
Dartmouth College
Dartmouth Digital Commons

Open Dartmouth: Faculty Open Access Articles

12-30-2008

Topological Structures in the Equities Market
Network
Gregory Leibon
Dartmouth College

Scott Pauls
Dartmouth College

Daniel Rockmore
Dartmouth College

Robert Savell
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Computer Sciences Commons, and the Geometry and Topology Commons

This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty
Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

Recommended Citation
Leibon, Gregory; Pauls, Scott; Rockmore, Daniel; and Savell, Robert, "Topological Structures in the Equities Market Network"
(2008). Open Dartmouth: Faculty Open Access Articles. 1503.
https://digitalcommons.dartmouth.edu/facoa/1503

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/231123109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1503&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1503&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/1503?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1503&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Topological structures in the equities market network
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Departments of aMathematics and bComputer Science and cThayer School of Engineering, Dartmouth College, Hanover, NH 03755

Edited by H. Eugene Stanley, Boston University, Boston, MA, and approved November 5, 2008 (received for review March 20, 2008)

We present a new method for articulating scale-dependent topo-
logical descriptions of the network structure inherent in many
complex systems. The technique is based on ‘‘partition decoupled
null models,’’ a new class of null models that incorporate the
interaction of clustered partitions into a random model and gen-
eralize the Gaussian ensemble. As an application, we analyze a
correlation matrix derived from 4 years of close prices of equities
in the New York Stock Exchange (NYSE) and National Association
of Securities Dealers Automated Quotation (NASDAQ). In this
example, we expose (i) a natural structure composed of 2 inter-
acting partitions of the market that both agrees with and gener-
alizes standard notions of scale (e.g., sector and industry) and (ii)
structure in the first partition that is a topological manifestation of
a well-known pattern of capital flow called ‘‘sector rotation.’’ Our
approach gives rise to a natural form of multiresolution analysis of
the underlying time series that naturally decomposes the basic
data in terms of the effects of the different scales at which it
clusters. We support our conclusions and show the robustness of
the technique with a successful analysis on a simulated network
with an embedded topological structure. The equities market is a
prototypical complex system, and we expect that our approach will
be of use in understanding a broad class of complex systems in
which correlation structures are resident.

cluster analysis � complex systems � multiscale � Delaunay decomposition �
dimension reduction

Complex systems often arise as a consequence of multilayered
interactions among a large population of diverse agents. For

example, neural capabilities arise as a result of the interactions
of clusters of neurons of similar function (1). Social networks
often function as interacting hierarchies of subnetworks (2, 3), as
do link networks for webpages (4). The dynamics of the equities
market is driven by interactions among sectors, which are in turn
influenced by their component industries and by the strategies of
large institutional traders (5). The financial markets are of
particular interest for researchers in complex systems, because
their intrinsically numerical nature provides a wealth of data for
analysis and hypothesis testing. The significant complexity of the
web of interdependence in the markets has a natural and
informative mathematical formulation in terms of a network
encoding the correlation structure of some underlying time
series (e.g., price or volume) that measures something of the
state of the financial instrument. Indeed, such correlation net-
works are an important class of networks that fall naturally into
the larger class of complex phenomena in which entities in a
complex system are related according to some measure of
similarity.

In this article, we present a new tool for decomposing these
kinds of correlation networks, the ‘‘partition decoupling
method.’’ It is an iterative method in which spectral consider-
ations (i.e., eigenvalues of a relevant matrix) are used to identify
significant clusters via comparison to some relevant random
model. The effect of these clusters is removed from the under-
lying data to reveal a residual layer of interaction ready for
another round of structural decomposition. The iterated re-
moval of the ‘‘cluster effect’’ is akin (in spirit) to the well-known
‘‘multiresolution analysis’’ that accompanies wavelet decompo-
sitions in signal and image processing (see e.g. refs. 6 and 7, and

ref. 8, which contains a more general view of multiresolution
analysis). It is likewise similar to a factor or principal component
analysis (9) that creates a succession of approximations to a
correlation matrix.

