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sea urchin egg: localization to both cortical vesicles and plasma membrane
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Summary

The exocytotic release of secretory products from
fragments of sea urchin egg cortex has been shown to
be inhibited by covalent modification of membrane
sulfhydryl groups with N-ethylmaleimide (NEM).
Exocytotically competent preparations of reconsti-
tuted cortex, formed by recombination of purified
cortical vesicles (CVs) with fragments of egg plasma
membrane (PM) were also inhibited by treatment
with NEM. The cellular localization of sulfhydryl-
containing constituent(s) responsible for inhibition
was investigated by treating CVs and/or PM with
NEM prior to reconstitution. Both native cortex and
cortex reconstituted with NEM-treated components
were challenged with calcium-containing buffers.
Exocytosis was monitored by phase-contrast mi-
croscopy, and quantitated by light scattering. Evi-
dence for CV-PM fusion was obtained with an im-
munofluorescence-based assay that permits

visualization of the transport of CV content proteins
across the PM. Cortex reconstituted by recombi-
nation of NEM-treated CVs with untreated PM or by
recombination of untreated CVs with NEM-treated
PM was exocytotically competent, whereas cortex
formed by recombination of NEM-treated CVs
with NEM-treated PM was inactive. These results:
(1) support the hypothesis that the mechanism of
exocytosis in native and reconstituted cortex is the
same; (2) provide evidence that both CV and plasma
membranes participate in the release of CV contents
from reconstituted cortex; and (3) suggest that sulf-
hydryl-containing protein(s) present on the surface
of purified CVs and plasma membrane are involved
in exocytosis.

Key words: exocytosis, secretion, N-ethylmaleimide.

Introduction

Regulated exocytosis, the release of stored secretory prod-
ucts in response to a stimulus at the cell surface, is a
characteristic feature of complex multicellular organisms.
The set of stimuli to which a secretory cell can respond is
determined by the specific array of surface receptors and
ion channels that it expresses. Activation of most, if not
all, of these receptors triggers an increase in the intra-
cellular concentration of calcium ion, which stimulates
exocytosis (Penner and Neher, 1988).

The sea urchin egg is a particularly convenient system
for studying the regulated form of exocytosis. In the
mature egg, a specialized set of secretory vesicles known
as cortical vesicles (CVs) are firmly attached to the
cytoplasmic face of the plasma membrane (PM). Upon
fertilization, an increase in the cytosolic concentration of
Ca®* (Steinhardt et al. 1977; Turner et al. 1986) triggers
the fusion of the CVs with the PM. This process deposits
proteins and mucopolysaccharides from the CVs onto the
surface of the egg, where they contribute to the formation
of the fertilization envelope and the hyaline layer (Kay
and Shapiro, 1985).

Fragments of egg cortex, consisting of the PM, the CVs
and the vitelline layer, comprise an exocytotically com-
petent system. When bathed in calcium-containing
buffers, egg cortex undergoes a reaction at physiologically
relevant concentrations of Ca%* (Moy et al. 1983; Whitaker
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and Baker, 1983) that results in the fusion of the CV and
plasma membranes; and releases CV content proteins onto
the extracytoplasmic surface of the PM (Whitaker and
Baker; 1983; Chandler, 1984; Zimmerberg et al. 1985;
Crabb and Jackson, 1985).

CV-free egg PM can be easily obtained by dislodging the
CVs from cortical lawn (CL) preparations of egg cortex.
This procedure produces a PM ‘lawn’, consisting of an
array of PM fragments attached via their vitelline layer to
a polylysine-coated microscope slide (Kopf et al. 1982;
Crabb and Jackson, 1985). Fragments of egg cortex can be
reconstituted by recombining purified CVs with a PM
lawn (Crabb and Jackson, 1985; Whalley and Whitaker,
1988). The reconstituted cortical lawns (RLs) produced by
this procedure appear to be exocytotically competent:
Ca®*-containing buffers trigger a reaction that results in
fusion of the CV and plasma membranes, and the depo-
sition of CV contents onto the extracytoplasmic surface of
the PM (Crabb and Jackson, 1985). While it remains to be
determined whether reassociation correctly reconstitutes
the CV-PM junction, the results of binding specificity and
protease inhibition experiments suggest that reassoci-
ation may be a specific, protein-mediated event (Jackson
and Modern, 1990).

