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We describe here a new member of the LysR family of transcriptional regulators, AphB, which is required
for activation of the Vibrio cholerae ToxR virulence cascade. AphB activates the transcription of the tcpPH
operon in response to environmental stimuli, and this process requires cooperation with a second protein,
AphA. The expression of neither aphA or aphB is strongly regulated by environmental stimuli, raising the
possibility that the activities of the proteins themselves may be influenced under various conditions. Strains of
the El Tor biotype of V. cholerae typically exhibit lower expression of ToxR-regulated virulence genes in vitro
than classical strains and require specialized culture conditions (AKI medium) to induce high-level expression.
We show here that expression of aphB from the tac promoter in El Tor biotype strains dramatically increases
virulence gene expression to levels similar to those observed in classical strains under all growth conditions
examined. These results suggest that AphB plays a role in the differential regulation of virulence genes between
the two disease-causing biotypes.

Cholera is a life-threatening diarrheal disease caused by the
gram-negative bacterium Vibrio cholerae. The organism colo-
nizes the upper intestine, and the toxin-coregulated pilus
(TCP) is the primary factor involved in this process (36). The
severe diarrhea associated with the disease results from the
action of the secreted cholera toxin (CT) on intestinal epithe-
lial cells (reviewed in reference 17). The genes required for the
biogenesis of TCP are located in an operon on a large patho-
genicity island termed the TCP-ACF element, or vibrio patho-
genicity island (18, 19). The subunits of CT are encoded by the
ctxA and ctxB genes on a separate genetic element which com-
prises the genome of the lysogenic filamentous bacteriophage
CTXf (38).

Many of the genes involved in the pathogenesis of V. chol-
erae comprise what is known as the ToxR virulence regulon,
since they are coordinately expressed and dependent upon the
transcriptional activator ToxR (23, 26). ToxR is a transmem-
brane DNA binding protein whose activity is enhanced by a
second transmembrane protein, ToxS (5, 21, 23). The toxR and
toxS genes, which are expressed as an operon, are not associ-
ated with either the TCP-ACF or CTX elements but appear to
be part of the “ancestral chromosome” and have other impor-
tant regulatory roles (22). TcpP is a transcriptional activator
encoded on the TCP-ACF element which has recently been
shown to share significant homology with ToxR and which
cooperates with it to initiate gene expression (13, 25). The tcpP
gene is coexpressed with a second gene, tcpH, which encodes a
protein that enhances the activity of TcpP (2). TcpP and TcpH
appear to have a similar membrane topology to ToxR and
ToxS.

ToxRS and TcpPH control the expression of the ToxR vir-
ulence regulon by their ability to activate the expression of a
third transcriptional activator, ToxT, which is also encoded on
the TCP-ACF element (7, 13). ToxT is a cytoplasmic protein

that is a member of the AraC family of transcriptional activa-
tors (15). Once its expression is activated by ToxRS and
TcpPH, ToxT then directly activates various genes within the
regulon, such as the tcp and ctx operons (3, 7). The toxT gene
is located within the tcp operon, and its expression is depen-
dent upon a promoter located immediately upstream of the
gene (14) as well as by one located at the beginning of the tcp
operon which may function in an autoregulatory capacity (1).

The expression of the tcp and ctx operons are strongly influ-
enced by specific environmental cues such as pH and temper-
ature. Since the expression of tcpPH is also influenced by both
of these parameters (2, 32), the mechanisms that regulate the
expression of this operon are likely to be of central importance
in the control of virulence gene expression by environmental
stimuli. AphA is a 20-kDa V. cholerae protein which has re-
cently been shown to be required for expression of the tcpPH
operon and for its response to environmental stimuli (32).
Since the basal level of tcpPH expression in a DaphA mutant
still appeared to be influenced by pH and temperature, it was
hypothesized that factors in addition to AphA might also play
a role in the expression of tcpPH. We describe here a new
member of the LysR family of transcriptional regulators,
AphB, which is required for transcriptional activation of tcpPH
as well as its response to environmental stimuli. AphB func-
tions synergistically with AphA to activate the expression of
tcpPH, and it also appears to contribute to the differences in
virulence gene expression between the two major disease-caus-
ing biotypes, classical and El Tor. Since neither AphA nor
AphB is encoded within the TCP-ACF element, these proteins
may have other regulatory roles in V. cholerae, and the expres-
sion of the tcpPH operon may have evolved to come under
their control.