Our approach produces a sequence of partitions of the net-
work, each providing a topological description of an aspect of the
network structure. This in turn gives rise to natural hierarchical
decompositions of the underlying data stream. The hierarchical
structure of the data are also manifested in a multiscale structure
in the correlation. The derived partitions suggest a new class of
null models introduced herein, the ‘‘partition decoupled null
model (PDNM),’’ which incorporates the different clusters into
a random model. A PDNM is best understood as a generalization
of the widely used Gaussian ensemble (GE) null model in which
there is a natural incorporation of the structural information
associated with the partitions. The PDNM carries with it several
interacting partitions, each with its own geometric structure,
making it a more textured and potentially more powerful model
for comparison. We anticipate that the partition decoupling
method (PDM) will be of use in a variety of disciplines in which
structure based on similarity measures (e.g., correlation) is
expected.

As an example, we give a multipartition analysis of the
correlation network of a portion of the equities market. Within
each partition, we expose a multiscale network in which nodes at
any given scale are aggregations of nodes at a finer scale. The
nodes both echo and extend the usual notion of sector in the
market. The articulation of topological structure yields our
second main result—the unsupervised discovery of nontrivial
homology (loops) in the network of clusters, reflecting the
well-known phenomenon of capital movement called ‘‘sector
rotation.’’

Ultimately, we reveal that the equities market may be effec-
tively described as a collection of processes defined on interact-
ing networks—a characterization shared by many diverse com-
plex systems. We demonstrate that by a careful decoupling of
network partitions, we may peel apart the layers of network
structure to reveal subtle interdependencies among network
components and residual network structures hitherto masked by
more dominant network processes.

Background. Our approach differs in some important ways from
previous applications of clustering techniques to achieve hier-
archical decompositions of complex systems—and particularly
from previous efforts in the articulation of ‘‘market topology’’ as
manifested in correlation networks derived from equities. The
most important difference is that our model is not strictly
hierarchical, but instead details the interaction between a num-
ber of different partitions of the network. Our method places no
constraint on connectivity of the nodes, whereas purely hierar-

Author contributions: G.L., S.P., D.R., and R.S. designed research, performed research,
analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: rockmore@math.dartmouth.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0802806106/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0802806106 PNAS � December 30, 2008 � vol. 105 � no. 52 � 20589–20594

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
EC

O
N

O
M

IC
SC

IE
N

CE
S

http://www.pnas.org/cgi/content/full/0802806106/DCSupplemental
http://www.pnas.org/cgi/content/full/0802806106/DCSupplemental


chical approaches constrain the complexity (in terms of connec-
tivity) of the defined nodes in some manner [e.g., as a tree (10),
with some fixed bound on topological type (11)]. Although
recent work (12, 13) emphasizes the need in complex systems
analysis for identification of graph partitions with strong clus-
tering properties at multiple scales of interest, the independence
assumptions implicit in the single partition clustering solutions
tend to obscure subtle intercluster effects revealed by our
methodology.

Although our use of the GE null model (see the Methodology
section for a description of the use of this model and the SI for
a brief description of the model itself) as a means of identifying
relevant information in our clustering step is in the spirit of
random matrix null models (14–17), our method provides a more
detailed description of a network by identifying relevant clusters
across multiple interacting partitions. We also note that, in
contrast to our clustering method, cluster identification using
localization of eigenvectors (e.g. ref. 14) generally produces
clusters that do not necessarily partition the entire set of equities
(however, see ref. 18 for a single partition result).

Methodology
Our methodology is designed to preserve important aspects of
system complexity typically lost in the application of dimension
reduction techniques. The partition decoupling method is a
principled method for generating multipartition descriptions of
the system that effectively capture both the dominant structures
defining the system and lower order structures that are often
obscured by the actions of the dominant processes. It involves
combining 2 algorithms, the partition scrubbing method and the
hierarchical spectral clustering method.

