following
radial orbits are assumed and R, their separation; V , the relative
velocity; and t, the time are given parametrically in terms of the
development angle, η. The masses coincide at pericentre when η =
0, 2π, . . . and are at apocentre when η = π, 3π, . . . . The solution
requires M, the projected distance, Rp, and, t0, the system’s age,
usually set equal to the age of the Universe. Since the inclination
angle ϕ is unknown, the system of equations can be written in terms
of Rp = Rcos ϕ, the projected distance between the masses, radial
velocity difference, V r = Vsin ϕ and M. The bound case for the
two masses obeys V2

r ≤ 2GM sin2 ϕ cos ϕ and three solutions are
possible: two collapsing or ingoing and one expanding or outgoing.
The M and V r of Section 3 place the cluster pair within the bound
region, and hence the unbound case is not considered.

Using M = 8 ± 1 × 1014 M�, Rp = 1.265 Mpc and 10.895 Gyr,
the age of the universe at z = 0.245, one can construct curves of the
solutions within the permitted regions shown in Fig. 18.

With V r = 205 km s−1 the three possible solutions are as follows:
(1) η = 5.17 rad, ϕ = 5.95, R = 1.31 Mpc, Rm = 4.53 Mpc and V =
−1978 km s−1; (2) η = 3.53 rad, ϕ = 77.5, R = 6.01 Mpc, Rm =
6.07 Mpc and V = −210 km s−1 and (3) η = 2.68 rad, ϕ = 81.3,
R = 8.59 Mpc, Rm = 8.81 Mpc and V = +208 km s−1. Intuition
suggests that either solution (2) or (3) might be preferable given
the low observed value for V r, placing the two clumps near the
apocentre, but further data are required.

Numerical simulations provide a better time-scale estimate of
galaxy clusters, including galaxies, baryonic and dark matter. The
colliding models typified by e.g. Roettiger et al. (1996, 1997),
Ritchie & Thomas (2002) and Poole et al. (2006, 2008), while
idealized and differing in details, predict similar effects in the col-
lisions and suggest shorter times between collisions than what the
radial infall model predicts.

Published merger models focus on X-ray data and employ sev-
eral simplifications, including e.g. assumed initial density profiles,

velocities and spherical symmetry. Nevertheless, three effects com-
mon to the models are important for this study. (1) Head-on and off-
centre simulations generally merge soon after their second crossing,
indicating that the two subclusters in Abell 2465 have collided at
most once or are merging for the first time. (2) The gas components’
temperatures spike when the two centres cross and cool rapidly. Fol-
lowing Ritchie & Thomas (2002), the collision of M = 4 × 1014 M�
equal masses, close to that estimated for Abell 2465, the gas tem-
perature reaches ∼10 keV and cools to ∼3 keV in about 3–4 Gyr
as the clumps separate to apocentre and begin reconverging. The
temperatures of Section 3.3 will be consistent with this time-scale
if the cluster is in the post-impact stage, but cannot be used to prove
the physical state of the merger. (3) The collision produces an ex-
panding impact disc of gas as two clusters pass through each other
which breaks into two sections continuing outwards with the main
masses. Zu Hone, Lamb & Ricker (2009) have discussed ring for-
mation. The dark matter components pass through each other and
the core regions are not disrupted.

Tormen et al. (2004) analysed the evolution of merging galaxy
cluster satellites from hydrodynamical N-body simulations includ-
ing dark matter and baryonic gas. They fitted the statistics of col-
lisions including orbital properties, velocity dispersions, gas tem-
peratures, etc., as a function of the satellite and the main cluster
pre-merger mass ratio, mv/Mv. For mv/Mv ≈ 0.9, ∼2 Gyr is re-
quired to reach apocentre. Consequently, this and the temperature
ageing indicate that the time since the collision is of the order τ ∼
2–4 Gyr.

The cluster light profiles and LFs provide additional clues to the
interaction of the two components of Abell 2465. The SW clump has
a sharper core in both the visual and X-rays as well as more faint
galaxies shown in Figs 11 and 13. The two well-studied cluster
collisions involving recent impacts, 1E 0657−56 and Abell 2146
(Clowe et al. 2006; Russell et al. 2010), have lower mass ratios of
mv/Mv ≈ 0.1 and 0.3, respectively. Both exhibit a relatively dense
‘bullet’ emerging from a more extended ‘target’ and are near their
pericentres, having collided τ ∼ 0.1–0.3 Gyr ago, compared to τ ∼
3 Gyr for the cooler Abell 2465 now near the apocentre. By analogy
with these two objects, one identifies the SW clump with its sharper
optical and X-ray core as the bullet and the more extended NE
clump as the target. The presence of the 1.4-GHz radio source and
its higher mass further imply that the NE clump is the primary.

Although cluster cores are not disrupted, the outer regions can
be modified. The published simulations show complex behaviour
of the collisionless component. Bekki (1999) and Roettiger, Loken
& Burns (1993) demonstrated that the distribution of dark matter in
the secondary expands after the collision. Using the simple impact
approximation (Binney & Tremaine 2008), energy changes accom-
panied by mass-loss of the impacting systems occur. Intuitively,
one expects core regions to contract as they meet while the outer
layers of the clusters expand (e.g. Aguilar & White 1985; Funato
& Makino 1999). Some of the off-centre models (e.g. Ricker &
Sarazin 2001; Poole et al. 2006) show that when the secondary core
reaches apocentre and turns around, there is a significant displace-
ment of the cluster’s outer region which is assisted by a gravitational
slingshot similar to a trailing tidal trail. Thus, the SW clump might
be expected to be surrounded by more debris than the NE clump
which accounts for its excess of faint galaxies.

