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AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

Dan Milisavljevic1, Raffaella Margutti1, Kyle N. Crabtree1, Jonathan B. Foster2, Alicia M. Soderberg1,
Robert A. Fesen3, Jerod T. Parrent3,4, Nathan E. Sanders1, Maria R. Drout1, Atish Kamble1, Sayan Chakraborti1,
Timothy E. Pickering5,6, S. Bradley Cenko7,8, Jeffrey M. Silverman9, Alexei V. Filippenko8, Robert P. Kirshner1,

Paolo Mazzali10,11,12, Keiichi Maeda13,14, G. H. Howie Marion9, Jozsef Vinko9,15, and J. Craig Wheeler9
1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA; dmilisav@cfa.harvard.edu

2 Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520, USA
3 Department of Physics & Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755, USA

4 Las Cumbres Observatory Global Telescope Network, Goleta, CA, USA
5 Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town, South Africa

6 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
7 Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA

8 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
9 University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259, USA

10 Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF, UK
11 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching, Germany
12 INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy

13 Department of Astronomy, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
14 Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo,

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
15 Department of Optics and Quantum Electronics, University of Szeged, Domter 9, 6720, Szeged, Hungary

Received 2013 October 17; accepted 2014 January 3; published 2014 January 21

ABSTRACT

Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are
thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central
wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species,
their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong
DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width
over short (�30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å
feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a
nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged
fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within
weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and
provide new constraints on the properties of DIB carriers.

Key words: astrochemistry – ISM: lines and bands – ISM: molecules – molecular processes – supernovae: general
– supernovae: individual (SN 2012ap)

Online-only material: color figures

1. INTRODUCTION

One of the oldest unsolved problems in optical and infrared
astronomy is the nature of diffuse interstellar bands (DIBs).
DIBs represent more than 400 absorption features observed
in optical and near-infrared spectra that are typically narrow
(FWHM intensity < 1 Å) and weak (less than 5% below the
continuum), with central wavelengths that do not correspond to
any known atomic or molecular species (Herbig 1995; Hobbs
et al. 2009; Geballe et al. 2011). They were first noticed in stellar
spectra by Heger (1922). Merrill (1934) subsequently uncovered
a number of DIBs as ubiquitous interstellar features and their
nature has been an enduring subject of speculation.

It is now well established that sources (or “carriers”) of
DIBs are found in the interstellar medium (ISM). DIB features
remain stationary in spectroscopic binaries, and there are rough
correlations between extinction and Na i D column density with
the intensity of DIB features (Herbig 1995). Searches for DIBs
in circumstellar shells have generally reported null detections
or results that cannot distinguish whether the absorption arises

in circumstellar material or the intervening ISM (Snow &
Wallerstein 1972; Luna et al. 2008).

Merrill (1934) was the first to suspect dust grains and/
or molecules as possible carriers of DIBs. After nearly a
century of observational, theoretical, and experimental work,
these two original suggestions have remained the primary
candidates, occasionally swapping in popularity (see Sarre 2006
and references therein). Current research favors multiple carriers
produced by a mix of fairly large and complex carbon-based
(“organic”) polyatomic molecules composed of cosmically
abundant elements such as H, C, O, and N. There has been
considerable investigation of polycyclic aromatic hydrocarbons
(PAHs) as DIB carriers, but as yet no firm associations between
PAH species and DIB features have been found (see Cox 2011
for a recent review).

Insights into the chemical and physical properties of DIB
carriers have come from the study of their behavior in different
interstellar environments, especially extragalactic ones. Most
studies have focused on nearby star systems including the
Magellanic Clouds and M31 (Cox et al. 2007; Cordiner et al.
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Figure 1. Optical spectra of the broad-lined Type Ic SN 2012ap during its first ∼ 40 days after explosion. Three prominent DIBs around 4428 Å, 5780 Å, and 6283 Å
are highlighted with dashed lines. SALT and Keck data have a 4–6 Å FWHM resolution. MMT data have 7 Å FWHM. Symbols show telluric absorptions in the SALT
spectra that have not been corrected. Spectra have been corrected for a redshift of z = 0.0121 measured from narrow H ii region lines of [O iii] λλ4959, 5007, Hα, and
[N ii] λλ6548, 6583 observed near the location of the supernova.