Partition Scrubbing Method. Beginning with a discrete sample
space of nodes or entities I � {1, . . . , N} with associated time
series D � {D (1), . . . , D(N)} each of length T, we identify a
collection of ‘‘characteristic time series V,’’ which capture some
aspect of the structure of the D series. Note that these need not
be (and rarely are) independent. The idea is that each member
of V summarizes some property of the time series in D and
projection of D onto the subspace spanned by V yields a
dimension reduced representation of D. From this, we then
derive a decomposition of D into 2 orthogonal components—the
projection of D onto V and a residual component R. The process
may then be repeated on R and iteration may be continued until
‘‘failure,’’ of which there are 2 types: (i) ‘‘partitioning failure’’
occurs when the correlation structure of the residual time series
is indistinguishable from the Gaussian ensemble (note that
depending on context, this could be replaced by other null
models) and we cannot reliably find characteristic times series;
and (ii) ‘‘projection failure’’ occurs when the characteristic time
series are numerically linearly dependent. In the case of projec-
tion failure, the projection on V does not have a unique
representation in terms of the characteristic time series. Our
view is that in each iteration, the removal of the effect of the
characteristic time series reveals residual structure that may have
been masked by a dominant behavior.

To apply the partition scrubbing method, we derive from D a
collection of normalized sequences D0(i) and given a choice of
clustering methods for each 0 � � � m and a collection D�(i),
we produce a mapping C�:I3 {1, . . . , �C��} where �C�� denotes
the number of clusters generated by the method. We calculate
the set of characteristic time series associated with the partition:

�Vk
� � mean�D�� i� �C�� i� � k��

for 1 � k � C� . Then, V� � {V�
1, . . . ,V�

�C��}. (Note that this
method can be generalized to any method of constructing the
characteristic time series V.)

Next, we ‘‘scrub’’ the partition to produce D� � 1(i) from D�(i).
That is, we decompose D�(i) into the sum of 2 components: the
projection F�(i) associated with the clustering C� and a residual
component R�(i), so that:

D� � F� � R� [1]

where

F� �i� � 	V� �D��i�� � �
k�1

�C��

�k
� �i�Vk

� [2]

where 	V� is the projection onto V�.
We assume that R� is independent of V�. (Here, ‘‘indepen-

dence’’ is meant in the statistical sense, namely, that they are not
correlated.) Under these assumptions, we can solve for the �k

�(i)
via some simple linear algebra.* We call �k

�(i) the ‘‘cluster
pressure on node i’’ (at iteration �).

From �, we create a new collection of ‘‘cleaned’’ time series:

�D��1 � norm�R�� � norm�D� � F���

with norm(R�) � (R�
��)/��, where �� and �� denote the
mean and standard deviation of R� respectively.

Using this algorithm, each series D0(i) can be reconstructed
from the Dm � 1(i) from the �� � 0

m �C�� characteristic time series
in {V�}� � 0

m and the �� � 0
m �C�� � 2(m � 1) parameters

{��(i),��(i),{�k
�(i)}k � 1

C� }� � 0
m corresponding to the entity. This is

our ‘‘multiresolution’’ representation of the original time series
data.†

Hierarchical Spectral Clustering Method. To find the partitions
needed in the partition scrubbing method, we use an innovative
hybrid technique, the hierarchical spectral clustering method
(HSCM). This is a principled hierarchical clustering of the
correlation network, which proceeds by comparing the eigen-
values of the Laplacian of the correlation network to the
eigenvalues of a GE null model associated with the network
nodes. The method is suitable for networks in which effects of
interest tend to result in stratification of network correlation
strengths at particular scales. Given a collection of time series
indexed by I, the output of this method is n levels of clusters of
the nodes, each of which provides a partition of I.

