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The retrosplenial cortex (RSC) is reciprocally connected with the hippocampus and various parahippocampal cortical regions,
suggesting that RSC is well-positioned to contribute to hippocampal-dependent memory. Consistent with this, substantial
behavioral evidence indicates that RSC is essential for consolidating and/or retrieving contextual and spatial memories. In addition,
there is growing evidence that RSC neurons undergo activity-dependent plastic changes during memory formation and retrieval.
In this paper we review both the behavioral and cellular/molecular data and posit that the RSC has a particularly important role
in the storage and retrieval of spatial and contextual memories perhaps due its involvement in binding together multiple cues in
the environment. We identify remaining questions and avenues for future research that take advantage of emerging methods to
selectively manipulate RSC neurons both spatially and temporally and to image the RSC in awake, behaving animals.

1. Introduction

The retrosplenial cortex (RSC) is positioned at the interface
between sensory cortical regions and the myriad of structures
that compose the parahippocampal-hippocampal memory
network. Importantly, the connections between RSC and
these structures are reciprocal (i.e., afferent and efferent),
suggesting that RSC not only contributes incoming sensory
information to the hippocampus, but may also serve as a
critical site of information storage.

In this paper we consider the cellular and behavioral
evidence that supports the involvement of RSC in spatial and
contextual memory. We begin by considering the functional
neuroanatomy of RSC and provide a working model of the
nature of information processing within RSC during learning
and memory. We then discuss the results of lesion and
inactivation studies that demonstrate the involvement of RSC
in the consolidation and/or retrieval of spatial and contextual
memories. This is followed by a review of recent studies of the
contribution of RSC to the extinction of fear memory. Next,
we turn to evidence of memory-related changes in neuronal
function (i.e., neural plasticity) in RSC. Finally, we conclude
by positing a specific role for RSC in long-term memory and

suggest avenues for future research. Studies using laboratory
rodents are emphasized because the bulk of the research
on plasticity molecules and manipulations of RSC has been
carried out in rats. Additionally, other recent reviews have
aptly considered the findings from neuroimaging and other
approaches used to study RSC in primates [1, 2].

2. Connectivity of the Retrosplenial Cortex

The RSC is a relatively large, polymodal midline structure
that extends ~8 mm along the rostrocaudal axis of the
rat brain (Figure 1). Among its various connections, RSC
receives input from visuospatial cortical sensory areas and
has strong reciprocal connections with visual cortex (areas
17 and 18b), cingulate cortex, and multiple parahippocampal
regions (postrhinal cortex, medial entorhinal cortex, and the
postsubiculum) as well as the hippocampus itself [3-11], as
show in Figure 2. The thalamic connections of RSC include
both afferent and efferent connections with anterior and
lateral thalamic nuclei [12, 13], structures that are involved
in processing spatial information [14]. Thus, RSC is suited
as a sensory integration center [7, 8, 15] located at the
interface between visuospatial cortical and thalamic regions
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FIGURE 1: Schematic diagram illustrating the rostrocaudal extent of
the RSC (black fill) in rats. Adapted from Paxinos and Watson [91].

and structures composing the hippocampal memory system
[9-11, 16].

3. What Is the Functional Contribution of RSC
to Learning and Memory?

The pattern of connectivity between RSC and hippocampal-
parahippocampal structures suggests that RSC is well-
positioned to participate in hippocampal-dependent func-
tions. Consistent with this, a growing body of evidence
indicates that RSC is a critical component of the so-called
“where/when” pathway (Figure 2), a network of cortical
structures (which also includes the medial entorhinal cortex,
postrhinal cortex, and visuospatial regions) that provides
the hippocampus with information regarding the physical
and temporal context in which an object/event occurs [2,
17-22]. Processing contextual information involves several
different components, such as encoding and forming associ-
ations between the neutral sensory stimuli that compose an
environment, ascribing behavioral significance to those asso-
ciations (e.g., pairing with reinforcers), and updating stored
associations to account for new information (e.g., [23]). Based
on findings from prior behavioral studies [24-36], we and
others have proposed that a specific contribution of RSC
to processing where/when information may be forming and
storing the associations among the various sensory stimuli
that are present in a learning environment [1, 7, 37, 38].
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FIGURE 2: Major cortical and thalamic afferents and efferents of RSC.
Only the densest interconnections are illustrated for simplicity.