(A color version of this figure is available in the online journal.)

2008). Outside of limited work with quasars (e.g., Ellison et al.
2008), only supernovae (SNe) have been bright enough to probe
DIBs beyond the Local Group (see, e.g., Cox & Patat 2008).
In general, extragalactic studies have shown that DIB carrier
abundances can be similar to Galactic values, though systematic
differences sometimes exist.

In this Letter we report on recent observations of a broad-
lined Type Ic SN that exhibits some of the strongest DIBs ever
detected in an extragalactic source. These absorptions undergo
changes in intensity over relatively short timescales in a manner
that suggests that the SN explosion interacted with local carriers
of DIBs. We conclude that moderate-resolution spectra of the
SNe obtained shortly after outburst may provide a new and
powerful probe of DIBs and offer clues about the progenitor
systems of these explosions.

2. RESULTS

2.1. Discovery and Classification

SN 2012ap was first detected by the Lick Observatory Su-
pernova Search at coordinates α(2000.0) = 05h00m13.s72 and
δ(2000.0) = −03◦20′51.′′2 in the face-on galaxy NGC 1729
(d ≈ 43.1 Mpc; Springob et al. 2009) on February 10.23 UT
(Jewett et al. 2012). The SN is located in the outskirts of the
host galaxy some 7.1 kpc in projection from the nucleus in a
region with no obvious star formation.

The first reports of optical spectra of SN 2012ap classified it
as a Type Ib/c SN similar to SN 2008D not long after explosion
(Xu et al. 2012). This prompted extensive follow-up observa-
tions by our group that included optical spectra obtained with
the 10 m Southern African Large Telescope (SALT) using the
Robert Stobie Spectrograph (Burgh et al. 2003), the 10 m Keck-I

telescope using the Low Resolution Imaging Spectrometer
(Oke et al. 1995), and the MMT 6.5 m telescope using
the Blue Channel spectrograph (Schmidt et al. 1989). The
spectra shown in Figure 1 are part of a larger data set
(D. Milisavljevic et al., in preparation).

Unlike SN 2008D, which transitioned to a Type Ib SN
exhibiting conspicuous He i, the spectra of SN 2012ap obtained
weeks later continued to show broad features associated with
ejecta traveling ∼2 × 104 km s−1. Milisavljevic et al. (2012)
reported that these later spectra were similar to those observed
in broad-lined SN Ic such as SN 1998bw and SN 2002ap ∼ 1–2
weeks after maximum light (see Figure 1). Further examination
shows that the later spectra of SN 2012ap also resemble those of
SN 2009bb, an SN Ib/c that had a substantial relativistic outflow
powered by a central engine (Soderberg et al. 2010; Pignata et al.
2011).

2.2. Strong DIB Features

Superimposed on the broad-lined Type Ic features of
SN 2012ap are conspicuous absorptions with equivalent widths
(EWs) �1 Å associated with DIBs at the rest wavelength of the
host galaxy. The DIB features are strongest at 4428 Å, 5780 Å,
and 6283 Å, which are the wavelengths of well-known DIBs
typically seen in stellar spectra (Herbig 1995). In Figure 2 we
display enlarged regions around these features. Not shown is
another possible DIB detection near 6203 Å that may be con-
taminated by an OH telluric line at an observed wavelength of
6280 Å.

The central wavelengths of these DIBs do not change with
time, but the intensities do exhibit measurable changes that are
not uniform across different features (Figure 2, right column).
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Figure 2. Enlarged DIB absorption features of SN 2012ap. The left and middle columns show select epochs to illustrate possible changes in EW, and the right
column shows all EW measurements of narrow absorptions. Phase is with respect to B-band maximum on February 18.2 UT. The EW of the Na i D lines of the host
galaxy shows no measurable change. To further illustrate that the changes are not related to instrumental setups, spectra from the same spectrograph using identical
configurations are plotted.