At the core of the method is the dimension reduction via
spectral clustering of a graph Laplacian (19) associated with the
correlation matrix. (See the SI for an overview of the method).
When presented with a correlation matrix for a sequence of time
series, we identify the number of significant clusters and perform
spectral clustering. To pick the number of significant clusters, we
are guided by the use of the GE null model as a means of
determining at what point in the spectrum of the Laplacian we
are witnessing a manifestation of random effects. The GE null
model, GE(n,m), models n nodes with time series of length m,
the entries of which are drawn from independent and identically
distributed (i.i.d.) Gaussian random variables. The choice of
Gaussian random variables (as opposed to a different distribu-
tion) is motivated by our choice of application: The total
distribution from the observed data for the equities network is

*We take the inner product of both sides of Eq. 2 with Vj
� for all values of j and solve for �k

�(i).
Equivalently: Let Ak,j

� � corr(Vk
�,Vj

�) � sd(Vj
�). Let b(j) � corr(Vj

�,D�) � sd(D�(i)). Solve for T �

(A�)
1 � b. Then �k
�(i) � T(k).

†Note that projection failure occurs when the �k
� values are not uniquely determined (i.e.,

the matrix A indicated in footnote * is not invertible). We interpret this as a loss of
resolution in the data and/or a build-up of numerical error (and stop iterating if such a
failure occurs).
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close to Gaussian, with the obligatory fat tails.‡ We set the
number of significant clusters equal to the number of nonzero
eigenvalues of our correlation matrix that fall below the mini-
mum of the nonzero eigenvalues of the Laplacian of the corre-
lation matrix associated with each of 100 instances of GE(n,m).

We call this first set of clusters the first ‘‘level.’’ To form the
remaining levels, we repeat the following 2 steps until we reach
a level with 
 2 clusters. Given a level j:

1. Form a new correlation matrix Corr(j) by computing the
correlations between the mean time series of the clusters of
level j.

2. Repeat the comparison to the GE null model and spectral
clustering described above to find the (j � 1)st level of clusters
(i.e., these are clusters of clusters).

The above two steps fail if the comparison to the GE null model
yields 
 2 significant eigenvalues. This is the partitioning failure
we defined above. We call a level ‘‘nontrivial’’ if there is �1
significant eigenvalue.

Partition Decoupling Method (PDM). The PDM consists of the
iterative application of the partition scrubbing method using the
partitions produced by the HSCM. As a first step, we normalize
the series and we set C0' 1. This is akin to defining a partition
with a single characteristic time series V0 incorporating all nodes.
(In our equities example, this corresponds to removing the global
market effect by removing the overall daily mean, and is similar
to the normalization used in ref. 14.) Then we proceed by using
the HSCM to form the partitions needed by the partition
scrubbing method. Note that running the HSCM requires choos-
ing a level at each iteration. We express these choices with the
partition vector ��1, . . . ,�m�. A partition vector uniquely deter-
mines the PDM’s output: the characteristic time series
�V

��1, . . . ,�m�
���0
m and the constants ����1, . . . ,�m�

� �i�, ���1, . . . ,�m�
� (i),

{�k
�(i)}k�1

�C��}��0
m for each entity. Here, C ��1, . . . ,�m�

� denotes the
partition formed during the � iteration of the PDM.

Notice the PDM implicitly defines a restricted class of models
via constraints on the covariance structures associated with the
traditional GE null model. We refer to such an associated null
models as a partition decoupled null model (PDNM). Given a
partition vector ��1, . . . , �m�, we may construct an associated
PDNM by replacing the final Dm � 1 with independent Gaussian
random variables and inverting the partition scrubbing method.
Notice, if the decomposition terminates with a partitioning
failure at the � iteration, then the D� � 1 time series have a
correlation structure that is indistinguishable (in the above
spectral sense) from the Gaussian ensemble, and this model
duplicates the correlation network structure up to random
effects. Decompositions that halt due to a projection failure may
still have a residual that has significant structure when compared
with a GE null model, but we cannot reliably compute the the
�k

�(i) that represent the contributions of the clusters.

