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In making sense of the visual world, the brain’s processing is driven
by two factors: the physical information provided by the eyes
(“bottom-up” data) and the expectancies driven by past experience
(“top-down” influences). We use degraded stimuli to tease apart
the effects of bottom-up and top-down processes because they are
easier to recognize with prior knowledge of undegraded images.
Using machine learning algorithms, we quantify the amount of
information that brain regions contain about stimuli as the subject
learns the coherent images. Our results show that several distinct
regions, including high-level visual areas and the retinotopic cor-
tex, contain more information about degraded stimuli with prior
knowledge. Critically, these regions are separate from those that
exhibit classical priming, indicating that top-down influences are
more than feature-based attention. Together, our results show
how the neural processing of complex imagery is rapidly influ-
enced by fleeting experiences.

neural decoding | functional MRI | top-down processing | priming | vision

At what stage of visual processing does bottom-up information
combine with top-down expectations to yield the eventual

percept? This question lies at the heart of a mechanistic un-
derstanding of feed-forward/feed-back interactions, as they are
implemented in the brain and as they might be instantiated by
computational visual systems. Furthermore, this question is of
central significance not only for vision, but also for all sensory
modalities because the combination of current and prior data is
ubiquitous as a processing principle.
A compelling demonstration of the role of prior experience is

obtained with images so degraded that they are initially per-
ceived as devoid of meaning. However, after being shown their
coherent versions, observers are readily able to parse the pre-
viously uninterpretable image. The well-known Dalmatian dog
picture (1)—a black-and-white thresholded photograph—and
the Mooney images (2) are classic examples of this phenomenon.
Other examples of top-down knowledge facilitating sensory
processing include phonemic restoration (3) and the interaction
between depth perception and object recognition (4).
The approach of comparing neural responses to degraded

images before and after exposure to the fully coherent image has
been used by several research groups to identify the correlates of
top-down processing. For example, PET scans of brain activity
elicited by Mooney images before and after disambiguation show
that regions of the inferior temporal cortex, as well as the medial
and lateral parietal regions, exhibit greater activity in response to
recognized images (5). Progressive revealing paradigms, where
an image gradually increases in coherence, elicit increased and
accelerated functional magnetic resonance imaging (fMRI) ac-
tivation in several regions, including the fusiform gyrus and the
peristriate cortex, when subjects have prior experience with the
images (6). In addition, EEG correlates show that distorted or
schematic line drawings elicit face-specific N170 event-related
potential components, which are believed to reflect activity in the
fusiform face area, only after a subject learns to interpret them as
a face (7, 8). All of these results indicate that prior experience
rapidly modifies brain activity and the final response to a given
stimulus. Not surprisingly, much of this modification has been
localized in the higher areas of the visual pathway, which are

more driven by the object percept that an image induces rather
than by its low-level characteristics.
Although these results demonstrate the existence of top-down

influences, a critical issue previously left unaddressed is the dis-
tinction between traditional priming and an actual increase of
image-specific information encoded in a given brain region. Ar-
guably, the true criterion for declaring the presence of learning in
a region is that it alters or amplifies stimulus-specific information
as encoded in the pattern of activity across the region, rather than
merely changing the level of activation as a whole. The critical
question is thus: Is a downstream neuron (or a machine learning
algorithm) better able to decode which stimulus was seen after
exposure to the coherent image, compared with before exposure?
If there is no enhancement of such decodability, then that region’s
activity is likely driven by the physical characteristics of the
stimulus, and no learning has occurred—regardless of whether
the total activity level in that region has changed.
It is thus critical to explore top-down influences from an in-

formation-theoretical perspective. To this end, we adopted a mul-
tivariate analytical technique to measure the amount of decodable
information in various cortical regions. This involves examining
a fine-grained, but potentially weak, pattern of activity across all
voxels in a region of the cortex, rather than using a univariate
approach that detects which voxels, independently, are signifi-
cantly more active in one condition versus another.
An algorithm such as a support vector machine (SVM) (9) is