MATERIALS AND METHODS

Bacterial strains and media. The V. cholerae and Escherichia coli strains and
plasmids used in this study are listed in Table 1. Bacteria were maintained at
270°C in Luria-Bertani (LB) medium (20) containing 30% (vol/vol) glycerol.
Antibiotics were used at the following concentrations in LB medium or AKI
medium (16): ampicillin, 100 mg/ml; kanamycin, 45 mg/ml; tetracycline, 7.5 mg/ml
for V. cholerae and 15 mg/ml for E. coli; and streptomycin, 100 mg/ml, except
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when selecting for loss of integrated plasmids in V. cholerae, where it was used at
1 mg/ml. 5-Bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-Gal) was used in
LB agar at 40 mg/ml.

Identification of aphB. Random insertion of TnphoA into the chromosome of
strain KSK218 was as previously described (30, 35, 36). Chromosomal DNA from
V. cholerae transposon mutant KSK404 was digested with SphI and ligated into
an oriR6K plasmid lacking rpsL (pKAS64). The ligated DNA was subjected to
two rounds of PCR amplification, the first using a plasmid-specific primer,
ORIR6K (59-GGTTTAACGGTTGTGGACAAC), and a transposon-specific
primer, TNPHOA-1 (30); and the second using ORIR6K with a nested trans-
poson-specific primer, TNPHOA-2 (59-AGCAGCCCGGTTTTCCAGAAC).
The resulting 200-bp fragment, which contained a portion of the aphB open
reading frame, was ligated into another oriR6K plasmid lacking rpsL (pKAS110),
generating pGKK17. Plasmid pGKK17 was integrated into the aphB gene of
KSK218, generating strain GK91. Chromosomal DNA was isolated from GK91,
digested with SphI, ligated, and transformed into E. coli. The resulting plasmid,
pGKK18, was then used to obtain the complete aphB nucleotide sequence with
the ABI PRISM Dye System (Perkin-Elmer).

Construction of in-frame deletions and lacZ fusions. The in-frame DaphB1
mutations in both classical and El Tor biotypes were constructed by PCR am-
plifying two 200-bp fragments encompassing the regions upstream and down-
stream of the aphB gene, respectively, from either O395 or C6706str2 (37) by
using primer pair CO2-3 (59-GATCGTCTAGAATGGTTTTCAATAAATCA

TC) and CO2-4 (59-GATCGGCGGCCGCATGTCATTGAAGCGAGACGC
TC) and primer pair CO2-5 (59-GATCGGCGGCCGCCTGTATAACCACAA
AGATCAC) and CO2-6 (59-GATCGGAATTCAAGCCATGCAAATGGCGG
CC). The resulting fragments were ligated into pKAS46 (29), generating
pGKK25 and pGKK28, respectively, and the deletions were introduced into V.
cholerae by allelic exchange. To construct the aphB-lacZ fusions, a promoterless
E. coli lacZ gene was inserted into the plasmids described above, generating
pGKK26 and pGKK29, prior to allelic exchange. The classical DaphA1 deletion
was previously described (32). The El Tor DaphA1 deletion was constructed in a
similar manner, except that primer YF-7 (59-GATCGGAATTCACCATGTCA
TTACCACACGTTATCC) was used in place of YF-1 and the fragments were
ligated into pKAS46, generating pGKK35, prior to allelic exchange.

Construction of chromosomal tcpP-lacZ fusions. Plasmid pKAS48 (29) was
used to construct the DlacZ3 deletion in El Tor strain C6706str2 (37) by allelic
exchange, generating strain KSK262. The El Tor tcpP-lacZ operon fusion in
KSK262 was constructed in a manner similar to that of the classical tcpP-lacZ
fusion (32), except that primers TP-BAME (59-GATCGGGATCCAGTAATG
CCGGCTAATTCATG) and TP-SEE (59-GATCGGTCGACGAATTCCAGCC
GTTAGCAGCTTGTAAG) were used in place of TP-BAM and TP-SE for
amplification from C6706str2. The resulting fusion in plasmid pKAS113 was
introduced into V. cholerae by allelic exchange. The tcpP-lacZ fusion on l KSPL1
was previously described (32).