Decomposition of Equities Networks. For our specific application to
the equities market network, we begin with N time series of daily
close prices and create an initial collection of series D0, which
corresponds to the so-called ‘‘logarithmic return’’ (approximate
logarithmic derivative or fractional change) of the closing price
series for each equity,

Dt
0�0� �

P t� i� � P t
1� i�
P t
1� i�

where Pt(i) denotes the closing price on day t of equity i.
In this section, we describe the results of applying the PDM to

the equities network determined by these series. We demon-
strate the ability of the PDM to expose network structures that
elude typical clustering methodologies. In doing so, our results
delineate a more general notion of market sectors than those
typically acknowledged by the industry, in that we expose both
recognizable ‘‘classical sectors’’ and new natural hybrids. Addi-
tionally, the coarse scale analysis successfully exposes a non-
trivial homological entity (a topological cycle) corresponding to
the known phenomenology of capital f low referred to as sector
rotation.

For this application, we obtained from the Yahoo! Finance
historical stock data server daily close prices for stocks listed on
the New York Stock Exchange (NYSE) and National Associa-
tion of Securities Dealers Automated Quotation (NASDAQ)
during a period spanning 1,251 days of trading between March
15, 2002 and December 29, 2006. We began by removing any
equity with �30% missing data in that window, after which we
were left with 2,547 equities. In addition, we remove all extreme
events from the time series (20% or larger single-day moves).
This cleaning was performed in part to avoid having to carefully
compensate for the stock splits and reverse stock splits in our
data. However, we feel that this cleaning would be appropriate
even if we had cleaned out the splits via other methods. This is
because the structure that underlies the market exists in (at least)
2 regimes—extreme events and ‘‘normal’’ events—articulated as
2 different network structures (20). Because the extreme events
were very sparse, the time series correlations we used to explore
the equities market are by their nature only capable of illumi-
nating the normal network.

PDM Applied to the Equities Market. To demonstrate the method’s
superiority in exposing latent structure in the network, we look
at the results of the PDM for 2 iterations. This resulted in 4
possible partition vectors with nontrivial levels, as schematically
described in Fig. 1. We found partitions of the following
sizes: �C�1,*�

1 � � 49, �C�2,*�
1 � � 7, �C�1,1�

2 � � 62, �C�1,2�
2 � � 10, �C�2,1�

2 � �
52, and �C�2,2�

2 � � 10. Notice, the partition at the first iteration is
independent of future iterations, hence the * can denote any
choice. All of these partition vectors provide effective and
distinct dimension reductions of the overall complex system.

For each partition, we use the industry sector labelings
available from Yahoo! Finance and NASDAQ/NYSE member-
ship to examine the composition of clusters as both a validation
of our clustering method and a tool that helps show when
partitions reveal new information. We find that the majority (35

‡As a check, we performed our entire analysis with a bootstrap null model based on the
observed data distribution but found no difference (compared with the use of a GE) in the
results. Thus, for ease of exposition and replication, we use the Gaussian distribution as
our base distribution. For other applications, a different choice of distribution may be
appropriate.

Fig. 1. A tree diagram showing the partitions involved when exploring two
iterations of the partition decoupling method with respect the equity market
example.
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of 49) of the clusters of C�1,*�
1 are predominantly identified by

sector (in the sense that the majority of their nodes are from a
given sector) and most of the clusters are strongly identified with
either the NASDAQ or the NYSE (see SI). Seven of the clusters
without dominant sectors have other obvious categorizations
(e.g., a regional or business commonality). Clusters of partition
C�2,*�

1 generally were also classified by sector. Fig. 2 shows a
representation of the network resulting from the spectral clus-
tering algorithm applied in our first iteration. For visualization
purposes, we have used the centroids of the clusters in C�1,*�

1 to
represent the entire cluster and have used standard multidimen-
sional scaling (see e.g. ref. 21) to reduce to a lower dimension.
The gray regions in Fig. 2 approximately reflect the clusters of
C�2,*�

1 . The graph in Fig. 2 Inset shows only the C�2,*�
1 clusters and

is colored according to dominant sector. Table 1 provides a
precise summary of the clustering data and classification. Clus-
ters of C�2,*�

2 predominantly admit natural classification (30 of 52
are classified by sector/industry, and 5 more are classified by
geography), whereas the opposite is true of clusters of C�2,2�

2 ,
where only 3 of 10 admit sector classification (as shown in Fig. 3).