a linear classifier that detects the ensemble activation patterns
that distinguish two or more categories of data; formally, it
projects data onto a high-dimensional hyperplane (where each
dimension corresponds to a single voxel’s activity in a given re-
gion of interest) that maximally separates two or more data
clusters in that space. The ability of the SVM to accurately
predict to which cluster new data belong corresponds to the
amount of information those voxels convey about the cluster
labels. That is, SVMs are accurate when voxel activity in their
underlying region of interest encodes something about the
problem at hand.
Multivariate techniques have been used previously to show

how different object categories are represented across the visual
cortex (10, 11) and can be used to predict stimuli from a fixed set
that a subject is viewing at any given time (12–14). Although the
origins of cortical activation patterns are still subject to debate
(13–18), it is generally agreed that the ability to decode these
patterns reflects how much information the underlying neurons
contain about a stimulus in question. In the present context,
multivariate analysis gives us a useful tool to investigate whether
the amount of information contained in various cortical regions
is modulated by a subject’s prior knowledge of the stimuli.
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Results
The overall methodology that we followed is illustrated in Fig. 1.
Black-and-white Mooney images were shown to participants while
they were in a fMRI scanner. We examined whether priming the
subjects with coherent versions of the Mooney images before each
run led to better recognition, and then, using machine learning
techniques, we investigated whether neural activity patterns in
different regions of the brain showed corresponding increases in
information content. This allowed us to identify the neural cor-
relates of prior information processing in the cortex.
Our experiments yielded three key results. First, in surprising

contrast to inferences from past studies, classically primed voxels
were not “information rich.” In other words, decoding accuracy
did not improve postpriming across these voxels. Second,
a whole-brain analysis revealed that increased recognition ac-
curacy, due to priming, was correlated with an increase in object-
related information across many regions of the visual system.
Finally, the facilitation of behavioral and neural information was
dependent on complex image features (or objects) rather than on
simple features like oriented lines.
During each scan, subjects were asked in a two-alternative

forced choice (2-AFC) task whether each Mooney image that
they saw was of a “natural” or an “artificial” object, as a way of
measuring recognition in the scanner. All subjects consistently
recognized the primed Mooney images with higher accuracy than
the unprimed images in each run (Fig. 2; one-tailed McNemar
test, P < 10−10).
If any subject did not show a significant increase in recognition

for one of the images (which would occur if the subject recog-
nized the Mooney image in the unprimed condition, or if they
did not recognize it in the primed condition), then that image
was excluded from further analysis for that subject. From a total
of 38 images shown collectively to subjects, 10 were excluded in
this manner. For the remaining 28 images, subjects could not
recognize the images at greater-than-chance accuracy in the
unprimed condition. In addition, they did not learn to recognize
the images even after multiple presentations before priming.

Classically Primed Voxels Do Not Necessarily Carry Stimulus-Specific
Information. Past studies (5, 6) have localized cortical areas where
activity is elevated post priming using Mooney images. Can
a simple increase in activation levels in the primed versus
unprimed conditions explain an increase in recognition ability?
To address this issue, we used a general linear model (GLM) to
find voxels that showed overall priming. Fig. 3 shows the group
average primed response over all subjects; the location of these
voxels is consistent with past reports (5). Individual subject maps
were used to define the region of interest (ROI) on a per-subject
basis. A liberal statistical threshold (P < 0.01 and a clustering
method to correct for multiple comparisons to P < 0.05) was
chosen to ensure that the GLM-selected ROI was not so small as
to negatively bias classification. The resulting average size across

subjects was just over 2,000 voxels across both hemispheres (for
comparison, functionally defined V1 ranged from 100 to 200
voxels per hemisphere, and the fusiform gyrus was about 600
voxels per hemisphere). No significant activation was found for
the control contrast, which involved comparing images of natural
objects with those of man-made ones (natural > artificial).
To examine whether priming affected the amount of in-

