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Abstract

Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world’s population. Transmission between
vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the
only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the
parasite’s flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse
malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and
motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete
flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the
axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and
reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology
modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the
PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is
the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model
for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel
intervention strategies to control the malaria parasite.
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Introduction

Flagella and cilia are ancient cellular organelles used for

motility, which are found in eukaryotic organisms ranging from

unicellular protists to mammals. All flagella contain an axoneme, a

structure consisting of a central apparatus (a pair of microtubules

named C1 and C2) encircled by nine doublet microtubules. The

axonemal microtubules have numerous associated structures

including the central pair projections, radial spokes, and dynein

arms. The dynein arms attached to the 9 doublet microtubules

provide the force for generating motility. This ‘‘9+2’’ pattern of

microtubules is conserved in most species and is thought to have

been present in the common ancestor of all modern-day flagella

and related structures (cilia) [1]. The complete axoneme is

essential for well–regulated flagellar motility. Much of our

knowledge of axoneme proteins and their mechanism of action

has been obtained from studies on the green alga Chlamydomonas

[2] and the protist Trypanosoma [3,4,5]. PF16 is an important

Armadillo (ARM)-repeat protein of the central apparatus that was

first functionally characterised in Chlamydomonas [6]. ARM-repeats

consist of a ,42-amino acid structurally conserved repeating motif

named after the Drosophila segment polarity gene Armadillo

(mammalian homologue, b-catenin) [7,8]. Proteins containing

ARM-repeats have diverse roles in eukaryotes, including cell

signalling, cytoskeletal organisation and regulation of gene

expression [9,10]. Inactivation of the Chlamydomonas PF16 gene

led to loss of the central pair of microtubules and abnormal

flagellar function, showing that PF16 is required for flagellar

motility and stability of the central apparatus C1 microtubule [6].

Disruption of SPAG6, the mouse PF16 orthologue, results in male

infertility, due to loss of sperm motility [11]; and also to

hydrocephalus, which is likely due to abnormal ciliary motility

in epithelial cells in the brain cavities, as motile cilia are required

to direct the correct flow of cerebrospinal fluid [12]. RNAi of PF16
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in the flagellated protozoan Trypanosoma brucei demonstrates a

conserved role in flagellum-dependent motility [4,13].

Malaria parasites belong to the genus Plasmodium, and are

members of the phylum Apicomplexa. Malaria disease threatens

40% of the world’s total human population. The human pathology

of malaria is caused by parasite life-cycle stages that replicate

asexually in red blood cells, but transmission to mosquitoes is

achieved by the differentiation of the sexual stages: the male

(micro-) and female (macro-) gametocytes that circulate within red

blood cells in the vertebrate host in a developmentally arrested

state. Gametocytes are activated to form gametes (a process known

as gametogenesis) within the mosquito gut, following stimulation

by environmental factors, including the drop in temperature from

37uC to 20–25uC and exposure to a mosquito metabolite,

xanthurenic acid [14,15]. Therefore, the sexual stages of

Plasmodium are important potential targets for transmission-

blocking strategies.

Microgametogenesis involves entry into the cell cycle, then three

endomitotic divisions within 8 minutes, resulting in an 8-fold

replication of the genome, followed by assembly of eight

axonemes, which results in formation of eight motile uni-

flagellated microgametes. Microgametes bud from the male

gametocyte residing within the host’s infected red blood cells

within 10 to 15 minutes of activation, a ‘‘release’’ process known as

exflagellation [14,15]. The budding of male gametes requires

flagellar beating, both to complete cytokinesis and to drive the

axoneme and the membrane outwards from the residual

gametocyte body. A male microgamete then fertilises a female

macrogamete resulting in formation of a zygote that transforms

into a motile ookinete [14,15].

In malaria parasites the male gamete is the only stage in the life

cycle with a flagellum. The structurally normal flagellum of

Plasmodium differs in its method of formation from most other

organisms as it is assembled within the cytoplasm of the

microgametocyte and therefore does not rely on intra-flagellar

transport (IFT) [15,16,17]. Plasmodium axonemes only become

associated with the plasma membrane at the time of exflagellation,

forming long thin motile gametes consisting almost entirely of

flagellum [15]. Very little is known about the identity or function

of proteins in the malaria parasite flagellum, although a specific

tubulin gene is highly expressed in male gametes [18]. Here, we

show using reverse genetics in a rodent malaria parasite,

Plasmodium berghei, that an orthologue of PF16 (PbPF16) plays a

crucial role in male gamete flagellum biology and is involved in the

assembly and/or stability of the flagellar central apparatus. We

examine the consequences of PbPF16 gene disruption for flagellar

structure, movement and function and its effect on fertilization.

We show that putative PF16 homologues have a wide phylogenetic

distribution within eukaryotes. Homology modelling of Plasmodium

and Chlamydomonas PF16 proteins highlights potential similarities

and differences in their structure and function, which may explain

why in our hands PbPF16 is unable to complement the

Chlamydomonas pf16 mutant.

This study is the first molecular analysis of Plasmodium flagella

and thus may provide unique insights into an ancient organelle

that could identify novel intervention strategies to control the

parasite.