The observation that cortical exocytosis can be inhibited
by sulfhydryl-modifying agents such as N-ethylmaleimide
(NEM; Haggerty and Jackson, 1983; Jackson et al. 1985)
suggests that a sulfhydryl-containing protein may be a
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part of the exocytotic apparatus of the cell. As an ad-
ditional measure of the authenticity of reconstitution, we
have investigated the NEM sensitivity of reconstituted
cortex. Our results suggest that the release of CV contents
from reconstituted cortex and native cortex are mechanis-
tically equivalent in that both can be inhibited with NEM.
In addition, analysis of the exocytotic capability of cortex
reconstituted from NEM-treated components demon-
strates that the NEM-sensitive component is present both
in purified CVs and PM.

Materials and methods

Materials

Strongylocentrotus purpuratus were maintained at 9-12°C in a
refrigerated aquarium containing Instant Ocean sea water from
Aquarium Systems (Mentor, OH). Soybean trypsin inhibitor
(SBTI), NEM, poly-L-lysine (molecular weight 2x10%), Pipes, KCl,
MgCly, EGTA, pi-dithiothreitol (DTT), goat serum and fluor-
escein igothocyanate (FITC)-conjugated rabbit anti-mouse IgG
(whole molecule) were purchased from Sigma Chemical Co. (St
Louis, MO). NH,Cl, NaH,PO, and NaCl were from Fischer
Scientific (Pittsburg, PA). The mouse IgA monoclonal antibody to
hyalin was prepared by Dr Carol Vater in this laboratory (Vater
and Jackson, 1990).

Preparation of reconstituted cortical lawns (RLs)

PM lawns and cortical lawns (CLs) were prepared in soybean
trypsin inhibitor (SBTI)-containing buffers, as previously de-
scribed (Crabb and Jackson, 1985). CVs were dislodged from
purified egg cell surface complex (CSC) by gentle homogenization
in TKE buffer (50mm Tris~-HCl, 600mM KCl, 5mm EGTA,
pH 8.0) containing 10 ug ml~! SBTI, and purified by two rounds of
differential centrifugation (Crabb and Jackson, 1985). PM lawns
and CVs were recombined to form RLs as follows (Crabb and
Jackson, 1985): samples of a CV suspension (Asp=10) were
brought to pH 6.8 by the addition of 1.0 M Pipes, pH 6.1, and 150-zd
samples were drawn (with a 2cmXx2cm wick of filter paper) into
microscope slide chambers containing PM lawns. CVs were
allowed to bind to the PM lawns for a period of 15min. The
coverglass was removed from the chamber and unbound CVs were
washed away by dipping the slide five times into each of two 100-
ml beakers of PKME buffer (50 mm Pipes, 425 mm KCl, 10 mm
MgCl,, 10mm EGTA, pH6.8) containing 1ugml™' SBTIL Ad-
ditional buffer (PKME containing 10 ug m1~! SBTI) was added to
each sample, and a coverglass was placed on the chamber. CV
binding was quantitated by analysis of the amount of light
scattered by bound CVs when the lawn was observed with dark-
field optics (Jackson and Modern, 1990).

Analysis of exocytosis. )