formation encoded in this brain region, the scan data were
subjected to a multivariate analysis where SVMs attempted to
decode which Mooney image (from all sets) a subject was
viewing during any given trial.
Remarkably, restricting our multivariate classification analysis

to the primed ROI resulted in a chance performance of the
SVMs (Fig. 3). Knocking out the GLM-selected voxels (and
using the remainder of the cortex as an ROI), however, resulted
in a significant increase in decoding accuracy for both primed
and unprimed conditions (McNemar test, P < 0.01 for both
conditions). Therefore, the voxels that were classically primed
could not be the same set of voxels that carry information about
the stimuli. These results indicate that areas revealed as being
involved in priming via GLM analysis may not necessarily encode
information about the stimuli. They may, instead, reflect non-
specific activations, for example, those related to arousal. This is
demonstrably the case for the ROI localized by our GLM
analysis. Although this does not imply a lack of information
encoding in other previously reported priming-related ROIs, it
does suggest that multivoxel pattern analysis in these regions,
rather than merely an overall heightening of their activation,
would strengthen the case for their involvement in stimulus-
specific priming.

Priming Increases Decoding Accuracy Throughout the Visual System.
Our results show overall higher SVM classification accuracy for
primed versus unprimed images in multiple regions across the
visual system, mirroring our behavioral findings. Fig. 4A shows
a map of the regions that exhibit changes in the information of
their neural activity patterns, and Fig. 4B shows examples of the
actual decoding accuracy of several notable regions. All regions
exhibiting significant differences in decoding are reported in
Table 1. Consistent with their involvement in object processing,
higher-level areas such as the fusiform gyrus and lateral occipital
cortex exhibit an experience-dependent increase in information
decidability. We find it especially interesting to note that such
experience-dependent information increase is also evident in
early visual areas such as the anatomically defined pericalcarine
cortex and functionally defined areas V2 and V3. The increased
decodability fails to reach significance in area V1. No regions
exhibited lower decoding accuracy for the primed images.

Simple Stimuli Do Not Elicit the Same Results as Complex Ones. Be-
cause each region of the brain encodes stimuli with different
levels of complexity, we investigated whether the complexity of

Fig. 1. Overall methodology. Before each fMRI run, two images—one containing a natural object and the other an artificial object—were shown. During the
run, subjects saw Mooney images of four different objects—the two primed images and two novel images—and were asked to identify the contents of each
image as either natural or artificial. For the next set of images, undegraded versions of the two previously unprimed images were used to prime the subject,
and two additional novel images were introduced. In this manner, every image (except the first primed and last unprimed images) was shown to the subject in
both primed and unprimed conditions.
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the stimuli carrying prior information would affect the regions of
the brain that show an increase in information. To this end, we
conducted a similar experiment where subjects were shown de-
graded simple stimuli containing a field of oriented line segments
(Fig. S1) instead of complex Mooney images.
We found no evidence of an increase in recognition for these

simple stimuli (Fig. S1). Correspondingly, no increase in SVM
decoding ability in any ROI tested was seen in this experiment.
In addition, no GLM-based effects were found, indicating in-
creased activation in the primed condition.

Discussion
The increased decoding accuracy of primed versus unprimed
images suggests that there is an increase in image-specific in-
formation in regions of the brain exhibiting this form of priming. In
general, the regions in which we find an increased decoding ability
occur across multiple levels of the ventral visual stream. This
includes higher-level areas such as the fusiform gyrus and lateral
occipital cortex and lower levels including the anatomically defined
pericalcarine cortex and, in particular, the functionally defined V2
and V3. A recent study (19) has also reported an increase in in-
formation in the foveal confluence and object-selective cortex [area
lateral occipital complex (LOC)]. As the pericalcarine cortex gen-
erally corresponds well to the primary visual cortex, it is somewhat
surprising that significant effects were found using the anatomical
ROI but not in functionally defined V1. This is most likely due to
the imperfect mapping of the atlas-induced boundaries to those of

