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The 40-residue insertion in Vibrio cholerae FadR facilitates 
binding of an additional fatty acyl-CoA ligand

Wei Shi2, Gabriela Kovacikova3, Wei Lin3, Ronald K. Taylor3, Karen Skorupski3, and F. Jon 
Kull1,2

1Department of Chemistry, Dartmouth College, Geisel School of Medicine at Dartmouth, Hanover, 
New Hampshire, USA

2Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 
USA

3Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, 
New Hampshire, USA

Abstract

FadR is a master regulator of fatty acid metabolism and influences virulence in certain members of 

Vibrionaceae. Among FadR homologs of the GntR family, the Vibrionaceae protein is unusual in 

that it contains a C-terminal 40-residue insertion. Here we report the structure of Vibrio cholerae 

FadR (VcFadR) alone, bound to DNA, and in the presence of a ligand, oleoyl-CoA. Whereas 

Escherichia coli FadR (EcFadR) contains only one acyl-CoA binding site in each monomer, 

crystallographic and calorimetric data indicate that VcFadR has two. One of the binding sites 

resembles that of E. coli FadR, whereas the other, comprised of residues from the insertion, has 

not previously been observed. Upon ligand binding, VcFadR undergoes a dramatic conformational 

change that would more fully disrupt DNA binding than EcFadR. These findings suggest that the 

ability to bind and respond to an additional ligand allows FadR from Vibrionaceae to function as a 

more efficient regulator.

Introduction

In all organisms, fatty acids (FAs) are essential components of membranes and important 

sources of metabolic energy. FadR is a member of the GntR family of transcription factors 

that coordinately controls the pathways of FA degradation and unsaturated fatty acid (UFA) 

biosynthesis in enteric bacteria1. In the absence of exogenous long chain fatty acids 
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(LCFAs), FadR functions as a repressor of FA degradation by binding to a site in the 

promoters of the fad genes and interfering with RNA polymerase2 (Fig. 1a). These genes 

include fadL, fadD, fadBA, fadE, and fadH that encode proteins required for the transport, 

activation and β-oxidation of LCFAs3. In V. cholerae, FadR also represses the expression of 

the plsB gene involved in membrane phospholipid biosynthesis4. In the absence of 

exogenous LCFAs, FadR simultaneously activates the expression of the fabA and fabB 

genes that encode proteins required for the biosynthesis of UFAs5,6. When exogenous 

LCFAs are present (Fig. 1b), they are transported across the outer membrane by FadL and 

activated by the inner membrane-associated acyl-coenzyme A (CoA) ligase FadD7 to 

produce long chain fatty acyl-CoAs (LCFA-CoAs). These LCFA-CoAs bind directly to 

FadR and induce a conformational change that releases FadR from its binding sites8. This 

derepresses fad gene expression to utilize the LCFAs and decreases the expression of fabA 

and fabB since UFA biosynthesis is no longer necessary.

In addition to controlling the activity of FadR, UFAs, which are components of bile in the 

intestinal lumen, are important signals present in the host environment that influence the 

expression of virulence genes in V. cholerae9. Members of Vibrionaceae are ubiquitous in 

marine and fresh water environments, with species found in open water, estuaries and 

marine sediments as either free-living or in association with phyto- and zooplankton10,11. 

Vibrio cholerae is the causative agent of the acute intestinal infection cholera. Upon entry 

into the host intestine, V. cholerae induces a transcriptional cascade resulting in the 

expression of the AraC-type master virulence regulator, ToxT. ToxT directly activates the 

expression of the two primary virulence factors of V. cholerae, the toxin-coregulated pilus 

(TCP)12 and cholera toxin (CT)13. UFAs have been found to directly bind into the pocket of 

ToxT and influence its activity by impairing the ability of the protein to dimerize and bind to 

DNA14. The location of the UFA, buried in the ligand pocket at the interface between the N- 

and C- terminal domains is thought to promote a “closed” conformation of ToxT that is not 

capable of binding to DNA. Once the bacteria have penetrated the mucus of the intestine, 

and the concentrations of UFAs are reduced, the closed conformation is presumably 

destabilized, and the protein becomes competent for DNA binding and activation of gene 

expression14.

The majority of FadR proteins that have been identified are members of the GntR family, as 

typified by E. coli FadR (EcFadR), which has been crystallized in its apo, ligand-bound, and 

DNA-bound forms15–17. EcFadR has an N-terminal DNA binding domain containing a 

winged helix-turn-helix (wHTH) motif, and a C-terminal domain consisting of a seven-

helical bundle containing a large cavity that is involved in acyl-CoA binding15. Upon ligand 

binding, effector induced conformational changes occur in the protein that lead to 

displacement of the entire DNA binding domain with respect to the effector binding domain, 

leading to disruption of the protein-DNA complex16.

FadR from Vibrionaceae is unusual among FadRs of the GntR family in that it contains a 40 

amino acid insertion in its C-terminal domain18. Although FadR from V. cholerae appears to 

repress gene expression as well as other FadR homologs that have been examined, it has a 

higher binding affinity for acyl-CoAs than the other homologs and it induces the expression 

of genes involved in FA utilization (i.e. it is derepressed) more efficiently in the presence of 
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ligand18. It has been suggested that these properties may be related to the 40 amino acid 

insertion confined to the family. To gain insights into the role of this 40 amino acid insertion 

for V. cholerae FadR (VcFadR), we have crystallized the VcFadR protein in three forms: 

apo, bound to its cognate DNA, and in the presence of a ligand, oleoyl-CoA. Our results 

indicate the insertion region in VcFadR potentially stabilizes the wing of the wHTH DNA 

binding domain in the absence of DNA and, strikingly, facilitates the binding of a second 

oleoyl-CoA ligand in each monomer. The large conformational changes that occur in the 

protein upon binding of this second ligand are predicted to more fully disrupt DNA binding 

than what has been observed in the E. coli protein, possibly explaining why VcFadR is a 

more efficient regulatory protein.

