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Do loading path and specimen thickness affect the brittle
compressive failure of ice?

A.L. FORTT, E.IM. SCHULSON

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000, USA
E-mail: andrew.l.fortt@dartmouth.edu

ABSTRACT. Compressive experiments were performed on square (160 mm x 160 mm) prismatic speci-
mens of columnar-grained, S2 freshwater ice, biaxially loaded across the columns at —10°C. The
work focused on brittle behavior, achieved by deforming the specimens at an applied strain rate
of 45+1.2x1073s" in the direction of shortening. The results show that the specimen thickness
(25-150 mm) has no detectable effect on the terminal failure strength of the ice. Likewise, the strength
of the ice when loaded under proportional loading, where the minor stress varies during the test, was
similar to that when loaded under a constant minor stress, implying that terminal failure depends only

on the stress state and not on the path taken.

1. INTRODUCTION

Here we present terminal failure data obtained from the
across-column biaxial compression of columnar-grained S2
ice loaded using two procedures. The first procedure, termed
proportional loading, has been used in previous investiga-
tions (e.g. lliescu and Schulson, 2004). We use it here to
investigate whether specimen thickness affects failure under
low confinement where Coulombic shear faulting limits the
compressive strength (lliescu and Schulson, 2004). In this
procedure the minor stress, 0,5, is applied in direct pro-
portion to the major stress, oq;, such that the stress ratio
R = 035/01; defines the loading path in principal stress
space. The second procedure, termed the constant minor
stress procedure, simply applies a constant minor stress, o5,
throughout the experiment. The question is whether the
loading path affects the failure stress. The question is an
important one, because it bears on the issue of terminal
failure and whether the failure stress depends only on the
stress ratio at failure or also on the path taken to get there. We
also consider whether specimen thickness affects the failure
stress. The work follows from earlier studies on the strength
of columnar-grained S2 ice. In that work the material was
brought to terminal failure using either proportional loading
(Frederking, 1977; Timco and Frederking, 1986; Richter-
Menge, 1991; Smith and Schulson, 1993; Schulson and
Nickolayev, 1995; lliescu and Schulson, 2004) or constant
confinement (Sammonds and others, 1998).

2. EXPERIMENTAL PROCEDURE

Biaxial compression experiments were performed on square
prismatic specimens of freshwater columnar S2 ice, har-
vested from 200 mm thick sheets grown in the laboratory
using the procedure described by Smith and Schulson (1993).

The ice was transparent and free from both cracks and
visible air inclusions. Its density at —10°C was 916.0+
5.2kgm™, in close agreement with reported values of fully
dense freshwater ice (Hobbs, 1974). The mean column
diameter was 5-6 mm. The crystallographic c axes were
perpendicular within £8° to the longitudinal axes of the
columnar grains, but randomly orientated within this plane.
Thus, the material can be classified as S2 ice (Michel and
Ramseier, 1971).

Square prismatic specimens (160 mm x 160 mm) were
prepared from roughly cut blocks using a horizontal milling
machine. Opposing specimen faces were machined parallel,
to a tolerance of +=0.05 mm. Four thicknesses (dimension X3
in Fig. 1b) were used: ~25, ~50, ~75 and ~150 mm. In the
constant minor stress tests the thickness was constant at
~50 mm. The specimens were prepared with the long axes
of the columnar-shaped grains perpendicular to the largest
faces, as shown in Figure 1a.

In both loading procedures biaxial compressive loads
were applied across the long axis of the columnar-shaped
grains (Fig. 1b), using a multiaxial servohydraulic testing
system (MATS) and polished brass platens placed on the
MATS loading platens. A strain rate of 17 = (4.5+£1.2) x
107s™" was applied along the direction of shortening.
Terminal failure generally occurred at a strain of &7 =
(4.2+1.1)x 1073, In all tests the ice was equilibrated at
-10.0£0.2°C.