TABLE 1. Bacterial strains and plasmids used in this study

Strain or plasmid Relevant genotype Source or reference

Strains
V. cholerae

CG842 O395 (classical Ogawa Smr) DlacZ 4
KSK218 CG842 ctx-lacZ Smr Cmr 30
KSK404 KSK218 aphB::TnphoA This work
GK91 KSK218 aphB::pGKK17 This work
GK122 KSK218 DaphB1 This work
KSK618 CG842 tcpP-lacZ 32
GK121 KSK618 DaphB1 This work
KSK647 KSK618 DaphA1 32
KSK805 KSK618 DaphA1 DaphB1 This work
KSK666 CG842 aphA-lacZ 32
GK130 CG842 aphB-lacZ This work
C6706str2 El Tor Inaba Smr 37
KSK262 C6706str2 DlacZ3 This work
KSK725 KSK262 tcpP-lacZ This work
GK138 KSK725 DaphB1 This work
GK161 KSK725 DaphA1 This work
GK142 KSK262 aphB-lacZ This work

E. coli
MC1061 D (ara-leu)7697 D(lac)X74 Laboratory collection
KSK782 MC1061 l KSPL1 (tcpP-lacZ) This work

Plasmids
pKAS64 pKAS32 DrpsL, Apr 31
pKAS110 pKAS64 DSmaI This work
pGKK17 pKAS110, 200-bp aphB fragment This work
pGKK18 pGKK17 chromosomal capture plasmid This work
pGKK25 pKAS46, DaphB1 classical This work
pGKK26 pGKK25, aphB1-lacZ This work
pGKK28 pKAS46, DaphB1 El Tor This work
pGKK29 pGKK28, aphB1-lacZ This work
pGKK35 pKAS46, DaphA1 El Tor This work
pKAS48 pKAS46, DlacZ3 29
pKAS113 pKAS46, tcpP-lacZ El Tor This work
pLAFR3 Tcr expression plasmid 33
pKAS116 pLAFR3 aphB (classical), Tcr Gmr This work
pMMB66EH Apr expression plasmid 9
pKAS107 pMMB66EH aphA (classical), Apr 32
pKAS117 pMMB66EH aphB (classical), Apr This work
pBAD22 Apr expression plasmid 11
pKAS118 pBAD-TOPO aphB (classical), Apr This work
pKAS119 pBAD-TOPO aphA (classical), Apr This work
pKAS120 pBAD-TOPO aphB (El Tor), Apr This work
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Construction and mobilization of expression plasmids. The expression plas-
mids constructed in this study are listed in Table 1. The aphB gene was amplified
from either the classical (O395) or El Tor (C6706str2) biotypes by using primers
CO2-7 (59-GATCGGAATTCATAAATTAGCGATAGTTGC) and CO2-8 (59-
GATCGAAGCTTGAAAAAGGGCGCGAAGCCC). The aphA gene was am-
plified from O395 by using primers YF-5 (59-GATCGGAATTCTAAATGCGT
TGATATGCGTGCC) and YF-6 (32). Plasmids derived from pLAFR3 (33),
pMMB66EH (9), and pBAD-TOPO (Invitrogen), respectively, were introduced
into V. cholerae by mating with E. coli SM10 (28), triparental mating with E. coli
MM294 carrying pRK2013 (8), and electroporation.

b-Galactosidase assays. b-Galactosidase assays (20) were carried out with
tcpP-lacZ, aphA-lacZ, or aphB-lacZ fusion strains during mid-logarithmic growth
and with ctx-lacZ fusion strains after overnight growth. In AKI medium, cultures
were assayed after 4 h without rotation. The bicinchoninic acid procedure
(Pierce) was used to determine the total amount of protein in each reaction from
the overnight cultures. The data are averaged results from at least two experi-
ments.

Immunoblot analysis. Cell extracts from overnight cultures were subjected to
sodium dodecyl sulfate–12.5% polyacrylamide gel electrophoresis, transferred to
nitrocellulose, and probed with anti-TcpA antibody (34) by using the ECL
(enhanced chemiluminescence) detection system (Amersham).

Nucleotide sequence accession number. The accession number for the nucle-
otide sequence of aphB in GenBank is AF148502.

RESULTS

The aphB gene is required for virulence gene expression. V.
cholerae TnphoA mutant KSK404 was identified as a derivative
of the ctx-lacZ fusion strain KSK218, which showed reduced
b-galactosidase production under environmental conditions
normally optimal for its expression (i.e., LB medium [pH 6.5]
at 30°C) and failed to produce TCP. A 200-bp DNA fragment
encompassing the region adjacent to the transposon in
KSK404 was obtained by ligating restriction-digested chromo-
somal DNA from the mutant into a plasmid and performing
two rounds of PCR with primers specific for the plasmid and
for the transposon. The DNA fragment, which contained a
portion of the aphB open reading frame, was then inserted into
an oriR6K plasmid and used to disrupt the wild-type aphB
gene in KSK218. After confirming that the aphB disruption in
the resulting strain, GK91, caused a defect in virulence gene
expression similar to that of the original transposon mutant,
the entire aphB gene was isolated from this strain by using
chromosomal capture (30, 31) and sequenced.