Results

VcFadR is unusual but still regulates FA metabolism

FadR is present in a variety of bacterial species where it plays a role in the transcriptional 

regulation of genes involved in FA metabolism19. The regulation of genes involved in FA 

degradation and UFA biosynthesis by FadR in V. cholerae has been inferred from 

bioinformatics analyses19,20. To confirm that VcFadR functions as a regulator of these 

processes in V. cholerae, fusions of a promoterless lacZ gene from E. coli were made to the 

upstream regions of the V. cholerae fadBA, fadE, and fadH genes involved in FA 

degradation and to the fabA and fabB genes involved in UFA biosynthesis. The fusions were 

introduced into the V. cholerae chromosome at the lacZ locus, and examined in the presence 

and absence of FadR and LCFAs. As shown in Fig. 1c, the loss of FadR increased the 

expression of the fadBA, fadE and fadH promoters 2, 2.8 and 2.5 fold, respectively, whereas 

it decreased the expression of the fabA and fabB promoters 6.7 and 4.5 fold, respectively, in 

the absence of LCFAs. In the presence of LCFAs (Fig. 1d), no significant difference in the 

expression of the fusions was observed between the wild-type and ΔfadR mutant strains. 

These results show that FadR functions as a regulator of FA metabolism in V. cholerae.

VcFadR shares 52% sequence identity with EcFadR (Fig. 2a). However, the protein from V. 

cholerae, as well as from other members of Vibrionaceae, shows a major difference from all 

other GntR family FadRs that have been sequenced in that it contains 40 additional residues 

in the C-terminal domain (Figs 2a, b and Supplementary Fig.1). A Blast search21 with V. 

cholerae FadR also reveals several related proteins with a 44-residue insertion 

(Supplementary Fig. 1). Thus, it appears that Vibrionaceae FadRs acquired an insertion at 

some point in their evolution; retention of this insertion suggests it provides a biological 

advantage for the organism.

Structure of apo-VcFadR and comparison with EcFadR

To shed light on the role of the insertion for Vibrionaceae, the structure of V. cholerae apo-

FadR was determined (Fig. 3a and Table 1). The asymmetric unit contains a dimer formed in 

a manner similar to that of EcFadR (PDB 1E2X and 1HW1)15,17. Each monomer consists of 

an α/β N-terminal domain (residues 2–72, α1-β1-α2-α3-β2-W1-β3-W2, ‘W’ denotes a 

‘wing’), a helical C-terminal domain (residues 94–279, α5–α6–αI1-αI2-α7-α8–α9–α10, ‘I’ 

denotes that the helix is derived from the insertion), and a short helical linker (residues 81–
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89, α4) (Fig. 3a). The structure of the N-terminal domain conforms to the so-called wHTH 

motif22, consistent with its role in binding DNA, and contains the most flexible loop in the 

structure as suggested by its B-factors (Supplementary Fig. 2a).

Superposition of the VcFadR dimer onto the EcFadR dimer (PDB 1E2X)15 (Fig. 3b) reveals 

that overall the two proteins are very similar [root mean square deviation (RMSD) over 424 

alpha carbon atoms is 1.64 Å] except for the insertion (residues 138–177), which lies 

between helix α6 and helix α7. The insertion region elongates helices α6 and α7, as 

previously predicted18, and forms two additional short α-helices, αI1 and αI2, along with 

several connecting loops.

Structure of VcFadR with DNA and comparison with EcFadR

VcFadR was crystallized in complex with a 31-bp oligonucleotide derived from the V. 

cholerae fadBA promoter (Figs 4a, b, and Table 1). As in the EcFadR-DNA complex (PDB 

1H9T and 1HW2)16,17, the DNA binding site is recognized by residues from helices α1, α2, 

and α3, which interact with the major groove, as well as the two wings (W1 and W2) that 

bind to the adjacent minor grooves (Figs 4a, c), stabilizing these loops significantly 

(Supplementary Fig. 2b). As in the EcFadR-DNA complex, the DNA in the V. cholerae 

FadR-DNA complex has a B-form conformation with a curvature of ~20° toward the 

protein, resulting in a contraction of the central major groove and an expansion of the 

opposite minor groove. As the amino acid sequences of the DNA binding domains of the V. 

cholerae and E. coli proteins are nearly identical (Fig. 2a), the protein-DNA contacts are 

also very similar. For example, there are five residues in both proteins that specifically 

recognize DNA base pairs (R35 in α2; R45 and T46 in α3; and H65 and G66 in the tip of 

the wing) (Figs 4b, c and Supplementary Fig. 3). There are also similarities in a number of 

nonspecific interactions with the DNA sugar-phosphate backbone, including A9, E34, T44, 

T47, R49 and T69 (Figs 4b, c and Supplementary Fig. 3). All contacts are symmetrical, 

except for T44, H65 and G66 (which have both symmetrical and non-symmetrical contacts) 

and K67 (which only has a non-symmetrical contact) (Fig. 4b).