Exocytosis in CLs and RLs was initiated by drawing PKME buffer
containing 1 mM free Ca2* into the microscope slide chamber, and
the extent of reaction was quantitated by light-scattering analy-
gis (Zimmerberg et al. 1985; Crabb and Jackson, 1986). Cortical
exocytosis in CSC was quantitated by a turbidity-based assay
(Sasaki and Epel, 1983; Haggerty and Jackson, 1983). Fusion of
the CV and plasma membranes was confirmed by an immuno-
fluorescence-based assay that detects the vectorial transfer of
hyalin, a CV content protein, across the PM (Crabb and Jackson,
1985). Briefly, CLs from which most CVs had been removed by
shearing with PKME buffer, or RLs, were prepared on cover-
glasses and placed in a coverglass rack. Exocytosis was initiated
by submerging the rack into a beaker containing PKME buffer
with 1 mm free Ca2*. After a 20-8 incubation, the reaction was
stopped and the samples fixed by submerging the rack into a
beaker containing PKME buffer with 1% glutaraldehyde, for
20 min. Glutaraldehyde was removed by washing once for 15 min
with PK47sME (same as PMKE, but with 475 mm KCl), and twice
for 16 min with PKME. Positive controls were permeabilized by
incubating for 15 min in PKME containing 0.6 % Triton X-100,
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and washed twice for 10 min with PKME. Non-specific sites were
blocked by incubation for 30 min with PKME/5% normal goat
serum. Samples were incubated for 1h with a 1/200 dilution of
CV-69 ascites fluid (a hyalin-specific murine monoclonal anti-
body; Vater and Jackson, 1990) in PKME/5 % normal goat serum,
followed by three 10-min washes in PKME, Next, the samples
were treated with a 1/250 dilution of FITC-conjugated goat anti-
mouse IgG in PKME/6 % normal goat serum, washed three times
(10 min each) in PKME, mounted on chamber slides, and ob-
served. Paired phase-contrast and immunofluorescence micro-
graphs were taken of identical fields using Iford HP5 film
(ASA =400, push developed to ASA=800) and a Zeiss universal
microscope equipped with a x63 Planapo objective. Measure-
ments were made with a stage micrometer.

Reaction conditions for NEM modification

NEM-treated fractions were prepared as follows: CSC and CVs in
TKE buffer containing 10 ugml~' SBTI and 1 ugml~! leupeptin
were brought to 5 mmM NEM and incubated for the indicated period
of time (usually 15 min) at 20°C. NEM was added from a freshly
prepared 200 mMm stock solution in 0.5M KCl. Reactions were
terminated by the addition of DTT (from a 1.0 M stock) to a final
concentration of 10 mm. CLs, RLs and PM lawns were incubated
with 56 mM NEM in PKME buffer containing 10 ugml~! SBTI and
1pgml™! leupeptin for the indicated pericd of time (usually
30min) at room temperature. Reactions were terminated by
dipping each sglide five times into a 100 ml beaker containing
PKME buffer with 1mM DTT, and five times into a beaker
containing PKME buffer without DTT. The washed samples were
flooded with PKME buffer containing 10 ugml~! SBTI, 1 ygml~!
leupeptin, and a coverglass was placed on each chamber.

Resuits

NEM inhibits exocytosis in CLs
We have previously shown that treatment of suspensions
of egg cortex (CSC preparation) with NEM inhibits exocy-
togis by increasing the threshold Ca®* concentration
required to elicit reaction (Jackson et al. 1985). At pH 8.0,
complete inactivation of CSC to a challenge by buffers
containing 1mm free Ca?* required 15min with 5mm
NEM (Fig. 1A). Similar results were obtained with frag-
ments of egg cortex attached to poly-L-lysine-coated glass
glides (CL preparations, Fig. 1B). CLs that had been
treated at pH 6.8 with 5 mM NEM for the indicated period
of time were challenged with a buffer containing 1 mm free
Ca®* and exocytosis was assessed by light-scattering
analysis. Under these conditions, complete inactivation
was achieved within 30 min. The control (Fig. 1B, open
symbol) showed that a 30 min incubation in the absence of
NEM is not inhibitory. Though it appears from the data
presented in Fig. 1 that there is a difference in the rates of
inactivation of the CSC (Fig.1A) and CL (Fig. 1B)
samples, this difference is due to the higher pH used in the
CSC inactivation experiment (thiolate anions are more
readily modified than thiols). At pH6.8, the rate of
inactivation of CSC is comparable to that of CLs (compare
Fig. 1B with the NEM inactivation data of Jackson et al.
1985). The lag in the CSC and CL inhibition curves
(Fig. 1A and 1B) reflects the fact that mild inactivation
(low NEM concentration or short reaction time) increases
the Ca%* threshold, but does not prevent 100 % release in
response to a strong stimulus (1 mm Ca?*). As previously
noted (Jackson et al. 1985), this behavior suggests that a
small fraction of the total number of NEM-sensitive
proteins may be sufficient to support 100 % exocytosis.
The use of higher than physiological concentrations of
Ca®* in these and subsequent experiments was necessi-
tated by the characteristics of the CL and reconstituted
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Fig. 1. NEM inhibits exocytosis in CSC and CLs. A. CSC
(@—@) in TKME bulffer, pH 8.0, was treated with 5 mm NEM
at 20°C for the indicated times, as described in Materials and
methods. Control CSC (O) was incubated in the same buffer
without NEM. Exocytosis was initiated by diluting samples of
the NEM-treated CSC into cuvettes containing a buffer with