6.3 On the star-forming components

Previous investigations have found inconclusive results for differ-
ent cluster pairs regarding star formation. Hwang & Lee (2009)
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found enhanced star formation activity between the subclusters of
Abell 168 which they concluded had passed through each other
and none in Abell 1750 which may be in an early stage of merging.
Rawle et al. (2010) have found significant star formation in the bullet
cluster using Herschel. Caldwell & Rose (1997) reported enhanced
star forming in interacting clusters as did Cortese et al. (2004)
for Abell 1367, Ferrari et al. (2005) for Abell 3921 and Johnston-
Hollitt et al. (2008) for Abell 3125/28, but Tomita et al. (1996) and
De Propis et al. (2004) found no correlation for blue galaxies and
mergers. Ma et al. (2010) have described MACS J0025.4−1225,
which has several features in common with Abell 2465, as a post-
major merger. They found enhanced numbers of star-forming galax-
ies which they interpret to have been produced by the merger. The
emission-line galaxies in Abell 2465, however, lend weight to the
hypothesis that cluster mergers enhance star formation.

It has always been difficult to pin down the process or combina-
tion of processes leading to star formation in galaxies. Bekki (1999)
found that the time-dependent tidal gravitational field is an impor-
tant effect that can trigger starburst galaxies in mergers. Martig &
Bournaud (2008) also found that tidal fields in merging dense cos-
mological structures and the outskirts of galaxy clusters can induce
star formation. The presence of apparently distorted star-forming
galaxies with no detected companions in the clusters could be con-
sistent with this mechanism.

7 C O N C L U S I O N S

Spectroscopic and photometric observations of the double galaxy
cluster Abell 2465 are presented. There are five main conclusions
that can be drawn.

(1) Concerning the cluster dynamics, the virial masses of the
two subclusters are found from fuzzy clustering, which is used to
estimate the probability of a galaxy’s membership in each clump,
with the result that Mv = 4.0 ± 0.8 × 1014 M� for the NE member
and Mv = 3.8 ± 0.8 × 1014 M� for the SW member and the
virial radii are r200 = 1.21 ± 0.11 and 1.24 ± 0.09 Mpc for NE
and SW, respectively. The masses compare well with those from
X-ray scaling relations that also give temperatures of 4.1 ± 0.3
and 3.75 ±0.2 keV, respectively. The velocity difference between
the two subclusters is found to be 	V = 205 ± 149 km s−1 which
confirms that they are related. Measurement of the clusters’ velocity
dispersions with radius assuming spherical symmetry indicates that
the anisotropy parameter, β, is low.

(2) There is an excess of star-forming galaxies showing emission
lines. Of cluster members observed spectroscopically in Fig. 8, 37
per cent have detectable Hα emission. These have the properties
of star-forming galaxies. There are more emission-line objects in
the SW clump than in the NE clump and there appears to be more
emission-line galaxies than non-emission between the two clumps.
This does not seem to be explained by a selection bias. There is
no evidence for strong AGN activity in Abell 2465. This number of
emission-line objects between the clump centres is unusual when
compared to single galaxy clusters.

(3) The r′ and i′ magnitudes show well-defined red sequences in
each subcluster. The LFs determined within the central 0.6 Mpc of
each clump indicate a normal mixture of galactic types. However,
the SW region has more galaxies fainter than MI = −20.0 than its
NE companion. This could result from their collision or otherwise
would suggest different formation histories. The possibility of a
background cluster needs to be further checked.

(4) The light profiles of both components measured as growth
curves were fitted using NFW profiles. The NE clump is fitted with
a somewhat high concentration parameter c = 10, although this
depends on the adopted virial radius. The SW clump is fitted rather
badly with c = ∼4 and needs a profile with a more compact core.
A better fit is a sharp core (c = 120) surrounded by an extended
outer region (c = 1.0). This is consistent with Fig. 6 and published
ROSAT data showing that the X-ray core radii differ with rc of NE,
being about three times larger than that of the SW and indicates
that SW has a CC. The derived I-band M/L are ϒ I = 84 ± 12 and
112 ± 20 which puts them in the normal range for galaxy clusters.

(5) A consistent picture of the collision of the Abell 2465 com-
ponents is discussed. It is possible that the pair collided 2–4 Gyr ago
and are now near maximum separation. The small displacements
of the dark matter and baryonic matter as judged by the X-ray data
and distribution of the galaxies are consistent with their re-merging
after the collision. The high percentage of emission-line galaxies in
the spectroscopic sample may be a consequence of the collision and
is the strongest argument for a past interaction, but this might also
be the case if the merger is just starting and interaction occurs along
the interface between the two clusters. More models that include
the dynamics of the galaxies would be helpful.

A weak lensing study of the two components of Abell 2465 is
underway.
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Popesso P., Biviano A., Böhringer H., Romaniello M., 2006, A&A, 445, 29
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numer-

ical Recipes in Fortran, 2nd edn. Cambridge Univ. Press, Cambridge

C© 2011 The Author, MNRAS 413, 1333–1352
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/413/2/1333/1069422
by Dartmouth College Library user
on 25 April 2018



1352 G. A. Wegner

Ramella M. et al., 2007, A&A, 470, 39
Rawle T. D. et al., 2010, A&A, 518, 14
Raymond J. C., Smith B. W., 1977, ApJS, 35, 419
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