Superposition of the structures of the dimeric VcFadR-DNA complex and the apo-VcFadR 

dimer (Fig. 5a) shows that the DNA binding domain and the insertion region are altered 

upon DNA binding. Within the DNA binding domain, the distance between the two DNA 

recognition helices (α3) narrows from 17 Å in the apo-VcFadR structure to 15 Å in the 

VcFadR-DNA complex such that it is better able to interact with the DNA (Fig. 5a). In 

addition, the tip of the wing in each wHTH DNA binding domain is shifted by 5 Å, forming 

interactions with DNA (Fig. 5a).

Although the insertion region (αI1, αI2 and several connecting loops) does not directly 

contact DNA (Fig. 5a), it undergoes a conformational change upon DNA binding. In the 

absence of DNA, the wing of the wHTH of chain A interacts with αI2 from the insertion 

region of chain B (Fig. 5b) via hydrogen bonds between the side chains of Q64 and K67 and 

the carbonyl oxygen of Q1592 (residues from chain B are distinguished by a prime) and two 

salt bridges (K70-E1552 and E76-K1562), suggesting the insertion stabilizes the wing. 

These interactions are also symmetric, although the distances are slightly longer between the 

insertion of chain A and the wing of chain B. In the presence of DNA (Fig. 5c), the wing of 
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the wHTH moves away from the insertion to interact with DNA and helices αI1, αI2 and the 

C-terminal end of α6 undergo a helix to loop transition. This conformational change in the 

insertion region when VcFadR is bound to DNA may be due to the loss of interactions with 

the wing.

Structure of VcFadR with ligand and comparison with EcFadR

In order to visualize the effects of ligand binding on VcFadR, the structure was determined 

in the presence of the high binding affinity ligand, oleoyl-CoA18 (18:1) (Figs 6a, b, and 

Table 1). Interestingly, in contrast to EcFadR, which binds one molecule of ligand 

[myristoyl-CoA (14:0) (PDB 1H9G)16] per monomer (Fig. 6c), VcFadR binds two ligand 

molecules, with one (colored pink in Fig. 6a) located in the site corresponding to the 

EcFadR ligand binding site (designated site #1) and the other (colored yellow in Fig. 6a) in a 

binding site derived in part from the 40-residue insertion region (designated site #2) that is 

structurally distinct from site #1 (electron density is shown in Supplementary Fig. 4). Thus, 

the insertion in FadR from Vibrionaceae facilitates the binding of a second molecule of 

ligand into each monomer; this has not been observed in any FadR structure that has been 

solved to date.

For the ligand bound to site #1 in monomer A, salt bridges are formed between ligand 

phosphates and residues R253, K1182 and R2452 (Figs 6d, Supplementary Fig. 5a). In 

monomer B, the phosphorylated adenosine head group of the site #1 ligand has a different 

and more disordered conformation than that in monomer A (Supplementary Fig. 6), and 

electron density can be observed for multiple positions of the head group. The arrangements 

of salt bridges in VcFadR differ significantly from the EcFadR-myristoyl-CoA structure 

(1H9G)16 where only one salt bridge forms between the ligand phosphate and EcFadR R213 

(corresponding to VcFadR R253). In VcFadR, additional hydrogen bonds are formed 

between carbonyl oxygens in the pantothenic acid moiety and the polar side chains T106 

and S259 (Fig. 6d and Supplementary Fig. 5a), homologous to hydrogen bonds involving 

EcFadR T106 and S219). Finally, as in the EcFadR-myristoyl-CoA structure (1H9G)16, the 

C18 acyl chain adopts a bent conformation and terminates in a hydrophobic pocket formed 

by residues L101, I108 and L208 from helices α5 and α8 (Figs 6d and Supplementary Fig. 

5a). The FadR ligand pocket thus can clearly accommodate ligands of different lengths, as 

the longer acyl chain in VcFadR structure extends ~4 Å farther into the pocket compared 

with the C14 acyl chain of myristoyl-CoA in EcFadR (1H9G)16. It is unclear from the 

structure if the unsaturated bond between C9 and C10 of oleoyl-CoA plays an important role 

in binding, however comparison of the VcFadR and EcFadR pockets in this region does 

show one change that might be significant; M168 in EcFadR is replaced by L208 in 

VcFadR, which is positioned relatively further away from the ligand, perhaps to 

accommodate the kink in the fatty acyl chain introduced by the double bond (Supplementary 

Fig. 7)

For ligand binding site #2, residues involved in specific interactions with the ligand are 

shown in Fig. 6e and Supplementary Fig. 5b. Both K156 from αI2 and R191 from α7 form 

salt bridges with ligand phosphate groups, and Y153 from αI2 forms a π-stacking 

interaction with the adenine ring. N130, S134, and Y184 form hydrogen bonds with the 
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adenine ring (Fig. 6e). The C18 acyl chain is buried in a pocket surrounded by hydrophobic 

residues and the tails of the acyl chains from each monomer pack closely together (Fig. 6a, 

right-center). The dominantly hydrophobic pocket is mainly formed by residues from helix 

α8 and the loop region connecting the DNA-binding and the ligand binding domains (e.g. 

I822, I832, I200, L203, G207) (Fig. 6e and Supplementary Fig. 5b). In addition, upon ligand 

binding, residues in the DNA binding domain (e.g. W212, P272) move closer to the C-

terminal domain and interact with the ligand (see following section). Interestingly, the bent 

helix α8 (residues 199–221, notably G207) forms part of both binding sites #1 and #2. The 

above-mentioned residues that are interacting with ligand in binding site #2 are highly 

conserved among the other FadR proteins with the insertion (Fig. 2b and Supplementary Fig. 

1), suggesting that they will also bind the second ligand.