1 mm free Ca%*. Percentage reaction was determined by the
turbidimetric procedure referred to in Materials and methods,
with the turbidity change of the untreated control assigned a
value of 100 % reaction. Results are the mean=*s.p. of triplicate
samples, and are representative of three similar experiments.
B. Cortical lawns (@——@®) were treated with 5mmM NEM in
PKME, pH 6.8, buffer for the indicated time at room
temperature. Control lawns (O) were incubated in the same
buffer without NEM. Exocytosis was initiated by drawing a
buffer containing 1 mm free Ca%* into the slide chamber.
Percentage reaction was determined by light-scattering
analysis. Each data point represents the mean=s.p. of triplicate
samples. In this and subsequent figures, data points without
error bars indcate that the s.p. was less than the size of the

data point. Results are representative of three similar
experiments.

lawn (RL) systems. CLs and RLs are half-maximally
reactive at 5 and 36 um Ca®™, respectively; both are 100 %
reactive at 1mm Ca®*. In order to compare NEM inhi-
bition of RLs and CLs, it was necessary to choose a Ca®*
concentration that stimulated the same high level of
reaction in both preparations. In the experiments demon-
strating that both RLs and CLs are inhibited by NEM
treatment, the use of a Ca®* concentration that is well
above the physiologically relevant range presents no
problem, since loss of response to a potent stimulus is a
stronger criterion than loss of response to a minimal
stimulus. In the experiments demonstrating the activity of
RLs prepared from NEM-treated components, the possi-
bility that reaction at 1 mm Ca®* may occur via a different
mechanism must be considered. While this possibility
cannot be eliminated, the available evidence suggests that
reactions at low and high Ca®* may be equivalent: both
occur via CV-PM fusion, and both are inhibitable by NEM
treatment (see below).

NEM inhibits exocytosis in RLs

We were interested in the susceptibility of RLs to NEM
inhibition because it provides an additional criterion by
which the authenticity of reconstitution can be judged. If
reconstitution correctly reassembles a functional CV-PM
junction, it should be possible to inhibit RLs with NEM. To
test this possibility, RLs and CLs were prepared as
described in Materials and methods, incubated with or
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Fig. 2. Activity of RLs prepared from NEM-treated
components: comparison with CLs, RLs and NEM-treated RLs.
A. The following cortex preparations were tested for exocytotic
capability as described in the legend to Fig. 1B: (1) untreated
CLs; (2) CLs that had been NEM-treated for 30 min at room
temperature; (3) untreated RLs; (4) RLs that had been NEM-
treated for 30 min at room temperature; (5) RLs prepared from
NEM-treated PM; (6) RLs prepared from NEM-treated CVs;

(7) RLs prepared from NEM-treated CVs and NEM-treated PM.
B. In addition to their reactivity, the RL samples (A, 3-7) were
also analyzed for CV binding by the light-scattering technique
described in Materials and methods. Column 1, Untreated RLs;
2, RLs that had been NEM-treated for 30 min at room
temperature; 3, RLs prepared from NEM-treated PM; 4, RLs
prepared from NEM-treated CVs; 5, RLs prepared from NEM-
treated CVs and NEM-treated PM. The results presented in A,
and in columns 1-5 of B are the means.p. of six to eight
determinations from three independent experiments. For
comparison, column 6 of B shows that the A mV for
unreconstituted PM lawns in CV binding experiments is
negligible (1.0+2.6 mV; n=13 experiments). Under these same
conditions the A mV for native cortical lawns is approximately
4000 mV (see Fig. 1 of Jackson and Modern, 1990).

without 5mM NEM for 30min, and challenged with
PKME buffer containing 1mm free Ca?*. The extent of
reaction was quantitated by light-scattering analysis, and
is expressed in terms of percentage of reaction in order to
facilitate comparison of CLs that contain many CVs with
RLs that contain fewer. The results of this experiment
(Fig. 2A, columns 1-4) demonstrate that both RLs and
CLs are susceptible to inhibition by NEM, and lend
support to the hypothesis that the mechanism of exocy-
tosis in native and reconstituted cortex is the same.