Furthermore, the extant data indicate that the role of RSC
in this process is not restricted only to physical stimuli
but also includes temporal stimuli [39] that can also define
the context in which an object or event is experienced
[40-43]. Conversely, consistent with its specific role in the
where/when circuit, RSC is not necessary for forming an
association between an individual conditioned stimulus (CS)
and an outcome (e.g., tone and shock [27, 28], c.f,, [31]),
which instead is processed by a somewhat separate cortical
circuit (the “what” pathway consisting of regions including
perirhinal cortex and lateral entorhinal cortex [44]).

We recently tested the involvement of RSC in forming
associations between neutral sensory stimuli using a behav-
ioral paradigm, sensory preconditioning, which isolates the
formation of stimulus-stimulus associations from pairing
those stimuli with a reinforcer. During the preconditioning
phase of this procedure, rats were presented with serial
pairings of a tone and a light (each cue presentation was
5sec in duration). On a subset of trials in each session
another auditory cue (white noise) was presented by itself.
Because no reinforcement was delivered during this phase,
rats had the opportunity to form an association between the
tone and light in the absence of any biologically significant
outcome. During the subsequent conditioning phase the light
was paired with a food reward. In a final test phase, the
tone and the white noise were presented alone on intermixed
trials. Normal rats exhibited more conditioned responding
to the preconditioned auditory cue (the tone) compared
to the unpaired cue (white noise) during the test session,
reflecting the formation of a stimulus-stimulus association
between the tone and the light during the preconditioning
session (i.e., sensory preconditioning [45-47]). In contrast,
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silencing RSC neurons during the preconditioning phase
eliminated the sensory preconditioning effect, suggesting
that the RSC is needed for forming the stimulus-stimulus
association between the tone and the light [48].

Interestingly, it has recently been shown that the hip-
pocampus is not active [49] nor necessary [50] for forming
the initial stimulus-stimulus associations in similar sensory
preconditioning paradigms. Together with the findings of
Robinson et al. [48], this supports the intriguing idea that
another region(s), such as RSC, forms the stimulus-stimulus
associations that the hippocampus then uses to form con-
textual and spatial representations which are subsequently
incorporated into existing schemas [7, 19, 34, 37, 38]. Rig-
orous testing of this idea awaits future study. Moreover,
because the sensory preconditioning procedures described
above used discrete and phasic stimuli like tones and lights,
caution should be exercised in drawing comparisons to the
formation of associations between sensory stimuli that are
static background cues, like those that compose a physical
context. That said, the process of forming stimulus-stimulus
associations is critical for learning about contexts and studies
of sensory preconditioning may thus inform how animals
learn about contexts.

4. Involvement of RSC in Memory
Storage and Retrieval

4.1. Contextual Fear Memory. In experiments with laboratory
rodents, contexts are usually defined as the chambers in
which conditioning occurs and are composed of various
visual, tactile, and olfactory characteristics. In contextual fear
conditioning experiments, rats will exhibit freezing behavior
(immobility except for respiration) when they are returned
to a context where they have previously received a mild
foot shock [51], indicating that contexts can directly elicit
conditioned fear responses [42].

Evidence from lesion and inactivation studies suggests
that the RSC is necessary for recalling contextual memories.
Indeed, studies using contextual fear memory paradigms
have demonstrated that RSC is involved in postencoding
processes, such as the consolidation, storage, and/or retrieval
of previously formed associations between stimuli in the
environment. For example, permanent lesions of the RSC
carried out one day after training produce dramatic reduc-
tions in freezing behavior when the rats are placed back
in the training chamber after recovering from surgery [27].
Importantly, in the same study, RSC lesions had no effect
on fear conditioning to a discrete, Pavlovian CS (e.g., tone-
shock pairings, c.f,, [31]). These findings indicate that RSC
is necessary particularly for the retrieval of contextual fear
memory. Interestingly, damage to RSC that takes place after
training has a greater effect on the retrieval of contextual
fear memory than lesions carried out prior to training. One
interpretation of this pattern of results is that in the absence
of a functioning RSC (i.e., pretraining lesion), other brain
systems or strategies may be able to at least partially com-
pensate during the encoding and/or retrieval of contextual
fear. However, in the intact brain, RSC may be part of the
preferred circuitry for processing contextual information.