To verify that the disruption of aphB was solely responsible
for the defect in virulence gene expression in strain GK91, an
in-frame deletion of aphB was constructed in KSK218 (ctx-
lacZ), strain GK122, and this defect was complemented by
inducing a wild-type aphB gene expressed from the tac pro-
moter of plasmid pKAS117. As shown in Fig. 1, the DaphB
mutation in GK122 significantly reduced the production of
b-galactosidase under inducing conditions (LB medium [pH
6.5] at 30°C) and expression of aphB from pKAS117 restored
its production to wild-type levels under these conditions. The
mutation had only a small effect on the already low levels of
b-galactosidase under repressing conditions (LB medium [pH
8.5] at 30 or at 37°C). However, expression of aphB from
pKAS117 increased b-galactosidase production at pH 8.5 at
30°C in both the parental strain and the DaphB mutant to close
to the levels observed under inducing conditions. These results
indicate that aphB plays a role in activating ctx expression and
that it is also involved in its regulation by environmental stimuli
such as pH. Induction of aphB from pKAS117 also increased
b-galactosidase production at 37°C, but to a smaller extent
than at pH 8.5 at 30°C (Fig. 1).

The influence of AphB on the production of TCP, shown in
Fig. 2, is similar to the above results observed with ctx. The
DaphB mutation in strain GK122 prevented the production of
the 20.5-kDa major pilin protein TcpA under inducing condi-
tions (Fig. 2, lane 3). Induction of aphB expression from

pKAS117 in this mutant restored TcpA production (Fig. 2,
lane 4) and permitted the cells to autoagglutinate in culture, a
property associated with wild-type levels of TCP. Thus, AphB
influences the expression of both the ctx and tcp operons in V.
cholerae.

AphB activates the expression of the tcpPH promoter. The
significant impact of aphB on the expression of the ctx and tcp
genes prompted us to investigate whether genes required ear-
lier in the virulence cascade, toxRS, tcpPH, or aphA, were also
influenced by AphB. The DaphB mutant GK122 did not pro-
duce the outer membrane protein OmpT in place of OmpU
(data not shown), suggesting that toxR expression was not
altered in the strain (22). To assess its effects on the expression
of tcpPH and aphA, the DaphB mutation was introduced into
the classical tcpP-lacZ fusion strain KSK618 and the classical
aphA-lacZ fusion strain KSK666 (32). Table 2 shows that the
expression of the tcpP-lacZ fusion in the DaphB strain, GK121,
was significantly reduced under each environmental condition
examined relative to the parental strain. Furthermore, the
basal level of tcpPH expression in the absence of aphB did not
significantly respond to environmental stimuli. When aphB was
induced from the tac promoter of pKAS117, the expression of
tcpP-lacZ in the DaphB mutant GK121 was increased under all
environmental conditions examined (Table 2). This increase
was most dramatic under the strongest repressive condition,

FIG. 1. Influence of AphB on the expression of a ctx-lacZ fusion. Cultures
were grown in LB medium at pH 6.5 or 8.5 at 30 or 37°C. Those with pKAS117
also contained 1 mM isopropyl-b-D-thiogalactopyranoside. Black bars, KSK218;
striped black bars, GK122 (DaphB); gray bars, KSK218 with pKAS117 (AphB);
striped gray bars, GK122 with pKAS117 (AphB).

FIG. 2. AphB influences TcpA production in both classical and El Tor bio-
types. Samples were prepared from KSK218 (classical [lane 1]), KSK218 with
pKAS117 (AphB [lane 2]), GK122 (classical DaphB [lane 3]), GK122 with
pKAS117 (AphB [lane 4]), KSK262 (El Tor [lane 5]), and KSK262 with
pKAS117 (AphB [lane 6]). Cultures were grown overnight in LB medium (pH
6.5) at 30°C. Those with pKAS117 also contained 1 mM isopropyl-b-D-thioga-
lactopyranoside. Samples were analyzed by Western blotting with anti-TCP an-
tiserum (34). TcpA is indicated by the arrow to the right.
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pH 8.5 at 37°C. These results indicate that AphB is required
for the activation of the tcpPH operon in V. cholerae and for its
response to environmental stimuli. The DaphB mutation had
no effect on the expression of the aphA-lacZ fusion in V.
cholerae (data not shown), indicating that aphB is not influ-
encing tcpPH expression indirectly through AphA.