Activity of RLs prepared from NEM-treated components

RLs are prepared by recombination of purified CVs with
PM lawns. By pretreating each of these components with
NEM prior to reconstitution it should be possible to
determine whether the NEM-sensitive protein is located
on the CVs, the PM, or both. To this end, the exocytotic
capability of RLs that had been prepared with the four
possible combinations of NEM-treated and untreated com-
ponents was tested. In order to be sure that the NEM
treatment was sufficient to inactivate the purified com-
ponents, we chose conditions known to be sufficient to
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inactivate cortex preparations. Thus, purified CVs were
NEM-treated under conditions (5 mM NEM for 15 min at
pH8.0) that completely inactivate a suspension of cell
surface complex (Fig. 1A), and PM lawns were NEM-
treated under conditions (5 mm NEM for 30 min at pH 6.8)
that completely inactivate CLs (Fig. 1B).

Surprisingly, RLs in which either the PM or the CVs had
been NEM-treated retained activity to 1mm Ca2"
(Fig. 2A, columns 5 and 6), whereas RLs in which both the
CVs and PM had been NEM-treated were inactive
(Fig. 2A, column 7). Controls showed that untreated CLs
and RLs were active (Fig. 2A, columns 1 and 3), and that
the NEM treatment was sufficient to inhibit CLs and RLs
(Fig. 2A, columns 2 and 4). This result suggests that NEM-
gensitive protein(s) are present in both purified CV and
PM preparations.

Analysis of CV binding revealed that NEM treatment
did not inhibit the binding of CVs to PM (Fig. 2B). In fact,
in two of three experiments, NEM-treated CVs bound
somewhat better than untreated CVs. Untreated CVs
bound as well to NEM-treated PM lawns as to untreated
PM lawns in all three experiments. Thus, differences in
the exocytotic capability of RLs prepared from NEM-
treated components was not attributable to deficient CV
binding.

In a variation of the above experiment, we attempted to
prepare RLs by recombination of untreated PM lawns with
CVs that had been prepared from NEM-inactivated CSC.
This variation produced CV suspensions that were signifi-
cantly more dilute than those produced by the standard
procedure. RLs formed from these dilute CV suspensions
had a small extent of CV binding, and were not thoroughly
examined. However, the few samples that were tested
were observed to undergo exocytosis in response to 1 mm
Ca®* (data not shown).

In early work with this system (before routine determi-
nation of CV turbidity) we compared the binding of CVs
prepared from equal concentrations of CSC and NEM-
treated CSC, and observed that CVs prepared from the
NEM-treated sample appeared to bind poorly to PM lawns
(Crabb and Jackson, 1985). It is now clear that this result
was due to the negative impact of NEM treatment on the
yield of CVs. In these early experiments we also observed
impaired CV binding to PM lawns that had been prepared
from NEM-treated eggs. Reinvestigation of this obser-
vation revealed that prolonged treatment with 10 mm
NEM (40 min at 20°C) does impair CV binding; though not
uniformily. Many of the PM fragments in RLs prepared
with these samples were virtually devoid of bound CVs,
but some seemed to bind a near normal complement.
Under milder conditions (10 mm NEM for 5 min at 20°C, in
sea water buffered to pH8) cortical exocytosis could be
inhibited without any apparent inhibition of CV binding.
These results suggest that the impaired binding of PM
lawns prepared from NEM-treated eggs is not related to
the ability of NEM to inhibit the cortical reaction.

The fact that untreated PM can rescue NEM-inactivated
CVs and that untreated CVs can rescue NEM-treated PM
provides evidence that inactivation by NEM is not simply
due to steric hindrance of CV-PM contact (if it were, an
untreated fraction should not be able to rescue an NEM-
inactivated fraction). More important, the data show that
both the CV membrane and the plasma membrane contain
molecules that are capable of supporting exocytosis, in the
reconstituted system. The fact that the sulfhydryl-contain-
ing protein(s) from either membrane alone are sufficient to
support exocytosis suggests that sulfhydryl-containing
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protein(g) from both membranes probably participate in
the release of CV contents from untreated RLs and CLs.