To determine the thermodynamic parameters for binding of the oleoyl-CoA ligand to 

VcFadR, isothermal titration calorimetry (ITC) was used to measure the dissociation 

constant (Kd), enthalpy (ΔH), and the stoichiometry of binding (n). Typical ITC profiles of 

the binding of oleoyl-CoA to VcFadR are shown in Supplementary Fig. 8. Consistent with 

the crystal structure, the stoichiometry of binding indicates that every monomer of VcFadR 

protein binds two molecules of oleoyl-CoA. The biphasic nature of the isotherm indicates 

the presence of nonequivalent binding sites with different affinities for oleoyl-CoA (6 nM 

and 88 nM). Although it is not possible to determine which binding site has the higher 

affinity from the ITC data, computed scoring functions obtained from X-SCORE23 and 

DSX24 predict the higher affinity binding pocket to be site #1.

Comparison of effector mediated conformational changes

Having defined the structures of V. cholerae apo-FadR, FadR-DNA and FadR-oleoyl-CoA 

ligand complexes, a comparison can now be made between the effects of ligand binding on 

VcFadR and EcFadR. In VcFadR, the linker helix α4, which is observed in the VcFadR-

DNA and apo-VcFadR structures (Figs 7a, b and Supplementary Fig. 9), unwinds upon 

ligand binding to site #2 to avoid potential clashes with the ligand (Supplementary Fig. 2c). 

This transition also appears to destabilize the extensive hydrophobic contacts of α4 with the 

adjacent DNA binding and the ligand binding domains (Supplementary Fig. 9c), enabling 

the DNA binding domain to become uncoupled from the ligand binding domain.

Comparison of the VcFadR-oleoyl-CoA and VcFadR-DNA complexes shows that ligand 

binding induces the DNA binding domain to move as a rigid body towards the C-terminal 

domain (Fig. 7c). This allows residues W212 and P272 from the DNA binding domain to 

interact with the ligand (Figs 6e, 7c); in turn, this could stabilize the DNA binding domain in 

this conformation. This movement leads to a large change in the distance between the two 

recognition helices (α3), from 15 Å in the VcFadR-DNA complex (17 Å in the apo-VcFadR 

structure) to 65 Å in VcFadR-oleoyl-CoA complex (Fig. 7c and Supplementary Fig. 10a). 

Based on these conformational changes, we propose that binding of the second ligand to 

VcFadR induces a dramatic separation of the two recognition helices, strongly inhibiting the 

ability of VcFadR to interact with DNA.

In contrast to VcFadR, ligand binding to EcFadR does not alter the conformation of linker 

helix α4 as significantly. Instead of the unwinding of α4 described above, ligand binding to 

Shi et al. Page 6

Nat Commun. Author manuscript; available in PMC 2016 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



EcFadR pushes α4 towards the N-terminal DNA binding domain, where it forms additional 

contacts with helix α1. The resulting tilt in α1 moves the DNA binding domain ~13° away 

from the DNA16. This results in smaller separation of the two recognition helices of EcFadR 

than observed in VcFadR; from 15Å in the EcFadR-DNA complex (PDB 1H9T; 15Å in the 

apo-EcFadR structure, PDB 1E2X)15,16 to 23Å in the EcFadR-myristoyl-CoA structure 

(PDB 1H9G)16 (Fig. 7d and Supplementary Fig. 10b).

Discussion

FadR is the master regulator of FA metabolism in bacteria and coordinately controls the 

pathways of FA degradation and UFA biosynthesis. In V. cholerae, FadR also regulates 

these processes, but the protein is different from other GntR family homologs in that it has a 

40-residue insertion in its C-terminal domain. In all of the structures of FadR that have been 

solved to date, each monomer binds only one molecule of the acyl-CoA ligand. Although 

the overall structure of VcFadR and the manner in which it binds to DNA described here is 

similar to EcFadR, the insertion in the V. cholerae protein elongates the acyl-CoA binding 

domain and accommodates a second ligand of oleoyl-CoA. One of these sites (site #1) is 

structurally similar to the ligand binding site in EcFadR whereas the other (site #2) is 

comprised of residues from the insertion as well as from the N- and C- terminal domains of 

the protein. Although the two sites share some structural features, such as the involvement 

of residues within α8, VcFadR appears to have evolved a new way to bind an additional 

molecule of the same ligand.

We are aware of only two other transcription factors that have been shown to bind more than 

one molecule of the same ligand in distinct sites within a monomer. The E. coli catabolite 

gene activator protein (CAP) was crystallized in the presence of DNA with two molecules of 

cAMP bound to each monomer (PDB 2CGP); however it is not clear if binding of the 

second ligand is biologically relevant25. BenM, a LysR family transcription factor, was also 

crystallized with one molecule of benzoate bound at a primary site and another molecule of 

benzoate (PDB 2F78) bound at a secondary binding site within the same monomer; 

however, a different ligand, muconate, is also capable of binding at the primary site26. In the 

presence of both effectors, a unique conformation capable of high level transcriptional 

activation is achieved26.