Thus, damage to RSC after training may have a more dramatic
effect on the retrieval of context fear memory since memory
formation was reliant on RSC.

Other studies have shown that NMDA glutamate recep-
tors in RSC are necessary for the retrieval of contextual fear
memories. For example, infusion of APV, an antagonist of
NMDA glutamate receptors, into the RSC prior to a memory
retrieval session reduces freezing to the context in which
conditioning had occurred either 1 day or 36 days earlier,
indicating that NMDA glutamate receptors in the RSC are
integral for the retrieval of contextual fear [52]. Moreover,
this effect was mimicked by specifically blocking NMDA
receptors that contain the NR2A subunit; administration
of an NR2B-selective antagonist was without effect. There
was also no effect of blocking AMPA glutamate receptors.
Consistent with the lesion data [27], blocking NMDA gluta-
mate receptors in RSC had no effect on the retrieval of fear
conditioned to a discrete, Pavlovian CS. Thus, the role of the
RSC in fear memory appears to be specific to the expression
of contextual fear memory.

Inhibitory avoidance is another behavioral paradigm that
involves learning and recalling that an aversive stimulus was
paired with a specific environment. In a typical inhibitory
avoidance task, rats are placed in the lighted side of a two-
compartment apparatus and voluntarily enter the darkened
compartment within a few seconds, since rats have a natural
aversion to brightly lit areas. Upon entry into the dark com-
partment a mild foot shock is delivered. Memory retrieval
is assessed by returning the rat to the lighted side at a later
time and measuring the latency to cross over into the dark
compartment. Intact rats avoid the dark compartment and
typically enter it only after a long period of time (e.g., several
minutes), indicative of the memory that it had previously
been paired with shock. Inhibitory avoidance memory is
impaired by temporary inactivation of neurons in the RSC
at the time of retrieval as evidenced by a reduction in the
latency to enter the dark compartment [53]. These data com-
plement those from studies of contextual fear conditioning
and support the involvement of RSC in recalling memories
for contexts.

4.2. Spatial Memory. Various studies using spatial memory
paradigms have also demonstrated that RSC is involved in
the consolidation, storage, and/or retrieval of associations
between stimuli in the environment. In the case of spatial
memory, organisms must learn and remember where rein-
forcement is located in the environment so that they can
successfully navigate to the item [54]. For example, in the
radial arm maze rats must learn which of the arms contains
a food item, and in the Morris water maze rats must learn
where a hidden escape platform is located in a pool of opaque
water. In both cases, rats learn about and use cues in the
environment to guide their behavior. Importantly, spatial
memory, like contextual fear memory, relies upon the binding
of stimuli in the environment to form cohesive, conjunctive
representations [55, 56].

Several lines of evidence indicate that RSC has an integral
role in spatial memory [55, 57]. For example, temporary
inactivation of RSC neurons at the time of retrieval impairs



performance in the water maze [58]. Other experiments
demonstrate that permanent lesions of RSC carried out after
training produce retrograde amnesia for spatial memories
[59]. For instance, lesioning RSC either 1 day or 4 weeks
after training produces deficits when memory is subsequently
tested after recovery from surgery. These findings indicate
that RSC is critical for retrieving spatial memories. Inter-
estingly, it has been shown that lesions of RSC carried out
prior to training also produce deficits in spatial memory,
particularly at longer training-to-testing intervals [59].

In summary, the use of permanent lesion or temporary
inactivation techniques indicates that RSC is necessary for the
consolidation, storage, and/or retrieval of contextual and spa-
tial memories. Additional studies that differentiate between
the involvement of RSC in memory consolidation, storage,
and retrieval are needed to pinpoint the specific timeframe
of RSC involvement in contextual memory. Nevertheless,
the findings to date support the hypothesis that RSC is a
potential site of long-term storage of spatial and contextual
memory [60], perhaps due to the RSC’s involvement in
binding together multiple cues in the environment [1].