the true primary visual cortex, and it is entirely possible that the
effects in the pericalcarine cortex, as defined in these subjects, were
driven by patterns of activity that had their true origins in V2.
More critically, we show that these effects are distinct from

traditional priming, as we were unable to find any evidence of
information encoding in the GLM-selected regions. In addition,
we show that prior information is carried over complex, and not
simple, image features.
It is important to note the differences between the results

reported here and those obtained in the GLM analysis. Prior
studies have shown how the overall activity in regions of the
cortex in response to Mooney images is modulated before and
after exposure to the unambiguous versions (5, 6), and our lo-
calization in the GLM analysis generally agrees with their results.
However, this overall modulation of activity must be interpreted
separately from the SVM analysis results. For example, consider
the answer to the question, “Which regions of the brain are in-
volved in priming?” To answer this, a GLM analysis is appro-
priate because it contrasts the overall activity in the brain in
response to the Mooney images before and after priming with the
coherent images. The result is a subtraction of the average ac-
tivity, over all images, in one condition versus the other. In
contrast, our experiment asks the question, “Which regions of the
brain encode more image-specific information for primed and
unprimed images?” The SVM analysis thus looks at the differ-
ential pattern of activity between all images under a single con-
dition. The overall level of activation in no way changes the

A B

Fig. 2. Behavioral performance recognizing the primed and unprimed Mooney images during the fMRI scans. (A) Across all images, subjects performed
significantly better for primed images in a 2-AFC task in which they were asked to indicate whether the image was natural or artificial. Shown is the expected
value and 95% confidence intervals for the proportion that was correct over all images and subjects; P value was calculated from a one-tailed–paired
McNemar test corrected for multiple comparisons over all subjects and image sets. (B) When images were selected to show a per-image priming effect
(resulting in discarding 10 of 38 images), subjects were at chance at recognizing the unprimed images.

BA

Fig. 3. Difference between SVM and GLM results. (A) Group average response showing primed voxels, which show greater activation for primed versus
unprimed images in a GLM analysis, here illustrated in red and yellow. (B) When these voxels are used as a region of interest for the SVM analysis, no increase
in information decoding is seen, and SVM performance drops to chance. Note that, although we show the group average response here in A, each ROI was
determined from a subject’s individual data.

Gorlin et al. PNAS | May 15, 2012 | vol. 109 | no. 20 | 7937

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1111224109/-/DCSupplemental/pnas.201111224SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1111224109/-/DCSupplemental/pnas.201111224SI.pdf?targetid=nameddest=SF1


pattern of differences between any two images. The SVM analysis
thus reports on how much information is contained in a region
pertaining to the stimuli, and not on the overall activity level.
Therefore, it is best to consider the GLM and SVMmethods as

answering two distinct questions. The fact that decoding ability
falls to chance using only the GLM-selected voxels highlights this
distinction. In simple terms, the GLM analysis selects voxels that
are highly activated in response to all images as an average; the
SVM analysis performs well when voxels respond more to one
stimulus than to another. As a result, prior studies showing
priming effects via this GLM-type of analysis, in reality, show parts
of the brain that do not necessarily encode the stimuli. Rather,
they show increased activity in regions more likely involved in at-
tention and arousal rather than increased information encoding of
a specific stimulus. Adaptation-based results, where a lower level
of activity is presumably the result of fatigued feature-specific
neurons in a given area, are an exception to this, but the point
remains that pattern information changes represent a qualitatively
different result than that obtained by the standard GLM analysis.
It is interesting to note the discrepancy between the simple and

complex stimuli. Although we show increased pattern decoding
for primed complex objects, we did notfind similar results for simple
stimuli—either in subjects’ behavioral responses, via pattern
decoding, or via GLM. It is unlikely that no priming occurs for