(A color version of this figure is available in the online journal.)

The EW of DIB λ4428 decreased by 0.77 ± 0.25 Å over
∼10 days and DIB λ6283 decreased by 0.49 ± 0.28 Å over
∼30 days. The DIB λ5780 feature, on the other hand, shows a
weak but measurable increase of �0.2 Å over ∼10 days. The
Na i D line at rest with respect to the host shows negligible
change. The Na i D line associated with foreground Milky Way
extinction shows no change, as expected.

3. DISCUSSION

3.1. SN Interaction with DIB Carriers

The DIB absorptions seen in the spectra of SN 2012ap are
among the strongest extragalactic detections ever reported.
Detections of extragalactic DIBs at this distance are rare and
thus interesting as they allow one to compare Galactic ISM
chemical properties with extragalactic ones. However, what is
unique and most informative about the spectra of SN 2012ap
is that the DIB absorption strengths change with time and that
the changes are not uniform across different DIB features (see
Figure 2).

Various types of interaction between the SN and DIB carrier
material may explain the observed changes (see, e.g., Patat
et al. 2010). We favor the scenario that the carrier material is
nearby and the SN is actively interacting with it. This interaction
can take many forms. Photons may modify or destroy carrier

material via ionization and/or dissociation. If extremely nearby,
the forward blast wave initiated by the explosion and traveling
with velocity ∼0.4c (S. Chakraborti et al., in preparation) will
disrupt molecules and dust grains within a ∼0.01 pc radius in
the first 30 days.

3.2. Physical Constraints on the DIB Carriers

SN 2012ap peaked in the B band on February 18.2 UT (D.
Milisavljevic et al., in preparation), implying that the SN flux
increased and then decreased at optical wavelengths as the
intensities of DIB λ4428 and λ6283 became weaker and DIB
λ5780 became slightly stronger. This behavior is consistent with
active interaction wherein separate DIB carriers differing in
robustness and/or location are affected by the SN independently.

Using the time evolution of the blackbody tempera-
ture and total luminosity derived from photometry data
(D. Milisavljevic et al., in preparation), we estimated the UV
flux in the 5–50 eV spectral range as a function of distance and
time from SN 2012ap. To estimate the lifetimes of molecular
material in this radiation field, we approximated the photoab-
sorption cross sections in this frequency range for small neutral
molecules (Gallagher et al. 1988) and PAHs (Verstraete et al.
1990; Jochims et al. 1996), calculated the photoabsorption rate,
and assumed that all absorption events lead to ionization or dis-
sociation. Because these frequencies are above the peak of the
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blackbody curve, the absorption rates are highly sensitive to the
ionization potential (IP) of a molecule, and the shape and size
of its cross section.

The inferred lifetimes vary by several orders of magnitude,
but within a distance of ∼0.01 pc, at peak luminosity all but
the smallest neutral molecules are expected to have lifetimes
much less than one day. Within this distance, the population
of most neutral species will be rapidly depleted unless their
formation from the breakdown of larger material is even more
rapid. Cations, owing to their higher IPs, are estimated to have
lifetimes on the order of days under the same conditions.

In this context, it is interesting to note that the timescale for
the increase in DIB λ5780 is comparable to that of the decay
in DIB λ4428, possibly suggesting that the DIB λ5780 carrier
is a photoproduct of the DIB λ4428 carrier. In contrast, the
decay in DIB λ6283 occurs over a longer timescale, suggesting
the carrier is either more photostable or is more extended. The
ratio of the strength of DIB λ5780 to DIB λ5797 (the latter
is not detected toward SN 2012ap) is positively correlated with
increasing UV radiation environments (Vos et al. 2011). The
increase in strength of DIB λ5780 in these observations suggests
that this trend continues to very extreme UV environments.