The two ligand binding sites in VcFadR appear to have significantly different affinities for 

oleoyl-CoA. Site #1, the site structurally similar to EcFadR, is predicted to be the higher 

affinity site and appears to bind ligand with a higher affinity (6 nM) than the E. coli protein, 

determined for oleoyl-CoA to be 70 nM. In contrast, site #2, derived from the insertion, is 

predicted to be the lower affinity site and binds ligand with a reduced affinity (88 nM) 

compared to the E. coli protein. Both site #1 and #2 of VcFadR bind ligand with a higher 

affinity compared to S. enterica (143 nM), P. multocida (2231 nM) and H. influenzae 

protein (2636 nM)18. Analysis of VcFadR binding site #1 shows a greater number of salt 

bridges are formed with ligand phosphates than for EcFadR, and these additional 

interactions could be responsible for the increased affinity for ligand at this site. It is also 

possible that the presence of the insertion in VcFadR alters the dynamics of the entire protein 

so as to increase the affinity for ligand at site #127. For example, in addition to providing a 
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second binding site for the ligand, the insertion also appears to stabilize the wing of the 

wHTH binding domain in the absence of DNA. This interaction could change the protein 

such that its affinity for ligand increases.

It has previously been shown that addition of oleate to V. cholerae FadR allows for nearly 

complete derepression of genes involved in FA utilization, suggesting that in the presence of 

ligand, VcFadR decreases its affinity for DNA to a greater extent than other regulators18. 

These findings are consistent with our observation that the V. cholerae protein undergoes 

dramatic conformational changes upon ligand binding that would more fully disrupt DNA 

binding than the ligand induced movements in EcFadR and suggest that the binding of 

ligand to site #2 is physiologically relevant. In VcFadR, ligand binding to site #2 induces a 

helix to loop transition in α4 that enables the DNA binding domain to swing towards the C-

terminal domain, forming stabilizing interactions with the site #2 ligand. We propose this 

conformational change allows for a more complete release of the protein from the DNA, 

leading to fuller expression of the FA utilization genes. In addition, the presence of two 

binding sites with different affinities likely gives VcFadR a broader response range to 

different concentrations of ligand than EcFadR. For example, the model predicts that, at 

very low concentrations, VcFadR binds only one ligand per monomer (likely at site #1) 

causing VcFadR to have a reduced affinity for DNA, similar to that of EcFadR. At higher 

concentrations of ligand, VcFadR binds two ligands per monomer (at both sites #1 and #2) 

further reducing the affinity of the protein for DNA in comparison to EcFadR. Unlike other 

enteric bacteria such as E. coli that colonize the digestive tract, Vibrionaceae are frequently 

found in aquatic environments where they acquire FAs from the sediment28,29. The need for 

Vibrionaceae to have a more efficient mechanism for utilizing FAs in this environment may 

have selected for an additional ligand binding site in FadR that allows the protein to function 

as a more dynamic regulatory switch.

Methods

Expression and purification of FadR

V. cholerae FadR was purified using the IMPACT-CN fusion protein system (New England 

Biolabs). The full-length fadR gene was PCR amplified from V. cholerae C6706 str2 using 

primers FadR5 and FadR6 (Supplementary Table 1). The resulting fragment was inserted 

into pTXB1 (New England Biolabs) to produce the FadR-intein/CBD (chitin binding 

domain) fusion construct pWEL225. FadR was expressed in BL21 (DE3) by autoinduction30 

in ZYM-5052 media. Cells were harvested by centrifugation, resuspended in column buffer 

(20 mM HEPES pH 7.8, 1 mM EDTA, and 500 mM NaCl), lysed by sonication, clarified by 

centrifugation, and filtered through a 0.45 µm filter. Chitin beads (New England Biolabs) 

were equilibrated with cold column buffer, mixed with the clarified supernatant, and 

incubated at 4°C with gentle rocking. The chitin bead slurry was then loaded onto a gravity 

flow column, washed with 50 column volumes of high salt wash buffer (20 mM HEPES pH 

7.8, 1 mM EDTA, and 1 M NaCl), and equilibrated with five column volumes of cleavage 

buffer (20 mM HEPES pH 7.8, 1 mM EDTA, and 50 mM NaCl). The intein with the CBD 

was cleaved from FadR using cleavage buffer with 100 mM β-mercaptoethanol and left at 

16 °C for 16 h. Eluant from the chitin column in cleavage buffer was then loaded onto a new 
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chitin column and followed by a HiTrap Sepharose prepacked (Q) fast flow (FF) strong 

anionic exchange column (GE) using a NaCl gradient. This separates the FadR-intein/CBD 

fusion protein and the intein tag that coeluted with the native FadR. The fractions containing 

FadR were identified by SDS-polyacrylamide gel electrophoresis and pooled. The pooled 

fractions were concentrated with an Amicon Ultra Centrifugal filter unit (Millipore) and 

applied to a Superdex 75 Prep Grade column (GE) equilibrated in crystallization buffer (20 

mM HEPES pH 7.8, 1 mM EDTA, and 100 mM NaCl). FadR eluted as a single peak at a 

position consistent with a dimer and was essentially pure as judged by SDS-polyacrylamide 

gel electrophoresis.

To prepare the VcFadR-DNA complex for crystallization, the oligonucleotides WS1 and 

WS2 (Supplementary Table 1) were dissolved in low salt buffer (100 mM NaCl and 10 mM 

NaOH) and purified by MonoBeads prepacked Mono Q strong anionic exchange column 

(GE) with a NaCl gradient in 10 mM NaOH. The fractions containing pure oligonucleotides 

were pooled and concentrated as described above and the buffer was exchanged into 

crystallization buffer by a desalting column (GE). The purified oligonucleotides were 

annealed, concentrated and applied to a Superdex 75 Prep Grade column (GE) equilibrated 

in crystallization buffer to eliminate unannealed oligonucleotides. The purified dsDNA was 

mixed with purified VcFadR at a protein/DNA ratio of 1:1.5. The VcFadR-DNA complexes 

were concentrated as described above and applied to a Superdex 200 Prep Grade column 

(GE) equilibrated in crystallization buffer. The fractions containing the VcFadR-DNA 

complexes were collected and concentrated as described above.