Evidence for transfer of CV contents across the PM

Although untreated CVs and PM seemed to be capable of
rescuing their NEM-inactivated counterparts, it was
necessary to demonstrate that CV contents were released
via exocytosis. The mechanism of release was investigated
with an immunofluorescence-based assay that permits
visualization of the transfer of CV content proteins across
the PM (Crabb and Jackson, 1985). We have previously
used this technique to demonstrate that Ca®* stimulation
of CLs and RLs results in the transfer of CV contents
across the PM (Crabb and Jackson, 1985). When a CVin a
CL or RL fuses with the PM, its contents are transferred
across the PM into a dome-shaped compartment that is
bounded on one side by the egg PM and on the other by the
coverglass to which the lawn is attached. Within these
compartments, secreted CV components (e.g. hyalin) are
protected from exogenously added probes (e.g. antibodies).
Immunofluorescence analysis of samples whose mem-
branes have been disrupted by detergent is used to confirm
the presence of CV contents within the domes (Crabb and
Jackson, 1985).

Analysis of RLs prepared from NEM-treated com-
ponents by this technique revealed that RLs in which
either the CVs or PM had been NEM-treated reacted via
exocytosis. Fig. 3 presents paired phase-contrast and flu-
orescence micrographs obtained with RLs prepared by
recombination of NEM-treated PM lawns with untreated
CVs. In the membrane-intact sample (Fig. 3A) hyalin
contained in the domes in the center portion of the PM
fragment (Fig. 3A, arrows in phase-contrast micrograph)
was protected and did not combine with the anti-hyalin
antibody. An imperfect seal between the PM and the
coverglass allowed labelling of domes at the periphery of
the PM fragment (Fig. 3A, arrows in fluorescence micro-
graph). Most free CVs (i.e. those bound to the coverglass
rather than the PM) remained intact, and were not
labelled with the anti-hyalin antibody. Detergent dis-
ruption of the membrane resulted in heavy labelling of all
domes and free CVs (Fig. 3B), thereby confirming the
presence of immunoreactive hyalin within these struc-
tures. Similar results were obtained with RL samples
prepared by recombination of NEM-treated CVs with
untreated PM lawns (Fig. 4): hyalin within intact domes
was not labelled (Fig.4A); hyalin within detergent-
disrupted domes was heavily labelled (Fig. 4B).

These results are comparable to those obtained with the
CL (Fig. 5) and untreated RL (Fig. 6) samples that served
as positive controls for transfer of CV contents across the
PM. The large domes formed from the densely packed CVs
of CL samples (Fig. 5A, arrows in phase-contrast micro-
graph) present a different image than the small domes of
RL samples (Fig. 6A, arrows); however, both protect
entrapped hyalin from antibody labelling. The larger
domes of CL samples are unstable and frequently rupture
during processing. This can result in heavy labelling of
domes in the interior as well as at the periphery of a
fragment. The CL sample shown in Fig. 5A apparently
contained three ruptured domes (arrows in fluorescence
micrograph). Notice, however, that intact domes immedi-
ately adjacent to the those that ruptured remained un-
labelled. In the detergent-disrupted sample (Fig. 5B) all
domes were labelled.

These results provide strong evidence that RLs prepared



Fig. 3. CV content proteins are vectorially transferred across the PM in RLs prepared by recombination of NEM-treated PM with
untreated CVs. Reconstituted lawns (RLs) were prepared from NEM-treated PM lawns and untreated CVa. Exocytosis was initiated
by dipping the RLs into a buffer containing 1 mM free Ca®*. At t=15s, the reaction was terminated by dipping the samples into a
buffer containing 1% glutaraldehyde. The fixed samples were probed for anti-hyalin immunofluorescence with an anti-hyalin
monoclonal (1/250 dilution of the anti-hyalin ascites fluid). A. Paired phase-contrast and immunofluorescent images of a
reconstituted cortical fragment with intact membranes. Arrows in the phase-contrast image designate hyalincontaining domes that
are not labelled with the anti-hyalin antibody. Labelled domes (denoted by arrows in the fluorescence image) are often seen at the
circumference of the fragment. These apparently result from an imperfect seal between the coverglass and the membrane fragment.
B. Paired phase-contrast and immunofluorescent images of a reconstituted cortical fragment with detergent-disrupted membranes.
Results presented in Figs 3—6 are representative samples from two independent experiments. Bar, 10 um.

from NEM-treated components, like their untreated CL
and RL counterparts, react via an exocytotic mechanism.