AphB cooperates with AphA to activate tcpPH expression.
AphA has previously been shown to be required for activation
of the tcpPH operon (32). The expression of tcpPH in a DaphA
mutant, strain KSK647 (32), is similar to that of the DaphB
mutant, except that the basal level of expression is still some-
what responsive to environmental stimuli (Table 2). Thus, loss
of either AphA or AphB results in a dramatic decrease in the
expression of the tcpPH operon. To determine if increased
amounts of either protein could compensate for loss of the
other, the aphB expression plasmid pKAS117 was introduced
into the DaphA mutant KSK647 and the aphA expression plas-
mid pKAS107 (32) was introduced into the DaphB mutant
GK121. Interestingly, high levels of AphB in the DaphA mu-
tant restored tcpPH expression to close to wild-type levels at
pH 6.5 (and to greater than wild-type levels at pH 8.5) (Table
2), whereas high levels of AphA in the DaphB mutant in-
creased tcpPH expression somewhat, but did not restore it to
wild-type levels. Thus, when present in sufficient amounts, ei-
ther protein is capable of activating tcpPH transcription in the
absence of the other, but AphA still requires AphB to achieve
wild-type expression levels.

To further address whether AphA and AphB function se-
quentially or in separate pathways to activate tcpPH expres-
sion, the DaphA mutation was introduced into the DaphB mu-
tant GK121, generating strain KSK805. The finding that the
expression of tcpPH is lower in the double mutant under all
environmental conditions than in either single mutant (Table
2) suggests that AphA and AphB function cooperatively to
activate tcpPH transcription rather than sequentially. This no-
tion is further supported by the results in Fig. 3 which show
that in the DaphA DaphB double mutant, KSK805, and in an E.
coli tcpP-lacZ fusion strain, KSK782, the presence of AphA
and AphB together from plasmids pKAS119 and pKAS116
results in higher levels of b-galactosidase production than with
either protein alone. Thus, it appears that AphA and AphB
function synergistically to activate transcription at the tcpPH
promoter.

AphB is a LysR homolog. The LysR family represents of one
of the most common types of prokaryotic transcriptional reg-
ulators. These proteins typically interact with small specific
signal molecules known as coinducers to activate the expres-
sion of divergent or unlinked target genes which function in
many diverse processes (for a review, see reference 27). Mem-

bers of this family show strong homology in their amino-ter-
minal domains, much of which derives from conservation of a
helix-turn-helix DNA-binding motif. AphB exhibits significant
amino-terminal homology with a large number of these pro-
teins, and an alignment of this region of AphB with several
LysR family members is shown in Fig. 4. The aphB gene en-
codes a protein of 291 amino acids with a predicted molecular
mass of 33.3 kDa. Two of the proteins with the strongest
overall homology to AphB (27%) are PtxR, a positive regula-
tor of exotoxin A production in Pseudomonas aeruginosa (12);
and IrgB from V. cholerae, which positively regulates the ex-
pression of irgA in response to iron limitation (10).

AphB activates tcpPH expression in the El Tor biotype. The
expression of the ToxR virulence regulon in classical biotype
strains is maximal in LB medium (pH 6.5) at 30°C. Strains of
the El Tor biotype show reduced expression of the regulon
under these conditions and require a bicarbonate-containing

TABLE 2. Activation of a classical biotype tcpP-lacZ fusion by AphB and AphA

Straina
b-Galactosidase activityb at pH and temp:

6.5, 30°C 8.5, 30°C 6.5, 37°C 8.5, 37°C

KSK618 (tcpP-lacZ) 3,940 6 24 931 6 8 2,091 6 31 502 6 11
GK121 (DaphB) 190 6 22 145 6 3 133 6 8 98 6 15
KSK647 (DaphA) 350 6 75 104 6 4 201 6 6 85 6 13
KSK805 (DaphA DaphB) 117 6 7 97 6 1 94 6 7 74 6 9
GK121(pKAS117) (AphB) 6,271 6 680 5,428 6 968 3,415 6 74 2,616 6 139
KSK647(pKAS117) (AphB) 3,283 6 201 3,076 6 408 1,669 6 110 1,022 6 61
GK121(pKAS107) (AphA) 502 6 30 382 6 88 288 6 7 249 6 1
KSK647(pKAS107) (AphA) 5,732 6 723 2,589 6 142 3,660 6 846 1,816 6 214

a All plasmids were induced with 1 mM isopropyl-b-D-thiogalactopyranoside.
b Units per optical density at 600 nm of culture.