5. Extinction Learning and Memory

The evidence described above supports a role for the RSC in
the retrieval of spatial as well as contextual fear memories.
Perhaps equally important to the understanding of RSC
plasticity in learning and memory is the role of RSC in extinc-
tion, a fundamental behavior change process. In extinction,
repeated presentation of the previously conditioned cue or
context, in the absence of the reinforcer (i.e., footshock in
fear conditioning paradigms), results in a decrease in the
conditioned response (see [41, 61]). Extinction learning is
essential for the survival or organisms, because it allows them
to adapt to changes in their environment [53]. Just as RSC
has a role in the retrieval of contextual fear memories it also
has a role in the extinction of contextual fear. For example,
NR2B subunit-containing NMDA receptors are necessary for
the extinction of older (i.e., remote) but not more recent
contextual fear (e.g., [62]). This indicates that, at least for
extinction of contextual fear, the role of the RSC is dependent
upon the age of the memory.

The loss of behavior observed in extinction does not
reflect unlearning or erasure of the original memory [41, 61].
Instead, it is now widely understood that extinction results
in new learning that is at least partly dependent on context
[63]. For example, responding to an extinguished Pavlovian
CS will return when that CS is tested outside of the context
of extinction (e.g., [64]). The fact that extinction of Pavlovian
CSs is controlled by the context suggests an important role
for the RSC, which has already been shown to be crucial
for contextual learning and memory. In fact, there is recent
evidence that extinction of a trace CS engages the RSC
(in trace conditioning procedures, a short time interval is
inserted between CS offset and US onset. This is in contrast
to delay conditioning procedures, where CS offset coincides
with US onset). For example, infusion of APV into anterior
RSC during trace extinction impairs extinction retention
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when tested 1 day later. Thus, plasticity in the RSC is necessary
for the extinction of fear to a trace CS [65].

The fact that RSC contributes to extinction of trace CS
memories is especially interesting considering RSC appears
to have no influence on retrieval of delay CS memories [27,
52], c.f. [31] or the extinction of delay CS memories [65].
However, it remains to be determined why trace, but not
delay, extinction relies upon the RSC [65]. For example, if
the RSC is simply providing contextual information during
extinction learning, then one would expect both delay and
trace extinction to involve RSC. Kwapis et al. [65] have instead
suggested that the dissociation of RSC involvement in delay
versus trace extinction might be due to trace memories, and
not delay memories, being initially stored in the RSC. The
additional assumption is that extinction learning engages
synapses that support the original memory. However, as
Kwapis et al. [65] state, it remains to be determined if the
original trace CS memory is stored in the RSC.

6. Activity-Dependent Neural Plasticity in RSC

The data described thus far indicate that RSC may be a site
of long-term storage for contextual and spatial memory. If so,
then RSC would be expected to exhibit cellular and physio-
logical signatures of memory formation and storage. Indeed,
a multitude of activity-dependent signaling molecules and
mechanisms have been linked to the formation of long-term
memory, including the activation of transcription factors,
protein synthesis, dendritic growth and branching, and the
induction of long-term potentiation (LTP) and depression
(LTD).