Crystallization

Crystals of apo-VcFadR were obtained using the sitting drop procedure by mixing equal 

volumes of the protein solution at 6 mg/ml with a reservoir solution containing 0.2 M 

sodium chloride, 0.1 M MES pH 6.5, 10% (w/v) PEG 4000. Crystals typically grew within 1 

week. VcFadR crystals were cryoprotected in a 30% v/v solution of glycerol/mother liquor 

and flash frozen in liquid nitrogen for X-ray data collection. Crystals of the VcFadR-DNA 

complex were also obtained by the sitting drop method by mixing equal volumes of 8 mg/ml 

complex solution with a reservoir containing 0.2 M lithium sulfate, 0.1 M Tris pH 8.5, 1.26 

M ammonium sulfate. Crystals grew in 2 weeks. VcFadR-DNA complex crystals were 

cryoprotected in a 30% v/v solution of glycerol/mother liquor and flash frozen in liquid 

nitrogen for X-ray data collection. Crystals of the VcFadR-oleoyl-CoA complex, also 

obtained by the sitting drop method, were produced by mixing equal volumes of VcFadR-

ligand complex (VcFadR=4 mg/ml; ligand (oleoyl coenzyme A lithium salt (Sigma))/

VcFadR monomer molar ratio=3.6:1) solution with a reservoir containing 17% PEG 3350, 

0.23 M magnesium formate. Crystals grew in about 1 week. VcFadR-oleoyl-CoA complex 

crystals were cryoprotected in a 30% v/v solution of glycerol/mother liquor and flash frozen 

in liquid nitrogen for X-ray data collection.

Data collection and structure solution

Crystals of apo-VcFadR diffracted to 2.2 Å at NSLS beamline X6A at Brookhaven National 

Laboratory. Crystals belonged to the tetragonal space group P41 with unit cell dimensions 

a=87.48 Å, b=87.48 Å, c=81.43 Å, α=90.0°,β=90.0°, γ=90.0°. The asymmetric unit 
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contained one dimer of VcFadR, giving a crystal volume per protein mass (VM) of 2.4 Å3/Da 

and a solvent content of 49.7%. Data were processed in XDS31 and structure determination 

was carried out using AutoMR in Phenix32. Two copies of the E. coli FadR monomer 

divided into the N-terminal (residues 6 to 137) and C-terminal domain (residues 138 to 226) 

were used as search models for molecular replacement. The insertion region was built back 

manually in Coot33. Multiple rounds of refinement and rebuilding were carried out in 

Phenix.refine34 and Coot33, respectively, using data to 2.2 Å. The resulting final structure 

has a R-work 17.44% of and R-free of 20.46% with good stereochemistry (Table 1) and 

continuous density for the backbone from residue 2 to 279 out of 279 possible residues (Fig. 

3a). Ramachandran statistics show that 97% and 2.82% of the residues are in the preferred 

and allowed regions, respectively. In MOLPROBITY35 validation results, this structure was 

assigned a MOLPROBITY score of 1.44, which is the 99th percentile among structures of 

comparable resolution.

Diffraction data for the VcFadR-DNA complex were collected to 3.2 Å at NSLS beamline 

X6A at Brookhaven National Laboratory. Crystals belonged to the triclinic space group P1 

with unit cell dimensions a=84.6 Å, b=94.7 Å, c=101.7 Å, α=89.8°, β=114.6°, γ=116.5°. 

The asymmetric unit contained two molecules of VcFadR-DNA complex, giving a crystal 

volume per protein mass (VM) of 3.9 Å3/Da and a solvent content of 71.0%. Data were 

processed in XDS31 and structure determination was carried out using AutoMR in Phenix32. 

Four copies of the V. cholerae FadR monomer without the insertion region and two copies 

of DNA from E. coli FadR-DNA complex were used as search models for molecular 

replacement. The resulting maps showed density for the insertion region and density for 

additional DNA duplex. The insertion region was built back manually in Coot33; the DNA 

duplex was mutated to the V. cholerae FadR DNA sequence and additional bases were built 

back manually in Coot33. Multiple rounds of refinement and rebuilding were carried out in 

Phenix.refine34 and Coot33, respectively, using data to 3.2 Å. The resulting final structure 

has a R-work of 21.76% and R-free of 25.23%, with good stereochemistry (Table 1) and 

continuous density that included all atoms in DNA and residues from residue 6 to 277 out of 

279 possible residues (Fig. 4a). Ramachandran statistics show that 91% and 7.6% of the 

residues are in the preferred and allowed regions, respectively. In MOLPROBITY35 

validation results, this structure was assigned a MOLPROBITY score of 2.55, which is the 

96th percentile among structures of comparable resolution.