FIG. 3. Cooperation between AphA and AphB enhances tcpP-lacZ expres-
sion. V. cholerae KSK805 (DaphA DaphB) (left) was grown in LB medium (pH
6.5) at 30°C, and E. coli KSK782 (tcpP-lacZ) (right) was grown in LB medium
(pH 7.0) at 37°C. Black bars, pBAD22 plus 0.2% arabinose; striped black bars,
pLAFR3G plus 1 mM isopropyl-b-D-thiogalactopyranoside (IPTG); gray bars,
pKAS119 (AphA) plus 0.2% arabinose; striped gray bars, pKAS116 (AphB) plus
1 mM IPTG; open bars, pKAS119 plus pKAS116 (AphA plus AphB) plus 0.2%
arabinose plus 1 mM IPTG. OD600, optical density at 600 nm.
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medium (AKI medium) at 37°C for high-level expression (16).
Table 3 shows that the expression of an El Tor tcpP-lacZ
fusion, strain KSK725, is significantly reduced in LB medium
relative to the classical tcpP-lacZ fusion, strain KSK618 (Table
2), under all of the conditions examined. Although growth of
the El Tor strain in AKI medium improved the expression of
tcpPH, it was still significantly lower than that of the classical
strain in LB medium (pH 6.5) at 30°C. To determine if AphB
also activates tcpPH expression in the El Tor biotype, a DaphB
mutation was introduced into KSK725, generating strain
GK138. The DaphB mutation in this strain significantly de-
creased tcpPH expression under AKI conditions (Table 3), but
had a smaller effect on the already low levels of expression in
LB medium. A similar result was observed with a DaphA mu-
tation in this background, strain GK161 (Table 3). Thus, al-
though the response of tcpPH in El Tor strains to environmen-
tal stimuli is different from that in classical strains, aphA and
aphB play a role in its expression in both biotypes.

The mechanisms responsible for the differential expression
of tcpPH in classical and El Tor biotype strains are not yet
understood. Since expression of either aphA or aphB from the
tac promoter significantly increased tcpPH expression under
normally nonpermissive expression conditions in the classical
biotype, it was of interest to determine whether either of these
genes could increase tcpPH expression in the El Tor biotype as
well. Table 3 shows that induction of aphB from pKAS117 in
the El Tor fusion strain KSK725 increased tcpPH expression in
both AKI and LB media. In LB medium, the levels of expres-
sion of tcpPH in the presence of pKAS117 were virtually iden-
tical to those of the classical tcpP-lacZ fusion strain (Table 2).
El Tor strain KSK262 does not produce TCP detectable even
by Western blotting when grown in LB medium (pH 6.5) at
30°C (Fig. 2, lane 5). However, induction of aphB expression
from pKAS117 in KSK262 increased TCP production in LB
medium (pH 6.5) at 30°C to a level similar to that of classical
strains (Fig. 2, lane 6) and permitted the cells to autoaggluti-
nate. Expression of aphA from pKAS107 also increased the
expression of the El Tor tcpP-lacZ fusion, but to a lesser extent
than aphB (Table 3), and did not permit strain KSK262 to
produce TCP by Western blotting (data not shown). These
findings indicate that the tcpPH promoter can be activated by

AphB and, to a lesser extent, AphA, in the El Tor biotype
under conditions not normally permissive for its expression.

The AphB protein and its expression appear similar in both
biotypes. The significant effect of inducing aphB expression
from pKAS117 on the activation of the El Tor tcpPH promoter
in LB medium (pH 6.5) at 30°C suggested that, in this biotype,
the AphB protein or its expression might be different from that
in the classical biotype. The deduced amino acid sequences of
the classical and El Tor AphB proteins, however, were found
to be identical. In addition, when either the classical or El Tor
aphB gene was induced from an arabinose promoter in plasmid
pKAS118 or pKAS120, respectively, both activated an E. coli
tcpP-lacZ fusion approximately 30-fold, suggesting that they
are equally functional. To assess the expression of aphB in
classical and El Tor strains, an aphB-lacZ fusion was con-
structed in each biotype. Table 4 shows that the levels of
expression of aphB in the classical fusion strain GK130 and the
El Tor fusion strain GK142 are similar. Since the AphB pro-
teins from the classical and El Tor strains appear to be equally
capable of activating tcpPH transcription and the levels of
expression of the gene in both biotypes are similar, some other
aspect of AphB function may be different in the two biotypes.