simple stimuli, as even V1 is modulated (albeit weakly) by attention
(20, 21), but it does appear that prior information, in this context at
least, does not help the brain to decode the orientation of line
segments. This raises the question of whether this lack of priming is
true only for the most basic of visual features, or if progressively
more complex stimuli show a graded amount of information in-
crease with prior knowledge. On a similar note, it may be the case
that wholly different types of stimuli might enhance information in
different regions entirely—for example, prior information about
motion stimulimay increase the amount of information in thedorsal
visual stream, rather than in the ventral areas shown in this study.
These results also suggest that information priming is more

than simply feature-based attention. It is known that attending to
specific features of an image sharpens or increases the cortical
response to those features (22–27). In this interpretation, the
increase in information could be due to increased attention to
visual features that compose the true object hidden in the de-
graded image and decreased attention to the “noise” features.
Several factors, however, distinguish our results from classical
feature-based attention experiments. First, attention was never
explicitly directed to any image features: any specific feature-
based attention was entirely endogenous as a result of increased
prior knowledge about the stimuli. Second, the experiment that
we conducted with simple stimuli was more similar to a classical

2.0

1.0

-1.0
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Fig. 4. Object priming increases the information found in many regions of the cortex. (A) Using atlas-based anatomical regions of interest for the SVM
analysis, several notable regions, including the pericalcarine cortex, inferior parietal cortex, lateral occipital cortex, and fusiform gyrus, show significantly
increased decoding accuracy for primed versus unprimed images. No areas showed higher decoding accuracy for unprimed images. The magnitude of the
color scale indicates the level of significance in log power (e.g., both +2 and −2 indicate P < 10−2), whereas the sign of the scale indicates whether primed
images yielded higher accuracy (positive scale) or vice versa. Colored lines indicate the borders of anatomically based ROIs. (B) Example of the results of the
decoding accuracy in a few notable cortical regions. Pericalcarine regions showed relatively high decoding accuracy and were significantly higher in the
primed condition. Classification accuracy was lower overall in the fusiform gyrus, but significantly elevated in the primed condition in the right hemisphere
only. Dashed lines indicate chance performance levels over the entire group of subjects.
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feature-based attention experiment, as the subjects were cued with
oriented stimuli before each scan. Our inability to detect a greater
amount of information in this case stands in contrast to the results
that the visual cortex, even on the single-unit level in V4, exhibits
sharpened responses to oriented stimuli when cued (23, 25, 26).
Our results indicate that information priming is object-based,
whereas feature-based attention is known to work on lower levels.
Finally, feature-based attention calls for an increased response in
many neurons through multiplicative gain mechanisms (28) when
comparing attended vs. nonattended stimuli. The fact that the
most significantly activated voxels, as selected by our GLM, did
not exhibit an increase in information suggests that there is more
than a simple multiplicative mechanism at work. Therefore, fea-
ture-based attention cannot fully explain our results and differ-
entiates this study from other Mooney-based experiments (5, 6).
It is interesting to speculate whether this information-based

priming simply amplifies response patterns across the cortex or if
there is a substantial alteration of the neural code. Training the
classifiers on the primed data and testing them on the unprimed
data (rather than cross-validating within each condition) results
in above-chance classification rates throughout the visual cortex,
indicating that there is significant conservation of the pattern
between both conditions. However, our data cannot rule out the
possibility of a true alteration of the neural code where the pat-
terns differ; indeed, we would expect that both mechanisms—
amplification and alteration—would occur. That is, we hypothe-
size that patterns in the neural code representing the stimulus are
likely amplified, but additionally the brain might alter the neural
code in areas representing missing information (e.g., using top-
down information not found in the actual stimulus).
We have shown that an increase in knowledge about a stimulus

translates into an increase in pattern information across several
regions in the visual cortex. Although the time course of the
fMRI signal does not allow us to conclude that these are feedback
phenomena, the fact that this increase is dependent on behavioral
priming with complex images suggests that this may indeed be
a case for top-down facilitation of processing in the visual system.