Diffraction data for VcFadR with ligand were collected to 2.8 Å at NSLS beamline X6A at 

Brookhaven National Laboratory. Crystals belonged to the orthorhombic space group 

P212121 with unit cell dimensions a=116.92 Å, b=88.69 Å, c=62.86 Å, α=90°, β=90°, 

γ=90°. The asymmetric unit contained one dimer of VcFadR-oleoyl-CoA complex, giving a 

crystal volume per protein mass (VM) of 2.4 Å3/Da and a solvent content of 48.4%. Data 

were processed in XDS31 and structure determination was carried out using AutoMR in 

Phenix32. Initial molecular replacement with V. cholerae apo-FadR as a search model, was 

unsuccessful, suggesting that significant structural rearrangement might have occurred upon 

binding of oleoyl-CoA. Subsequent molecular replacement with only the C-terminal acyl-

CoA binding domain gave a single solution. Refinement in Phenix34 resulted in maps in 

which the ligands and the N-terminal DNA binding domain could be positioned manually in 
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Coot33. Multiple rounds of refinement and rebuilding were carried out in Phenix.refine34 

and Coot33, respectively, using data to 2.8 Å. The resulting final structure has a R-work of 

25.57% and R-free of 30.35%, with good stereochemistry (Table 1) and continuous density 

that included all atoms in the ligand and residues from residue 8 to 266 out of 279 possible 

residues (Fig. 5b). Ramachandran statistics show that 87% and 6.8% of the residues are in 

the preferred and allowed regions, respectively. In MOLPROBITY35 validation results, this 

structure was assigned a MOLPROBITY score of 3.15, which is the 53rd percentile among 

structures of comparable resolution.

Construction of V. cholerae strains and mutations

The fabA-lacZ fusion was constructed by amplifying a DNA fragment from C6706 str2 

using primers FabA1 and FabA3 (Supplementary Table 1). The fragment, together with a 

promoterless lacZ fragment from pVC20036, were inserted into pKAS18037 generating 

pWEL234. Plasmid pWEL234 was used for allelic exchange37 into the lacZ locus of V. 

cholerae strain KSK26238 generating WL1005. Plasmid pWEL236 was constructed by 

amplifying a DNA fragment from C6706 str2 using primers Chr1 and Chr2 and a DNA 

fragment from pVC20036 using primers LacNot and LacBgl. The resulting fragments were 

inserted into pKAS15439. The fadE, fadBA, fadH and fabB-lacZ fusions were constructed by 

amplifying DNA fragments from C6706 str2 using primers FadE1 and FadE3, FadB1 and 

FadB4, and FadH1 and FadH3, and FabB3 and FabB4. The resulting fragments were 

inserted into pWEL236, generating plasmids pWEL239, pWEL240, pWEL242, and 

pGKK469, respectively. The fusions in the resulting plasmids were introduced into the lacZ 

locus of KSK262 by allelic exchange generating strains WL1027, WL1031, WL1040, and 

GK1609. The ΔfadR mutation was constructed by amplifying two DNA fragments from 

C6706 str2 using primers FadR1 with FadR2 and FadR3 with FadR4. The fragments were 

inserted into pKAS15439, generating plasmid pGKK367, and the deletion was introduced 

into the chromosome of V. cholerae by allelic exchange.

β-Galactosidase assays

β-Galactosidase assays40 were carried out by growing cultures in Tryptone medium with 

aeration for 5 h at 37°C.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Roles of FadR in V. cholerae
(a, b) Schematic showing FadR-mediated regulation in V. cholerae. In the absence of 

LCFAs, (a), FadR represses FA degradation by binding to a site in the promoters of the fad 

genes and activates UFA biosynthesis by binding to a site in the promoters of the fabA and 

fabB genes. In the presence of LCFAs, (b), they are transported into the cell by FadL and 

activated to LCFA-CoAs by FadD. The resulting activated LCFA-CoAs bind to FadR 

causing a conformational change that releases it from DNA and results in derepression and 

failure to activate its regulated promoters. (c, d) Influence of a ΔfadR mutation on the 

expression of fadBA, fadE, fadH, fabA and fabB promoter-lacZ fusions in V. cholerae. 

Strains were grown in Tryptone medium with aeration for 5 h at 37°C in the absence (c) and 

presence (d) of 2.5 mM oleate. From left to right: WL1031 (fadBA-lacZ), WL1035 (ΔfadR), 

WL1027 (fadE-lacZ), WL1029 (ΔfadR), WL1040 (fadH-lacZ), WL1042 (ΔfadR), WL1005 

(fabA-lacZ), WL1007 (ΔfadR), GK1609 (fabB-lacZ), GK1610 (ΔfadR). Error bars indicate 

the standard deviation of at least two replicates. Results are representative of at least three 

independent experiments.
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Figure 2. Sequence alignment of FadR
(a) Alignment of FadR between V. cholerae and E. coli. Identical residues are indicated by 

red background. Incomplete identities among aligned sequences are in red text. Secondary 

structure is shown above the sequence and the numbering is based on EcFadR (PDB 

1E2X)15. Helix α4, marked with the star, undergoes a helix to loop transition upon ligand 

binding. (b) Alignment of 40-residue insertions from Vibrionaceae. Colors are the same as 

in (a). The alignments were prepared with Clustal W41 and ESPript 3.042 (http://

espript.ibcp.fr/).
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Figure 3. Structure of VcFadR
(a) The VcFadR dimer. One monomer is magenta and the other is green. The N and C 

termini are labeled and the amino acid positions are shown in parentheses. αI1 and αI2 

denote the helices from the insertion and W1 and W2 denote wings. Helices from chain B 

are distinguished by a prime. (b) Superposition of the structures of the VcFadR and EcFadR 

dimers (PDB 1E2X). The 40-residue insertion in VcFadR is red and the rest of the protein is 

green. EcFadR is shown in blue.
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Figure 4. Structure of the VcFadR-DNA complex
(a) The VcFadR dimer bound to DNA. One monomer is slate blue and the other is wheat. (b) 

Schematic overview of the VcFadR-DNA contacts. Residues that form specific contacts with 

the DNA are red and those that form nonspecific interactions with the DNA sugar-phosphate 

are dark blue. The base pairs in the V. cholerae fadB recognition sequence that are different 

from the E. coli consensus sequence43 are green. Within the consensus sequence, upper and 

lowercase letters represent nucleotides found more and less frequently, respectively. 