It has previously been shown that the expression of aphA is
not strongly influenced by either pH or temperature (32). The
results in Table 4 indicate that the expression of aphB is also
not strongly influenced by these stimuli, nor does it completely
reflect the pattern of expression that is observed with tcpPH
under the different conditions. For example, expression of the
classical aphB-lacZ fusion is not higher at pH 6.5 at 37°C than
it is at pH 8.5 at 30°C, and expression of the El Tor aphB-lacZ
fusion is not significantly higher in AKI medium than it is in LB
medium at pH 6.5 at 30°C. It is also noteworthy that induction
of either aphA or aphB from the tac promoter had no effect on
the expression of the aphB-lacZ fusion or its response to en-
vironmental stimuli (data not shown). Since the expression of
tcpPH in response to pH or temperature does not appear to
solely depend upon the expression of either aphA or aphB in
response to these stimuli, it is possible that the activities of the
proteins themselves might be influenced under various condi-
tions.

DISCUSSION

Activation of the ToxR virulence cascade requires multiple
factors encoded both within the “ancestral” V. cholerae chro-
mosome and on discrete elements involved in pathogenicity.
As shown in Fig. 5, ToxR and ToxS, a chromosomally encoded
protein pair, cooperate with the TCP-ACF pathogenicity ele-
ment-encoded TcpP and TcpH protein pair to positively reg-
ulate the expression of the TCP-ACF-encoded regulator,
ToxT. ToxT, in turn, activates expression of the ctx and tcp

TABLE 3. Activation of an El Tor biotype tcpP-lacZ fusion by AphB and AphA

Straina

b-Galactosidase activityb at pH and temp:

AKI
medium

LB medium

6.5, 30°C 8.5, 30°C 6.5, 37°C 8.5, 37°C

KSK725 (tcpP-lacZ) 1,060 6 27 362 6 8 172 6 0 199 6 8 101 6 2
GK138 (DaphB) 129 6 8 222 6 6 162 6 8 122 6 8 94 6 1
GK161 (DaphA) 122 6 3 148 6 1 104 6 1 90 6 3 70 6 1
KSK725(pKAS117) (AphB) 2,129 6 37 3,785 6 309 1,270 6 173 2,053 6 168 753 6 197
KSK725(pKAS107) (AphA) 1,060 6 26 1,689 6 17 730 6 21 621 6 41 284 6 11

a All plasmids were induced with 1 mM isopropyl-b-D-thiogalactopyranoside.
b Units per optical density at 600 nm of culture.

FIG. 4. Alignment of the amino-terminal region of V. cholerae AphB with
those of several other members of the LysR family. The helix-turn-helix domain
is underlined.
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operons as part of a virulence gene regulatory cascade. In this
report, we describe another chromosomally encoded protein
pair required for the activation of the ToxR virulence cascade.
AphB is a new member of the LysR family of transcriptional
regulators which cooperates with the recently identified AphA
protein (32) to activate the expression of the tcpPH operon.

V. cholerae strains deficient in either aphA or aphB show
reduced expression of the tcpPH operon and as a result do not
produce virulence factors such as CT and TCP. That an aphA
aphB double mutant shows lower expression of tcpPH than
either single mutant suggests that AphA and AphB are not
functioning sequentially in the same pathway but that they
cooperate to activate tcpPH transcription. When expressed
from their natural promoters in V. cholerae, neither protein
significantly activates transcription in the absence of the other.
When expressed from inducible promoters on plasmids in V.
cholerae or E. coli, either protein is capable of activating the
transcription of tcpPH in the absence of the other, with AphB
showing a stronger effect than AphA and the former even
compensating for the latter in V. cholerae. However, the ex-
pression of tcpPH is significantly greater with the two proteins
together than with either one alone. It is possible that the
presence of AphA enhances the ability of AphB to activate
transcription.