The clusters of C�2,2�
2 and C�2,1�

2 provide new partitions of the
network and reveal new, textured information previously ob-
scured by behavior of the dominant clusters discovered in the
first iteration. While clusters of both C�1,*�

1 and C�2,1�
2 are classified

by sector and have significant membership overlap, the network
configuration is substantially different from that shown in Fig. 2.
This demonstrates that the clusters of C�2,1�

2 correspond to a new
subsidiary network structure, revealed by exposing new strata of
correlation strengths (of lower magnitude) previously masked by
the dominant behavior of the clusters in C�2,*�

1 . For example,
although the original cluster of nodes comprising the technology
cluster of C�2,*�

1 were positively correlated and tightly grouped,
the removal of C�2,*�

1 via partition decoupling exposes a new
configuration for these entities in which there is clustering in
similar groupings but with different internal relationships, in-
cluding negative correlations. It is evident from this analysis that

the partition decoupling has removed the major effect of C�2,*�
1 ,

revealing lower order effects. We hypothesize that these new
partition layers may indicate ‘‘second order’’ trading strategies
within these sectors. We note that within the other clusters of
C�2,*�

1 , similar reconfiguration effects are found.
The representation of C�2,2�

2 is shown in Fig. 3. The 3 clusters
classified by sector reflect reconfigurations of the sectorial

Fig. 2. Network structure after after applying PDM and dimension reduc-
tion. The big graph is C�1,*�

1 with distance determined by the correlation
between the resulting characteristic time series. Solid circular nodes are
classified clusters with coloring indicating the dominant sector or classifica-
tion. Unfilled square nodes are clusters without a dominant classification
labeling. Node size in all cases is proportional to cluster size. Connections (blue
lines) are added when the Euclidean distance between 2 cluster centroids in
the Euclidean embedding is in the bottom 10% of all such distances. The gray
ellipses identify clusters of clusters and are (basically) C�2,*�

1 . A schematic
drawing of the resulting network is in the lower left. Nodes are labeled 1–7
counterclockwise beginning with the yellow node.

Table 1. Classification of clusters of C�1,*�
1 and C�2,*�

1

Cluster Sector Classification

(1,1) N None
(2,6) N None
(3,2) N None
(4,1) N None
(5,1) N None
(6,7) F Closed end funds
(7,3) N None
(8,3) T IT Products/services
(9,6) F Regional banking, S&Ls
(10,7) F Closed-end funds, debt
(11,6) N None
(12,1) S Strip mall stores
(13,7) F REITs
(14,4) N EU countries
(15,5) B Oil ans Gas
(16,3) T Semiconductors, electronics
(17,6) F Regional banking, S&Ls
(18,2) H Biotechnology
(19,1) N Entertainment/leisure
(20,7) F Regional banking
(21,3) T Software
(22,1) I Construction
(23,7) F Insurance
(24,2) H Drugs/medical supplies
(25,1) B Chemicals
(26,7) U Electric
(27,5) B Industrial metals
(28,3) T Scientific/technical

Instruments
(29,1) C Grocery store items
(30,3) T Communication
(31,4) N China and India
(32,4) N Latin America, non-EU

European countries
(33,3) T Computer components
(34,1) S Media companies
(35,7) F Brokerages, asset/credit management
(36,3) T None
(37,5) B Oil and gas drilling
(38,2) H Health care plans
(39,1) S Shipping (air and rail)
(40,7) U Gas
(41,1) S Restaurants
(42,3) T Internet services
(43,1) I Aerospace

Products/services
(44,4) N Brazil
(45,1) C Auto parts/manufacture
(46,7) N Canada
(47,4) N Japan
(48,1) I Residential construction
(49,5) B Gold industries

Clusters are recorded as (a,b) where a is the C�1,*�
1 label and b is the C�2,*�

1

label. Sectors are identified via Yahoo! Finance labels as B (basic materials), C
(consumer goods), F (financial), H (healthcare), I (industrial goods), N (none),
S (services), T (technology), and U (utilities).