Consistent with this notion, RSC neurons are known
to possess a variety of intracellular molecules that have
been associated with activity-related plasticity, including
various transcription factors (e.g., Fos, Zif268, Arc) and
growth factors (e.g., BDNF). In addition, an extensive line
of research shows that the expression of transcriptions fac-
tors and growth factors in RSC can be altered following
disconnection from structures known to be involved in
memory processing. For example, lesions of the hippocampus
significantly reduce the expression of Fos and Zif268 in RSC
neurons [66], suggesting that projections from hippocam-
pus to RSC modulate the expression of genes involved in
synaptic plasticity and memory formation. Similarly, damage
to anterior thalamic nuclei reduces expression of the same
genes, as well as expression of other genes that have been
shown to be involved in neuroplasticity, such as CREB,
neuritinl, ncs-1, 5htrc, and kenab2, and in genes involved in
cell-signaling (e.g., scampl, neurexinl, and exoc7 [67-70]).
Conversely, stimulation of thalamic input to RSC resulted
in increased Fos expression [71]. Importantly, the changes in
gene expression following denervation of RSC did not result
in significant atrophy of RSC neurons [66] but were likely
due to changes in the amount of activity that RSC neurons
could sustain [72]. Thus, the alterations in transcription factor
and growth factor expression reflect a more subtle alteration
in function within RSC. Furthermore, none of the changes
observed following hippocampal or anterior thalamic lesions
were observed when other structures, such as the entorhinal
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cortex or postrhinal cortex, were damaged [66, 70]. Together,
these findings indicate that plasticity-related molecules are
expressed by RSC neurons and that interactions between RSC
and the hippocampus and the anterior thalamus may be par-
ticularly important in promoting activity-related plasticity in
RSC.

In addition to changes in gene expression associated
with plasticity and cell signaling, other studies have shown
that damage to the anterior thalamus disrupts LTD [73] and
reduces neural excitability [74] of RSC neurons. Changes in
synaptic activity, including LTD and LTP are thought to be
fundamental substrates underlying learning and memory for-
mation [75]. Thus, disruptions in the ability of RSC neurons
to undergo synaptic modification may contribute to impair-
ments in long-term memory formation and/or retrieval.
Relatedly, anterior thalamus lesions [76] or excessive neural
excitation (status epilepticus) [77] cause a reduction in
dendritic spine density in RSC and decrease the expression
of the BDNF receptor, TrkB [77]. Dendritic restructuring
and alterations in BDNF signaling are likewise thought to be
critically important to memory formation [78, 79]. Together,
these findings indicate that RSC neurons exhibit activity-
dependent changes in the expression of a variety of genes
associated with neural plasticity, as well as alterations in den-
dritic structure and physiological manifestations of plasticity
(e.g., LTD/LTP). As described in the following section, recent
studies have extended this research to investigate neural
plasticity in RSC specifically during memory formation and
recall.

7. Memory-Related Plasticity in RSC

Demonstrating that RSC neurons contain the machinery
to undergo activity-dependent plasticity is informative and
suggestive that RSC has the potential to undergo the plastic
changes traditionally thought to underlie memory. However,
it is crucial to determine whether those mechanisms are
actually at work during memory formation and retrieval.
Several recent studies have now addressed this by assessing
the activation of RSC neurons at different stages of memory
retrieval. For example, immediate early genes such as Hla
are expressed in RSC following training in the water maze
[37], and metabolic activity is increased in RSC at 24 and 48
hours after training [72]. In addition, after rats were trained
in a five-arm spatial maze, expression of Fos and Zif268 was
examined during a single retention trial either 1 day or 30
days after training [80]. Interestingly, RSC neurons expressed
more Zif268-positive cells during the 30-day retention test
compared to the 1-day test. Other memory-related molecules,
such as Arg, are elevated during spatial memory tests at both
1 day and 30 days after training in a water maze task [81].
The reasons for the differential expression of these molecules
at different times after training remain to be elucidated,
but importantly, in both studies, the expression of these
transcription factors decreased over time in other brain areas
(e.g., hippocampus, posterior cingulate cortex), indicating
that RSC is among a select set of cortical regions that exhibit
significant neural activity when memories are retrieved long
after training.

It is well established that de novo protein synthesis in
hippocampus and other structures is required for many forms
of long-term memory [82]. Similarly, it has recently been
shown that protein synthesis in the RSC is necessary for the
consolidation of fear memories [83]. For example, infusion of
a protein synthesis inhibitor into anterior RSC fifteen minutes
prior to inhibitory avoidance training impaired memory
retrieval at tests either 2 or 7 days later. This indicates that
protein synthesis in RSC during or shortly after training is
important for the formation of inhibitory avoidance memory.
In contrast, infusing the protein synthesis inhibitor 12 hours
after training produced retrieval deficits at the 7th day, but
not the 2nd day retention test [84]. This finding suggests
that protein synthesis in RSC at longer times after training
is necessary for the formation of long-lasting memory. This
is consistent with theories that posit a role for hippocampus
primarily in recalling recent contextual and spatial memories,
while a network of cortical regions is responsible for longer
term storage (remote memory).