Fullerenes have been proposed as DIB carriers, and are
significantly more stable against dissociation by UV radiation
than smaller molecules, typically requiring energies of more
than 10 eV for dissociation (Diaz-Tendero et al. 2003). This
increased dissociation energy might allow fullerenes to survive
longer in the radiation environment around SN 2012ap. Using
the photoabsorption cross section of C60 as a representative
case (Berkowitz 1999), we estimate that neutral fullerenes
(IP ≈ 7 eV) near SN 2012ap will be rapidly ionized, but
fullerene cations (IP ∼ 11 eV) should have lifetimes of order
days. The fact that the observed changes in the EW of these
DIB features occur on the timescale of days in such an intense
UV field suggests that the carriers are fairly robust to ionization
and dissociation (particularly DIB λ5780), consistent with small
cations or charged fullerenes.

3.3. Implications of a DIB–SN Subtype Correlation

Two other core-collapse SNe in the literature exhibit con-
spicuous DIBs in low-resolution spectra, and we examined their
archival data: the Type Ib SN 2008D with spectra published by
Modjaz et al. (2009), and the broad-lined Type Ib/c SN 2009bb
published by Pignata et al. (2011). Figure 3 shows early-time
spectra of these objects, with conspicuous DIB features high-
lighted. Although the relatively low spectral resolutions and
limited temporal sampling prevent detailed analyses of these
additional objects, the archival spectra suggest that some DIB
features seen in these other SNe have both narrow and broad
components and that they may vary as they do SN 2012ap.

All three SNe exhibited broad spectral features associated
with ejecta moving at high velocities (�2 × 104 km s−1) within
weeks of explosion and all were observed to have a color
excess E(B − V ) � 0.5 mag that implies substantial extinction
(Soderberg et al. 2008; Modjaz et al. 2009; Pignata et al. 2011; D.
Milisavljevic et al., in preparation). SN 2012ap and SN 2009bb
share similar explosion parameters of estimated ejecta mass
(∼2–4 M�), 56Ni mass (∼0.2 M�), and explosion kinetic energy
(∼1.5 × 1052 erg). On the other hand, SN 2008D is different in
that its broad lines disappeared within weeks as it transitioned to
a SN Ib and its explosion energy (∼1.5–6 ×1051 erg; Soderberg
et al. 2008; Tanaka et al. 2009) is lower than those of SN 2012ap
and SN 2009bb.
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Figure 3. Model spectrum of known DIB absorption features compared to
early-time spectra of SN 2012ap, SN 2009bb (Pignata et al. 2011), and
SN 2008D (Modjaz et al. 2009). SN 2009bb and SN 2008D have been
corrected for redshifts of z = 0.010 and z = 0.007, respectively. All SNe
exhibit conspicuous absorptions having central wavelengths of well-known
DIBs highlighted with vertical dashed lines. Time is with respect to maximum
light. The model DIB spectrum was created from a catalog retrieved online at
http://leonid.arc.nasa.gov/DIBcatalog.html.

(A color version of this figure is available in the online journal.)

Chance alignments between DIB-carrier-rich molecular
clouds and these SNe are possible. However, given that the
three SNe with conspicuous DIB absorptions examined in the
literature are spectroscopically similar, it may be that the SN
progenitor systems are related to the sources of the DIBs. If
true, the carrier material responsible for the observed DIB ab-
sorptions in these SNe should lie fairly close to the explosion
site and could be associated with mass loss from the progenitor
star.

Mass loss in massive stars is influenced by a number of factors
including the strength of their winds, rotation, the presence of
a binary companion, possible eruptive mass-loss episodes, and
environmental metallicity (Chiosi & Maeder 1986; Humphreys
& Davidson 1994; Nugis & Lamers 2000). To investigate what
role metallicity might play in linking the three SNe, the relative
strengths of narrow lines from coincident host–galaxy emission
at the site of SN 2012ap were measured using the method
described by Sanders et al. (2012). From the N2 diagnostic
of Pettini & Pagel (2004), we measure an oxygen abundance
log(O/H) + 12 = 8.79 with uncertainty 0.06 dex. Adopting a
solar metallicity of log(O/H)� + 12 = 8.69 (Asplund et al.
2005), our measurement indicates that SN 2012ap exploded
in an environment of around solar metallicity that lies in
between the metallicity estimates of SN 2009bb (1.7–3.5 Z�;
Levesque et al. 2010) and SN 2008D (0.5–1 Z�; Soderberg et al.
2008). Considering broad-lined SNe Ic are typically found in
environments of subsolar metallicity (Kelly & Kirshner 2012;
Sanders et al. 2012), the metallicity of these three SNe is
somewhat anomalous. However, these objects were discovered
by surveys targeting high-mass metal-rich galaxies, so this weak
trend may be influenced by an observational bias.