20592 � www.pnas.org�cgi�doi�10.1073�pnas.0802806106 Leibon et al.
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divisions given by C�2,2�
1 . More interesting are the unclassified

clusters that reveal new cross-sector interactions. For example,
the diamond shaped clusters contain a mixture of multiple
sectors. The first is predominantly consumer goods, industrial
goods and services, and the second is predominantly financial,
healthcare, services, and technology. However, both clusters
contain significant commonalities. In the first, the equities in the
service sector are almost all related to the shipping industry,
which obviously serves to distribute consumer and industrial
goods. In the second, the equities in the financial, services, and
technology sectors are related to companies that either provide
services or do business with healthcare companies (e.g., health
insurance companies, drug companies, management services,
healthcare based REITs, etc.). Equities in both of these clusters
are drawn from a range of different clusters in C�2,*�

1 , showing that
these two overlapping partitions are truly distinct, and once
again demonstrating PDM’s ability to remove higher order
effects and reveal new structure.

Nontrivial Homology—Sector Rotation. The most significant geo-
metric property of the hierarchical network exposed in the first
iteration (as shown in Fig. 2) is the existence of a topological
cycle (i.e., an example of nontrivial homology) reflective of the
well-known phenomenon of sector rotation—which forms the
basis for predictive techniques in intermarket analysis (22).
Sector rotation refers to the typical pattern of capital f low from
sector to sector over the course of a business cycle. Capital f low
is echoed in our network structure via enhanced correlations
among related equities, and the topological cycle corresponding
to sector rotation manifests itself as an emergent structure in the
dense network of near neighbor links. To support the hypothesis
that we are exposing sector rotation, we compute the effect of
the overall market pressure, �, for each equity in a moving 1-year
window over 10 years of data. Because most of our clusters are
sector dominated, we compute, as a proxy for the aggregate
pressure on the clusters, the mean � for each sector.§ In Fig. 4,
we plot the results over time after applying standard normal-
ization. Both the periodicity of the sector effects and the relative
phases of the sector waveforms strongly support the sector
rotation interpretation.

Visually, the cycle is evident. We support this intuitive con-
clusion with a Delaunay-type geometric argument in the SI. The
method explained therein (see e.g. ref. 23) and our detection of
a well-articulated topology in this network is in a similar spirit to
the ideas presented in refs. 24 and 25, where the computation of
homology of a geometric object based on large datasets is used
a means of articulating a topological signature for the dataset. In
our case, the homology has a natural interpretation in terms of
observed market behavior.

Performance of the PDM on a Simulated Complex System. To dem-
onstrate the effectiveness of the PDM in defining useful dimen-
sion reductions of complex system behaviors, we produce a
sequence of simulated datasets that manifest a multiscale mul-
tipartition correlation structure similar to that found in the
equities market. By varying the relative scale of quantized
correlation effects producing the simulated time series, we may
systematically examine the effectiveness of the PDM relative to
a common single partition hierarchical clustering decomposi-
tion. As described in detail in the SI, we define a simulated
PDNM as a mixture of i.i.d. Gaussian characteristic time series
associated to 2 partitions with 7 clusters each. In our experiment,
we restrict the degrees of freedom of the simulation and
systematically vary the scale (as defined by the � values associ-

ated with each effect) of secondary and tertiary effects relative
to the primary effect. We compare the quality of the solution of
the PDM on the simulated data with that of a successful spectral
clustering method (19) applied to a single partition, by compar-
ing the L2 deviance of the eigenspectrum of the Laplacian of the
GE null model to that of the residual time series resulting from
(i) a 2-layer application of PDM and (ii) an application of the
partition scrubbing method using the time series associated with
the single partition spectral clustering (with the number of
clusters equivalent to the total number comprising the model
produced by the PDM).