Proportional-loading procedure

In this procedure the horizontal axis of the MATS was
programmed to control a set proportion of the load
produced by the vertical actuators. The proportion was set
to be a constant for the duration of each test, but varied
slightly, typically by AR ~ £0.03. The proportion was
measured at the time at which the maximum stress occurred.
Tests were performed over the range 0.02 < R < 0.14. The
loading history is shown schematically in Figure 2. With
reference to that figure:

(@) The specimen was placed on the lower platen of the
MATS and the pair of major (vertical) actuators was
slowly brought into contact with the specimen. The load
was kept small (~0.03MPa) to allow the horizontal
actuators to reorient the specimen as needed, for
uniform contact along the loading faces.

(b) The pair of minor (horizontal) actuators was slowly
brought into contact with the specimen until a small
load (~0.03 MPa) was applied.

(c) and (d) The major load followed by the minor load was in-
creased slightly (to ~0.15MPa) and the specimen was
allowed to creep seat. A time of ~10 min was used, as this
has previously been found to yield reproducible results.
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Fig. 1. (@) Composite polarized photograph of laboratory-grown freshwater ice specimen microstructure. (b) Schematic representation of
loading stage. In the proportional-loading procedure 0,; = Roq4. In the constant minor stress procedure o3, is constant.

(e) The minor load was adjusted to give the desired
proportion between the major and minor loads.

(f)  Once the test began, the controller instructed the major
actuators to move at a given displacement rate until a
given displacement was reached, during which period
the load increased linearly with time until dropping
suddenly on formation of a fault.

Constant minor stress procedure

In this procedure the pair of minor actuators was pro-
grammed to maintain a constant stress, 0,5, on the specimen
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Fig. 2. The oy1—02, loading path for the proportional-loading and
constant minor stress procedures.

(Fig. 1b), independent of the vertical stress. The stress level
was held constant during each test, but was varied between
tests, 0.15 < g3, < 3.07 MPa. Under higher minor stresses
testing became unsafe: on failure the horizontal actuators
continued to try to apply the programmed value of o5; in
doing so they would move quickly in, crush the specimen
and possibly damage the actuator platens. (This was not a
limitation in proportional loading; in that procedure when
the vertical load dropped to zero on failure so did the
horizontal load and the horizontal actuators backed off.) The
loading history is shown schematically in Figure 2. With
reference to that figure:

(a-d) The initial loading was identical to that of the
proportional-loading procedure.

(e) The pair of major actuators was switched to stroke
control, locking them in place. The load on the minor
horizontal actuators was adjusted until the desired level
was reached. Due to the major actuators being locked
in place, the load on them would decrease or increase,
in approximate proportion to Poisson’s ratio.

(f)  The pair of major actuators was again instructed to
maintain a given displacement rate, until a given
displacement was reached. Concurrently, the pair of
minor actuators was instructed to maintain a constant
load, independent of the load from the vertical actuators.

3. RESULTS
Specimen thickness

Figure 3a shows a typical stress-time curve for the
proportional-loading procedure. We define the terminal
failure stress as the highest stress recorded during the test. In
every experiment the ice failed through the formation of
either a single Coulombic fault or a pair of conjugate
Coulombic faults (Fig. 3c), as found earlier (lliescu and
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Fig. 3. (a, b) Stress—time curves from (a) a proportionally loaded test and (b) a constant minor stress test. (c, d) Photographs of a faulted
specimen (X3 = ~50 mm) showing conjugate faults from (c) a test performed under proportional loading, corresponding to the stress—time
curve in (a), and (d) a test performed under constant minor stress, corresponding to the stress—time curve in (b).

Schulson, 2004). Figure 4a—c show the terminal failure
stresses obtained from each test, separated into bins
according to the four specimen thicknesses (~25, ~50,
~75 and ~150mm). From Figure 4d it can be seen that all
the data are confined within the same band of scatter.
Table 1 lists the slope, intercept and correlation coefficient,
obtained by applying a linear trend to the data in each bin.
There appears to be no systematic effect of thickness on
either the slope or the intercept. We conclude therefore that,
over the range explored, specimen thickness has no signifi-
cant effect on the brittle failure stress of S2 columnar-grained
ice biaxially loaded under moderate confinement across the
columns. This conclusion is in agreement with previous
findings on the brittle compressive strength of granular ice
(Kuehn and others, 1993) loaded uniaxially.