Discussion

The ability to prepare reconstituted egg cortex (RLs) by
recombination of purified CVs with PM (Crabb and Jack-
son, 1985; Whalley and Whitaker, 1988) provides a poten-
tially powerful tool for investigation of the molecular

mechanism of cortical exocytosis. To make full use of this
technology it is important to demonstrate that the mech-
anism of reaction in RLs is equivalent to that of CLs, CSC
and eggs. Several pieces of data support this hypothesis.
(1) Binding specificity experiments suggest that reassoci-
ation of CVs with PM may be specific, protein-mediated
event (Jackson and Modern, 1990). (2) Reassociation has
been shown to be a prerequisite for the Ca?*-triggered
release reaction (Crabb and Jackson, 1985). (3) The Ca2%*-
triggered release reaction results in the vectorial transfer
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Fig. 4. CV content proteins are vectorially transferred across the PM in RIs prepared by recombination of NEM-treated CVs with
untreated PM. Reconstituted lawns (RLs) were prepared from NEM-treated CVs and untreated PM lawns, as described in Materials
and methods. Exocytotic transfer of CV contents across the PM was assessed by anti-hyalin immunofiuorescence, as described in the
legend to Fig. 3. A. Paired phase-contrast and immunofluorescent images of a reconstituted cortical fragment with intact
membranes. Arrows in the phase-contrast image designate hyalin-containing domes that are not labelled with the anti-hyalin
antibody. B. Paired phase-contrast and immunofluorescent images of a reconstituted cortical fragment with detergent-disrupted

membranes. Bar, 10 ym.

of CV content proteins across the PM (Crabb and Jackson,
1985). (4) Despite the potentially detrimental dissociative
procedures used to prepare RLs, their Ca%* threshold
(36 um), though higher than that of CLs (5um), is low
enough to be compatible with an exocytotic mechanism of
release. To these we can now add the observation that RLs,
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CLs, CSC and eggs are all susceptible to inhibition by
NEM (Figs 1 and 2; and Jackson et al. 1985). Thus, in each
case, at least one sulfhydryl-containing protein must be
involved in the reaction. This finding is consistent with the
hypothesis that the reactions are all mechanistically
equivalent.



Fig. 5. CV content proteins are vectorially transferred across the PM in cortical lawns (CLs). Exocytotic transfer of CV contents
across the PM of CLs was assessed by anti-hyalin immunofluorescence, as described in the legend to Fig. 3. A. Paired phase-contrast
and immunofluorescent images of a cortical fragment with intact membranes. Arrows in the phase-contrast image designate large,
hyalin-containing domes that are not labelled with the anti-hyalin antibody. Arrows in the fluorescence image designate ruptured
domes that are heavily labelled with the anti-hyalin antibody. B. Paired phase-contrast and immunofluorescent images of a cortical

fragment with detergent-disrupted membranes. Bar, 10 .

Investigation of the activity of RLs prepared from NEM-
treated components demonstrated that untreated PM can
rescue NEM-treated CVs and that untreated CVs can
rescue NEM-treated PM. This surprising finding suggests
that functionally equivalent NEM-sensitive protein(s) are
present in both the CV and PM lawn preparations. At
present it is not clear whether this shared activity is the
result of a single protein located on both organelles, or of
different yet functionally equivalent proteins. It is also not
clear whether these protein(s) are located on both CV