By varying the relative proportion of the lower scale effects,
we find that when the correlation scales of the two partitions are
sufficiently distinct (i.e., the weights of the two sets of charac-
teristic time series are sufficiently disparate), the PDM readily
demonstrates its superiority over the single partition spectral
clustering in identifying the multipartition structure. Further, in
this case the PDM captures more information than the clustering
method alone, in the sense that the deviance resulting from the
PDM is several orders of magnitude smaller than that of the
single-partition model (see SI for details). The PDM maintains
this advantage over a broad range of the scaling parameter. Only
in cases in which the secondary and tertiary effects are relatively
small does the PDM fail to outperform the single partition
clustering method, because the second partition goes undetected
by the PDM (the HSCM finds no significant eigenvalues as all
eigenvalues are above the threshold value). In this case, the
results are equivalent to that of the single partition clustering.
Hence, as expected, the PDM performs at least and a single
partition clustering method across the full range of scale settings
and provides superior results when significant scalar quantiza-
tion effects are present in the correlation structure.

§Recall that � with respect to any subset (including the entire market) is the time series given
by the average fractional change over the entire subset on each day.

Fig. 3. The network with nodes determined by C�2,2�
2 and with distance

determined by the correlation between the resulting characteristic time se-
ries. Three are identified by sector (red, basic materials; yellow, services; blue,
financial). The 2 diamond shaped clusters are classified by intersector com-
monalities as described in Methodology.

Fig. 4. Average � by sector of time: 1-year windows over 10 years.
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Having established the ability of the PDM to decouple
partitions, we investigated its ability to extract topological struc-
ture in the resulting partitions. To do so, we simulated a system
with 2 partitions where the clusters in each were designed to
produce a topological circle (see SI for details). In these simu-
lations the PDM accurately separated the partitions and pre-
served the encoded topological structures, as measured by our
own implementation (based on ref. 23) of a version of persistent
homology (24, 25).

Conclusion
We present a new technique, the partition decoupling method
(PDM) for the decomposition of complex systems given a
correlation network structure that yields scale-dependent geo-
metric information—which in turn provides a multiscale decom-
position of the underlying data elements. The PDM generalizes
traditional multiscale clustering methods by exposing multiple
partitions of clustered entities.

Our multipartition decomposition allows us to create a new
class of null models with which to study such systems, the
partition decoupled null model. These null models mimic the
observable clustering of the network and thus provide a better
platform than the random matrix theory models from which to
study the behavior of the network.

As an example and application, we analyze a substantial
portion of the U.S. equities market, revealing several partitions

that expose 6 different dimension reductions of the market
network. Labeling by traditional sector and industry data vali-
date one aspect of the partitioning, as the finest partitions break
down both by traditional sector and other commonalities. In
addition to validation of the technique (by recovering ‘‘official’’
classifications), the labeling provides evidence for our tech-
nique’s ability to extend traditional notions of a priori clusters in
the data. The partition decoupling reveals several instances of
cross-sectorial components (with verifiable mixture classifica-
tions), which tend to be obscured by the typical sectorial analysis.

Our decomposition also reveals an instance of nontrivial
homology, a cycle that corresponds to the well known phenom-
ena of sector rotation, which reflects the cyclical f low of capital
through the the various sectors of the equities market as the
economy moves through the stages of expansion and contraction.
The visual evidence of the cycle is validated via techniques from
computational geometry.

In conclusion, the PDM applied to the correlation network of
the equities market reveals both interesting known structure and
new structure that is typically lost in common sectorial market
decompositions. This principled decomposition of the time
series according to the structure of the equities correlation
network should prove useful for various forms of risk manage-
ment including portfolio construction. More generally, we an-
ticipate that correlation networks produced by the actions of
other diverse complex systems and other kinds of similarity
networks will also prove amenable to this approach.
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