The ToxR virulence regulon is strongly influenced by envi-
ronmental cues such as pH and temperature. Although the
mechanisms responsible for this regulation are not yet under-
stood, the effect of environmental stimuli on the expression of
the regulon may largely be the result of their influence over the
expression of tcpPH (24). How pH and temperature control
the expression of tcpPH is not yet understood, but AphA and
AphB appear to play a role in this process. V. cholerae strains
containing plasmids expressing either aphA or aphB show in-
creased tcpPH transcription under both permissive and non-
permissive environmental conditions. Supplying high levels of
either of these two proteins in the presence of the other ap-
pears to be sufficient to almost completely override environ-
mental regulation by pH and temperature. Since the expres-
sion of neither aphA (32) nor aphB is strongly regulated by
environmental conditions, it is possible that their activities are
influenced by them. Many LysR regulators activate gene ex-
pression only in the presence of specific coinducer molecules
(27). Interaction of such a molecule with AphB only under
certain environmental conditions might render it able to acti-
vate tcpPH transcription if AphA is present. High levels of
either AphA or AphB might be sufficient to at least partly
overcome the need for a coinducer to facilitate transcriptional
activation. Alternatively, when present in high levels, AphA or
AphB may effectively compete with other proteins that nor-
mally function to downregulate tcpPH expression under certain
environmental conditions. Additional experiments are neces-
sary in order to distinguish between these possibilities.

It is well established that V. cholerae strains of the El Tor
biotype exhibit lower expression of the ToxR virulence regulon

in vitro than classical biotype strains. This appears to be the
result of reduced expression of toxT and tcpPH in the El Tor
biotype relative to the classical biotype (6, 24) (Table 3). De-
spite the fact that the expression of tcpPH is differentially
regulated in classical and El Tor biotypes, aphA and aphB are
involved in the activation of tcpPH in both. The observation
that expression of aphB from the tac promoter increased tcpPH
transcription in the El Tor biotype to classical levels in LB
medium and permitted TCP production suggests that AphB
might in some respect be different in the two biotypes. How-
ever, El Tor biotype strains encode a functional AphB protein
and the expression of the gene is similar to that of classical
strains. AphA alone does not appear to be responsible for the
biotype-specific difference in expression, since induction of the
aphA gene in the El Tor biotype did not increase tcpPH tran-
scription to classical levels and it did not permit TCP produc-
tion. These results raise the possibility that some other aspect
of AphB function may be different in the two biotypes, such as
the ability of the protein to assume a conformation that allows
it to activate transcription at the tcpPH promoter. Experiments
to address this issue are currently in progress.

It is not yet known whether AphA and AphB function alone
or together in any other regulatory capacity in V. cholerae. It is
common for LysR transcriptional regulators to be divergently
transcribed from a promoter that is close to or that overlaps a
regulated target gene (27). For example, the gene encoding the
V. cholerae IrgB protein is divergently transcribed from the
gene which it activates, irgA (10). The gene upstream of aphB,
which is divergently transcribed, encodes a protein which
shows a high degree of homology to response regulators of a
number of bacterial two-component systems. Two-component
systems frequently regulate gene expression in prokaryotes in
response to environmental stimuli. It is tempting to speculate
that AphB may also activate the expression of this gene, and
experiments to determine this are currently under way.

This study describes a new chromosomal gene, aphB, which
encodes a LysR homolog that functions in both biotypes of V.
cholerae in concert with a second chromosomally encoded pro-
tein, AphA, to activate the expression of a virulence operon

FIG. 5. Model of activation of the ToxR virulence cascade. In response to the
appropriate environmental conditions, AphA and AphB activate transcription of
the tcpPH operon. TcpPH, together with ToxRS, activate transcription of toxT.
ToxT, in turn, activates expression of the ctxAB operon as well as expression of
the entire tcp operon, including the toxT gene itself. The precise locations of the
protein binding sites at the individual promoters have not yet been determined.

TABLE 4. Comparison of aphB expression in classical and El Tor biotypes

Strain

b-Galactosidase activitya at pH and temp:

AKI medium
LB medium

6.5, 30°C 8.5, 30°C 6.5, 37°C 8.5, 37°C

GK130 (classical aphB-lacZ) 201 6 6 176 6 3 129 6 1 100 6 3 78 6 1
GK142 (El Tor aphB-lacZ) 223 6 2 207 6 2 137 6 1 98 6 6 83 6 7

a Units per optical density at 600 nm of culture.
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within a pathogenicity element. Further understanding of the
mechanisms by which AphA and AphB activate gene expres-
sion may shed light on a number of questions regarding the
pathogenesis of V. cholerae.
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