membranes and plasma membranes in the intact egg;
however, an interesting precedent for colocalization is
provided by the sec4 protein of yeast. sec4 mutants are
defective in constitutive secretion at a post-Golgi stage
(Novick et al. 1980). The sec4 protein has been found to be
tightly associated with both PM and secretory vesicles
{Goud et al. 1988). Mutational analysis suggests that it
regulates vesicular traffic by cycling between the PM and
secretory vesicles (Walworth et al. 1989); thus, sec4 is
located on both secretory vesicles and PM and is required
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Fig. 6. CV content proteins are vectorially transferred across the PM in RLs prepared by recombination of untreated CVs and PM.
Exocytotic transfer of CV contents across the PM of an RL prepared by recombination of untreated CVs with PM lawns was assessed
by anti-hyalin immunofluorescence, as described in the legend to Fig. 3. A. Paired phase-contrast and immunofluorescent images of a
reconstituted cortical fragment with intact membranes. Arrows in the phase-contrast image designate hyalin-containing domes that
are not labelled with the anti-hyalin antibedy. B. Paired phase-contrast and immunofluorescent images of a reconstituted cortical

fragment with detergent-disrupted membranes. Bar, 10 ym.

for constituitive exocytosis. Another possibility is that the
NEM-sensitive protein(s) may reside at the CV-PM junc-
tion. Dislodgement of CVs from the PM could then result
in the distribution of the protein(s) to both membranes.
Alternatively, in the intact egg, the protein(s) could be
exclusively located on one membrane and become redis-
tributed to the other during fractionation.

The rescue experiments also suggest that NEM inhi-
bition does not result from steric inhibition of CV-PM
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contact. Steric inibition should be dominant, i.e. the steric
constraints preventing membrane contact should not be
removed by supplying an unmodified partner. The fact
that unmodified fractions can restore function implies that
the unmodified fraction is capable of actively promoting
exocytosis, i.e. it supplies an essential function. On the
other hand, RLs prepared from NEM-treated components
could react via a qualitatively different mechanism than
CLs and untreated RLs, but the results of the vectorial



transfer experiments (Figs 3—6) suggest that this is not
the case. Rather, it seems that both CVs and the PM carry
proteins capable of promoting exocytosis. This is consist-
ent with the observation that large aggregates of CVs can
fuse with each other, even in the absence of exogenously
added PM (Crabb and Jackson, 1985). It is also consistent
with the phenomenon of compound exocytosis, in which
secretory vesicles fuse with each other, as well as with the
PM, in cells that undergo massive and concerted exo-
cytotic reactions, e.g. mast cells (Rohlich et al. 1971),
parotid acinar cells (Amsterdam et al. 1969) and eggs
(Chandler, 1984).

The precise role of NEM-sensitive protein(s) in cortical
exocytosis cannot be determined from the data that are
currently available. The simplest hypothesis that accom-
modates the data suggests that the NEM-sensitive pro-
tein(s) may provide an essential function; however, the
observation that mild proteolysis can reverse NEM inhi-
bition of CSC (Jackson et al. 1985), CL and RL samples
(Jackson and Modern, unpublished results) indicates that
the sensitive sulfhydryl group is not at the active site. It is
likely that it is located on a regulatory domain that is non-
functional (i.e. inhibitory) when modified. The putative
regulatory domain could be either covalently or non-
covalently associated with the domain that is essential for
exocytosis. Thus the NEM-sensitive protein(s) must either
supply an essential function or be so closely associated
with an essential protein that modification of the NEM-
sensitive protein(s) interferes with the activity of the
essential protein. It is tempting to speculate that the
NEM-sensitive protein(s) of egg cortex may be related to
the 78 000 M, NEM-sensitive factor (NSF) identified by
Rothman and his colleagues (Block et al. 1988; Wilson et
al. 1989). NSF has been shown to be required for mem-
brane fusion steps at several stages of the secretory (Glick
and Rothman, 1987; Beckers et al. 1989) and endocytic
pathways (Diaz et al. 1989), but its precise role in these
events is also unknown. In any case, identification and
characterization of the NEM-sensitive protein(s) of egg
cortex is clearly essential for the understanding of the
molecular mechanism of regulated exocytosis in the egg,
and perhaps in other cell types as well.

We thank Dr Carol Vater for generously providing anti-hyalin
antibody. This research was supported by grant GM 26763 from
the National Institutes of Health.
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