Residues from chain B are distinguished by a prime following the amino acid number. (c) 

Stereoview showing a close up of the VcFadR-DNA interface within one monomer. Colors 

are the same as in (b).
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Figure 5. Conformational changes in VcFadR upon DNA binding
(a) Superposition of the VcFadR-DNA complex and apo-VcFadR shown in two orientations 

(along and perpendicular to the pseudo 2-fold axis). The two primary regions that are altered 

upon DNA binding are shown in color (green, VcFadR-DNA complex; magenta, apo-

VcFadR) and the rest of the protein is white. The tip of the wing (H65) in each DNA wHTH 

binding domain is shifted by up to 5 Å between the two structures and the distance between 

the two DNA recognition helices (R45 at the beginning of helix α3) is wider in apo-VcFadR 

structure (17 Å) compared to that in the VcFadR-DNA complex (15 Å). (b) Detailed view of 

the interaction between the insertion region and the wing of wHTH in the absence of the 

DNA. The N-terminal DNA binding domain is pale cyan. The region that undergoes a helix 

to loop transition upon DNA binding (helices αI1, αI2 and the C-terminal end of α6 in apo-

VcFadR) is magenta and the rest of the 40-residue insertion region is yellow. Residues that 

are positively charged are blue and those that are negatively charged are red. Helices and 

residues from chain B are distinguished by a prime. (c) Same view as in (b) but in the 

presence of DNA. The colors are the same as in (b).
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Figure 6. Structures of VcFadR and EcFadR with ligand
(a) The VcFadR-oleoyl-CoA complex in two orientations. The ligand in the site 

corresponding to EcFadR (see c) is shown in pink spheres whereas the ligand in the site that 

involves the insertion is in yellow spheres. (b) The chemical structure of oleoyl-CoA. (c) 

Structure of EcFadR bound to myristoyl-CoA (PDB 1H9G)16. (d–e) Regions boxed in (a) 

highlighting critical residues interacting with the ligand in the pocket of VcFadR 

corresponding to that of E. coli (d, site #1, monomer A) and in the pocket derived from the 

insertion (e, site #2, monomer A). Positively charged residues that interact with ligand 

phosphates are in blue. Residues forming hydrogen bonds are cyan, and those forming 

hydrophobic interactions are in green. Y153, which forms π-stacking with adenosine of the 

ligand, is wheat. Residues from chain B are distinguished by a prime following the amino 

acid number. The ligand is shown as sticks in (d) and (e). The carbon atoms are colored pink 

in (d) and yellow in (e). Other atoms of the ligand are colored as follows: nitrogen, blue; 

oxygen, red; sulfur, dark yellow; phosphorous, orange.
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Figure 7. Comparison of effector mediated conformational changes between V. cholerae and E. 
coli
(a) The VcFadR-DNA complex. The linker helix α4 is red and changes to a loop in the 

VcFadR-ligand complex (b). α4 from chain B is distinguished by a prime. (c) Superposition 

of the structures of VcFadR-DNA complex and VcFadR-ligand complex. The DNA binding 

domain is in magenta (VcFadR-DNA complex) or cyan (VcFadR-ligand complex) and the 

rest of the protein is white. The arrows show that, upon ligand binding, the DNA binding 

domain is widened to almost 180°. Residues from chain B are distinguished by a prime 

following the amino acid number. (d) Superposition of the structures of EcFadR-DNA 

complex (PDB 1H9T)16 and EcFadR-ligand complex (PDB 1H9G)16. The DNA binding 
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domain is magenta (EcFadR-DNA complex) or green (EcFadR-ligand complex) and the rest 

of the protein is white.
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Table 1

Data collection and refinement statistics

VcFadR VcFadR-DNA VcFadR-
oleoyl-CoA

Data collection

Space group P41 P1 P212121

Cell dimensions

  a, b, c (Å) 87.48 87.48 81.43 84.6 94.7 101.7 116.92 88.69 62.86

  α, β, γ, (°) 90 90 90 89.8 114.6 116.5 90 90 90

Resolution (Å) 19.56–2.20 (2.28–2.20)a 19.89–3.21 (3.32–3.21) 19.73–2.80 (2.90–2.80)

VM(Å3//Da)/solvent content (%) 2.4/49.7 3.9/71.0 2.4/48.4

No. of dimers in asymmetric unit 1 2 1

Rsym 7.9 (49.3) 8.9 (36.6) 13.1(48.3)

I / σI 33.8 (6.6) 13.0 (3.0) 11.5 (3.2)

Completeness (%) 99.8 (100.0) 97.8 (97.1) 99.7(99.6)

Redundancy 15.3 (15.2) 3.5 (3.5) 3.6 (3.7)

Refinement

Resolution (Å) 19.56–2.2 19.89–3.21 19.73–2.8

No. reflections 31200 40186 16577

Rwork / Rfree 0.174/0.205 0.218/0.252 0.259/0.298

No. atoms

    Protein 4488 4402 4240

    Ligand/DNA - 1271 268

    Water 387 - -

B-factors (Å2)

    Wilson B-factor 25.9 73.3 35.7

    Protein 27.0 83.7 74.1

    Ligand/DNA - 98.5 59.5

    Water 30.30 - -

R.m.s. deviations

    Bond lengths (Å) 0.004 0.007 0.010

    Bond angles (°) 0.9 1.4 2.2

Each dataset was collected from a single crystal.

a
Values in parentheses are for highest-resolution shell.
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