A handful of reports connect strong DIB features observed in
a narrow subset of mass-losing stars with circumstellar shells
(e.g., Tug & Schmidt-Kaler 1981; Cohen & Jones 1987). The
circumstellar material is often nitrogen-rich and the strength of
the associated DIB features may vary (Heydari-Malayeri et al.
1993). Le Bertre & Lequeux (1993) identified Wolf–Rayet (WR)

4

http://leonid.arc.nasa.gov/DIBcatalog.html


The Astrophysical Journal Letters, 782:L5 (6pp), 2014 February 10 Milisavljevic et al.

stars of the WN subtype and luminous blue variable (LBV)
stars enriched in nitrogen as candidate objects with circumstellar
shells containing DIB carriers, and proposed that nitrogen could
act either as a constituent of the DIB carriers or as a catalyst for
their production.

It is intriguing that families of WR and LBV stars may
be associated with DIB features. WR stars are suspected
progenitors of SNe Ib/c (Gaskell et al. 1986), and have been
implicated for SN 2008D and SN 2009bb (Soderberg et al. 2008,
2010; Modjaz et al. 2009; Pignata et al. 2011). Although LBVs
are not widely believed to be the direct progenitors of SNe Ib/
c, WR stars can evolve from a prior LBV phase (Conti 1976).
These stars exhibit varying degrees of asymmetric mass loss
(see, e.g., Nota et al. 1995), thus an observer’s line of sight with
respect to a circumstellar disk could be an important factor in
explaining why strong DIB detections like those reported here
are rare.

Finally, we note that varying strengths in narrow absorption
lines attributable to interaction between an SN and a local
environment has recently been recognized in a growing number
of cases, with significant implications for the nature of the
progenitor systems (e.g., Patat et al. 2007; Blondin et al. 2009;
Dilday et al. 2012). However, those reports have been for Na i D,
Ca ii, Hα, He i, and Fe ii lines with line-of-sight blueshifted
velocities of �100 km s−1 originating from circumstellar
material around Type Ia SNe. This is not the same as what
is being observed in the core-collapse SN 2012ap, where the
DIB features are near zero velocity and are associated with a
carrier material having radically different physical properties.

4. CONCLUSIONS

The broad-lined Type Ic SN 2012ap exhibits DIB absorptions
that are among the strongest ever detected in an extragalactic
object. The DIB features centered around 4428 Å, 5780 Å, and
6283 Å undergo changes in EW over relatively short timescales
(t < 30 days) indicative of interaction between the SN and DIB
carriers. Similar absorptions observed in archival spectra of two
additional SNe suggest that SN 2012ap may belong to a subset
of energetic SNe Ib/c that exhibit changes in conspicuous DIB
absorption features. If true, this correlation is consistent with the
DIB carrier-rich material being located close to the explosion,
fairly resistant to the strong UV field, and potentially associated
with mass loss of the progenitor star.

Our data with 4–7 Å resolution that monitored the spectral
evolution of SN 2012ap during its rise and fall in flux was
on the cusp of detection for this uniquely strong source of
DIB absorptions. Only the broadest DIB features known to
have FWHM widths of approximately 2–12 Å were observed
in our data set. Thus, multi-epoch observations of SNe with
spectral resolutions of �1 Å beginning within days of explosion
could uncover the presence of a larger family of DIB features.
Such observations would be much more sensitive to possible
variations in Na i absorption strength, as well as detect possible
subtle changes in the velocities of the Na i/DIB features.
Observed in this way, SNe with DIB absorptions have the
potential to reveal unique information about the mass-loss
environment of their progenitor systems and probe DIB carriers
in new ways that can bring us closer to understanding their
nature.
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