8. Current Research Directions and
Avenues for Future Studies

Recently, new technologies such as optogenetics and genetic
tagging methods have been brought to bear on questions
relating to the involvement of RSC in memory. In one study,
a c-fos genetic tagging approach was used to label cells that
were active during contextual fear conditioning [85]. When
tagged cells in RSC where later reactivated optogenetically
in a novel context, mice exhibited freezing behavior as if
they had been exposed to the original training environment.
Importantly, hippocampal inactivation did not disrupt the
freezing induced by stimulation of the ensemble of tagged
RSC neurons, indicating that the RSC can have a functionally
independent role from hippocampus in retrieving contextual
fear memories. This is consistent with findings described
previously, in which RSC inactivation but not hippocampal
inactivation produced deficits in sensory preconditioning
[48,50], indicating the RSC but not hippocampus was needed
for forming the initial associations between sensory cues. In
an application of yet another exciting new technology, RSC
neurons have been shown to be active during spatial learning
using time-lapse in vivo two-photon imaging [58]. Future
studies might use these approaches to compare the activity of
RSC neurons during the period between training and recall
in order to disambiguate the contribution of RSC to memory
storage processes versus the expression of memory.

It will also be important to consider plasticity and neural
activity that arises from intra-RSC communication. The
intrinsic connectivity of RSC has only recently been described
[86] and little is currently known about the nature of
information processing within RSC. If RSCis indeed involved
in forming, storing, and/or retrieving associations between
sensory cues that compose a context, this may be reflected in
a strengthening of synapses between RSC neurons. Moreover,
RSC is composed of multiple, distinct anatomical subregions
[9-11] and only a few studies to date have investigated
the functional differences between these areas (e.g., [87-
89]). Thus, future research that considers communication



and plasticity between these subregions may yield additional
insight into the nature of information processing within RSC.

In addition to using technological advances to better
understand the contribution of RSC to memory processes,
it will be useful to consider behavioral experiments that
could further delineate the functions of RSC. For instance,
as mentioned previously, existing data indicate that RSC is
needed for the successful encoding and retrieval of asso-
ciations between sensory stimuli (e.g., contextual cues) but
not associations between an individual cue (e.g., a tone) and
an outcome (e.g., foot shock). However, the studies to date
have only considered the effects of RSC manipulations on
recently acquired cue-outcome associations [27]. Considering
that the RSC has a critical role in the retrieval of older
(remote) contextual memories, it might also contribute to the
retrieval of remote cue-outcome associations. One possibility
is that over time, memory for a discrete stimulus like a
tone becomes integrated with the memory of the context in
which the cue was experienced. Indeed, while learning and
performance is often unaffected by a change in context (e.g.,
[90]), less is known about the impact of a context change
following a retention interval (i.e., a remote memory). If cue-
outcome associations indeed become contextually controlled
over time, the RSC might contribute to the retrieval of remote
cue-outcome associations especially considering the crucial
role of the RSC in contextual memory.

9. Conclusions

Despite the relatively large size of RSC and its integral
position in the where/when pathway, its specific contribution
to hippocampal-dependent forms of learning and memory
is only now beginning to emerge. To date, the bulk of the
behavioral evidence supports the idea that RSC is specifically
involved in forming and retrieving associations among the
neutral stimuli that are present in the environment. Impor-
tantly, the role of the RSC is not limited to processing physical
stimuli such as visual, auditory, and tactile cues but also
extends to temporal cues. The evidence of activity-dependent
neuroplastic changes in RSC neurons further supports the
view of RSC as a site in which multiple cues are linked
together in the service of memory formation, storage, and
retrieval. However, additional work is needed to specifically
determine if and how RSC contributes differently to recent
versus remote memory. Future studies that make use of bur-
geoning technologies such as optogenetics, chemogenetics,
and optical imaging will also be extremely valuable in further
delineating the involvement of RSC in storage versus retrieval
processes and in defining the precise mechanisms through
which RSC binds stimuli together.
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