Methods
Participants. Nine right-handed volunteers between the ages of 22 and 35 y
were recruited from theMassachusetts Institute of Technology community to
participate in the fMRI experiment. All participants gave informed written
consent. The study was approved by the Massachusetts Institute of Tech-
nology Institutional Review Board. Four of these volunteers were excluded

from analysis on the basis of technical difficulties with the data or a failure to
perform the behavioral task adequately, leaving five subjects included in the
main analysis. Two of these subjects, plus two additional subjects, partici-
pated in the simple experiment.

Visual Stimuli. Stimuli were photographs of isolated real world objects. To
minimize the low-level differences between images, the magnitudes of all
Fourier components were averaged across the entire image set, and the
images were reconstructed via inverse Fourier transform on the basis of their
original phase and the averaged magnitude of each particular frequency. To
additionally degrade the images, phase noise was introduced, partially
“scrambling” the images via shifting the phase angles randomly (29). These
degraded images were then converted to Mooney-like images by thresh-
olding at the per-image median gray-level intensity. The amount of noise
added during the scrambling step was titrated so that the final Mooney
image was not recognizable without seeing the fully coherent version.

For the simple experiment, noisy oriented stimuli were generated by
overlaying hundreds of oriented line segments of random luminance on top
of a gray background. The size and width of each segment was scaled ex-
ponentially to approximate the foveal magnification factor in the cortex, so
that segments near fixation were the smallest. To degrade the stimuli, each
oriented segment was rotated proportionately from the true stimulus ori-
entation to a random orientation.

fMRI Experiment. Scanning was performed on a 3.0-Tesla Siemens scanner
using a standard head coil in the Martinos Imaging Center at the Massa-
chusetts Institute of Technology. A high-resolution T1-weighted 3D-MPRAGE
anatomical scan was acquired for each participant (field of view 256 × 256,
1-mm3 resolution). To measure BOLD contrast, 33 slices parallel to the an-
terior commissure/posterior commissure line were acquired using standard
T2*-weighted gradient-echo echoplanar imaging (repetition time 2,000 ms,
echo delay time 30 ms, flip angle 90°, slice thickness 3 mm, in-plane reso-
lution 3 × 3 mm).

Scan runs began and ended with 16 s of fixation rest and included eight
image presentation trials. Each trial consisted of 16 s of visual stimulation,
where a given image was flickered on and off at 6 Hz to reduce habituation.
Trials were followed by 2 s of rest and subsequently a 4-s response window,
where the subject was required to perform a 2-AFC task regarding the
content of the image seen in the previous set by pressing a button. Another
10 s of rest followed the response phase before the next trial began. Par-
ticipants were additionally instructed to report via a button press the oc-
currence of a low-contrast flicker in the fixation cue as a means of monitoring
fixation and alertness. This fixation cue was present during the image pre-
sentations and rest, but not during the response phases.

Each scan run consisted of two arbitrarily paired sets of images. Each set
contained one image of an “artificial” object, such as a shoe, and one image of
a “natural” object, such as a butterfly. Before the run began, one image set
was designated as primed, and the undegraded versions of those images were
shown to the subject. Each image was presented twice per run, for a total of
eight image presentations (2 sets× 2 images × 2 trials) in pseudorandomorder.
During each response phase, the subject was required to press a button in-
dicating whether they recognized the previously viewed image as either nat-
ural or artificial. The same image sets were repeated for a total of three runs.
The nonprimed image set was then designated as primed, and a new image set
was introduced for the next three runs. Sessions continued in this manner and
typically included three to six total image sets (meaning classification was be-
tween 6 and 12 total images, depending on the subject) for amaximum session
duration of 2 h. Therefore, every imagewas presented to the subject a total of
12 times—6 times before they saw the coherent version, followed by 6 times
after priming. The very first primed images and the last unprimed images,
which were not shown in both conditions, were excluded from analysis.