Loading path

Figure 3b shows a typical stress-time curve for a constant
minor stress test. Note that o5, is constant. Again, terminal
failure was marked by the formation of either a single

Coulombic shear fault or a pair of conjugate Coulombic
shear faults over the range of o, investigated. An example
is shown in Figure 3d. The faults were identical in appear-
ance to those formed in specimens that were proportionally
loaded. Figure 5 compares terminal failure strengths ob-
tained using the constant minor stress procedure with those
obtained using the proportional-loading procedure. To
avoid confusion we show only the limits of the band of
data shown in Figure 4d, but show the full set of data
obtained by lliescu and Schulson (2004). The results
indicate that there is no detectable effect of loading path
on the strength of the ice.

4. DISCUSSION

It is not surprising that the specimen thickness has an
insignificant effect on the compressive strength (beyond that
where buckling limits failure). When loaded across the
columns, S2 ice exhibits essentially plane-strain inelastic
deformation within the X;-X, plane (defined in Fig. 1a), and
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Fig. 4. Failure stresses obtained using the proportional-loading procedure, grouped according to specimen thickness. All specimens
possessed dimensions of X; = X; = ~160 mm. The value listed in the legend is that for the thickness. Note the different scales on the
abscissa and ordinate. (a) X3 = ~25mm; (b) X3 = ~50 mm; (c) X5 = ~75mm; and (d) X3 = ~150 mm. All data grouped together.

so the thickness is not an important factor. Along any
direction within that plane, there were enough grains (>16)
to constitute polycrystalline behavior under across-column
loading. Cracks nucleate on planes parallel to the no-load
direction, and then lengthen somewhat along the direction

Table 1. Parametric values obtained from applying a linear trend to
the data in each thickness bin and combining all the data ()

Specimen Slope Intercept Correlation
thickness, X; coefficient, r*
mm MPa
~25 6.40 3.36 0.83
~50 7.59 2.05 0.77
~75 5.64 3.90 0.82
~150 - - -
by 6.92 2.73 0.77

of shortening, eventually linking up to form the Coulombic
fault (Schulson and others, 1999).

Turning to the observed path independence of terminal
failure, this implies that the brittle compressive strength of S2
ice under low minor stresses depends only on the stress state
at terminal failure, and not on the path taken to get there.
This result is gratifying in that it is in keeping with current
theory of brittle compressive failure (Renshaw and Schulson,
2001). It suggests that the evolution of damage that
eventually interacts to trigger faulting is also independent
of the path taken. We did not perform detailed micro-
structural examinations such as those performed by Schul-
son and others (1999) and cannot say with certainty that this
is true. However, if the evolution does depend on the path,
then we expect the dependence to be relatively small.

Finally, the results of the present experiments strengthen
earlier results of path independence (Schulson and lliescu,
2006). There we asked whether terminal failure of S2 under
proportional across-column straining occurred through a
different process than under proportional loading; we found
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G Proportional loading (lliescu and Schulson, 2004)
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Fig. 5. Comparison of failure stresses obtained using the propor-
tional-loading and constant minor stress procedures. Note the
different scales on the abscissa and ordinate.

that it did not. Along both paths, the failure mode and failure
stress were indistinguishable.

How general are the current findings? Although strictly
only applicable to freshwater S2 columnar ice loaded within
the regime of brittle behavior, we expect they also apply to
granular ice triaxially loaded under moderate confinement.
We base that expectation on the observation by Weiss and
Schulson (1995) that the low-confinement triaxial strength of
granular ice determined through proportional loading was
similar to that obtained by Jones (1982) and by Rist and
Murrell (1994) under constant confining pressure. Our
sense, therefore, is that, in general, the brittle compressive
failure of ice loaded under confinement sufficiently low that
Coulombic faulting limits strength depends only on the
stress state at terminal failure, independent of the loading
path through which that state is reached.

5. CONCLUSIONS

In conclusion, results from biaxial compression experiments
at =10°C on laboratory-grown freshwater S2 columnar ice,
biaxially loaded across the columns at an applied strain rate
sufficiently high to impart brittle behavior (¢11 = 4.5 x
107 s7") show that specimen thickness (over the range 25—
150 mm) has no detectable effect on the brittle compressive
strength. Similarly, the strength of the ice obtained when

loaded under proportional loading is indistinguishable from
that obtained when loaded under a constant minor stress.
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