For the simple experiment, conducted in separate scan sessions, each scan
run contained repeated presentations of two degraded orientation stimuli of
four total (horizontal, vertical, and two diagonals). During each rest period,
subjects were asked to indicate which of all four orientations they saw in the
previous set, thereby performing a 4-AFC task. The same two stimuli were
repeated for two additional runs before the subjects were shown the co-
herently oriented stimuli. This was followed by three runs with the same
stimuli after exposure to the coherent stimuli. After six total runs, two new
orientations were chosen, and the process was repeated for a maximum
duration of 2 h.

Analysis. Cortical reconstruction and volumetric segmentationwas performed
with the Freesurfer image analysis suite (30, 31). Functional scans were
motion corrected in AFNI (32) and coregistered to individual subjects’

Table 1. Significance of increased SVM decodability in various
cortical regions

Cortical region Left hemisphere Right hemisphere

Anatomically defined
Cuneus NS P = 0.046
Fusiform gyrus NS P = 0.027
Inferior parietal P = 0.034 P = 0.047
Inferior temporal P = 0.043 NS
Lateral occipital NS P = 0.051
Pericalcarine P = 0.008 P = 0.069
Precentral gyrus P = 0.074 NS
Rostral middle frontal P = 0.054 NS
Superior temporal gyrus NS P = 0.029

Functionally defined
V1 NS NS
V2 NS P = 0.062
V3 P = 0.068 P = 0.066
V4v NS NS

Results from a one-tailed McNemar test are presented as P values for both
left and right hemispheres for every cortical region exhibiting a significant,
or borderline significant, increase in information. NS, not significant.
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anatomical scans using a combination of manual alignment, custom scripts,
and SPM8. No spatial or temporal smoothing was applied. The aligned
functional images were then processed in a GLM with a double-gamma
hemodynamic response function in FMRI Expert Analysis Tool, version 5.98,
part of FMRIB’s Software Library (33). Time-series analysis was carried out
using FILM with local autocorrelation correction (34) and regression against
motion-correction parameters. Eight β-images were output from the GLM
per run. The resulting β-images were converted to z-scored images and fi-
nally extracted per region of interest for multivariate pattern analysis as
described below.

Regions of interest were defined by automatic surface parcellation (35–37)
in Freesurfer and by retinotopic field sign boundaries for V1–V4 determined
from separate scan sessions according to previously described methods (38,
39). Voxels within the anatomically defined pericalcarine ROI were addi-
tionally masked to those that were visually responsive, determined by con-
trasting the average response to all stimuli compared with rest in a GLM,
and thresholded to P < 0.01 and a clustering method of P < 0.05 to correct
for multiple comparisons. In addition, a primed region of interest was de-
termined using a GLM for the contrast “Primed > Unprimed” with P < 0.01
and a clustering method of P < 0.05 to correct for multiple comparisons.

Multivariate Pattern Analysis. Multivariate pattern analysis was performed
using custom Python routines based on the PyMVPA package (40, 41) with
the Shogun 0.9 backend (42). Briefly, linear support vector machines (9) were
trained and used to predict which image, from all a given subject had seen,
was presented during a given set, using 1-vs.-Rest multiclass classifiers. As
there were between 6 and 12 different images depending on the subject,
chance classification rates were between 17 and 8%. Data were trained and
classified independently using leave-one-run-out cross validation. Statistics
were calculated by comparing paired classifications of each image before
and after priming in a one-tailed McNemar test, summed over all image
pairs per subject; a final group McNemar statistic was formed using a cor-
rection for nonindependent clusters across subjects (43).

Results for any region of interest were excluded if neither the primed nor
unprimed images had decoding accuracy significantly higher than chance.
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