Results and Discussion

PF16 gene deletion affects male gamete flagellar
motility, male fertility and zygote formation

To determine the role of P. berghei PF16 in parasite development

we deleted the PbPF16 gene (PB000781.01.0 or PBANKA_091740)

by double homologous recombination (see supporting text). Note

that the PbPF16 gene is distinct from Pfs16, another gametocyte-

specific gene. Two independent knockout clones, pf16.3 and

pf16.4, were generated in the P. berghei ANKA line ‘‘Figure S1’’

The growth of the asexual (blood) life-cycle stages of these two

clones was unaffected; the rate of gametocyte formation was also

similar to that of wild type parasites. The intensity of

exflagellation (as a measure of male gametogenesis) was not

altered in the pf16 mutant lines compared to wild type parasite

(Figure 1A), however these parasites displayed a severe defect in

male gamete motility and fertility, with 50% of male gametes

being immotile (Figure 1B,C). To investigate this defect further,

we recorded flagellar beat frequency, amplitude and the speed of

the male gamete flagella. The flagellar beat pattern of pf16

mutant male gametes differed from wild type; it was characterised

by a significantly lower beat frequency and beat amplitude

together with a significantly reduced speed (Figure 1D,E,F). These

defects led to a significant reduction in sexual fitness, i.e. the

ability of male gametes from the pbpf16 knockout lines to fertilise

female(s) gametes (Figure 1), with a frequency of zygote (ookinete)

formation of about 20%, as compared to 70 to 80% for wild type

parasites (Figure 1C). These analyses clearly demonstrate a defect

in the pf16 male flagellum and its function (Figure 1 and ‘‘Videos

S1 and S2’’), which was reflected in the frequency of fertilization

and zygote formation. The results are consistent with a function

of PbPF16 in Plasmodium flagellar biology, similar to that in

Chlamydomonas and mouse. However, deletion of pf16 did not

result in a total block in fertility, as observed in an in vitro ookinete

assay here. This may be due to the relatively high abundance of

female gametocytes and their proximity to male gametocytes in

Plasmodium compared to other mammalian species [15]. It is also

important to note that the zygotes (ookinetes) generated in vivo

during a mosquito feed in the pf16 mutant are able to give rise to

a significant number of oocysts and generate normal sporozoites

that are infectious to mice.

Plasmodium PF16 is expressed in male gametocytes and
gametes

To examine the expression and localization of PbPF16 in the

malaria parasite, we generated a transgenic ‘‘knock-in’’ P. berghei

line expressing endogenous PbPF16 with a C-terminal green

fluorescent protein (GFP) fusion ‘‘Figure S2’’. These PbPF16-GFP

transgenic parasites had no phenotypic abnormalities resulting

from the expression of the PF16-GFP fusion protein. GFP

expression was not visible in the asexual blood stage parasites,

but faint GFP expression was detectable in the male gametocyte.

Following gametocyte activation in exflagellation medium, we

examined the location of PbPF16-GFP during gametogenesis.

Before the onset of gametogenesis, PbPF16-GFP appeared as

diffuse cytoplasmic fluorescence (Figure 2). At 5 and 10 minutes

after activation, more intense PbPF16 was seen associated with

growing cytoplasmic axonemes (detected by a-tubulin immuno-

staining; (Figure 2). Later, when male gametes were emerging

from the residual body of the male gametocyte, PbPF16-GFP was

clearly localised to the emerging male gamete and had patchy

distribution along the length of the gamete; moreover it appeared

that PbPF16-GFP was always encompassed within the axonemal

fluorescence (Figure 2). The protein was not detected in activated

female gametes or in the ookinete at either 4 hours or 24 hours

after activation. These results clearly show that PbPF16 is

expressed as a male gamete-specific gene and that the protein is

expressed at a higher level (or in a more visible form) in the

activated male gametocyte/gamete.

PF16 in Malaria Parasite
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Plasmodium PF16 affects the formation of the central
apparatus of the axoneme in male gamete flagella

To determine any possible defect in flagellar morphology, the

ultrastructure of the axoneme and flagellum was examined in wild

type and pf16 mutant parasites (Figure 3A; [15]). The development

of the axonemes is unusual, as they do not arise from a classical

centriole/basal body with nine concentric triple microtubules.

Instead, there is an electron dense structure in which nine single

microtubules have been identified [15]. This can result a slightly

uncoordinated assembly process where the majority of axonemes

consist of a central pair of microtubules (central apparatus)

encircled by 9 doublets of microtubules with associated dynein

arms (Figure 3B; [15]). However, some axonemes lack the central

pair (9+0) or the peripheral doublets forming an ‘‘S’’ shape rather

than a circle (Figure 3B). Similar structures were observed in the

pf16 mutant, however a significant number of the axonemes have

one missing central tubule (9+1) (Figure 3A insert; see below). The

mature microgamete consists of an elongated, undulating

axoneme with a flattened electron-dense nucleus in the central

region, which follows the contours of the axoneme, all enclosed by

a unit membrane (Figure 3C). In cross sections of wild type

parasites, the vast majority (96%) displayed the typical 9+2

arrangement with only rare examples of 9+0 (2%) or 9+1 (2%)

(Figure 3D,H). However, the pf16 mutant clones showed a marked

increase in the number of microgametes with atypical axonemes

(Figure 3). Only 12% had the normal 9+2 structure (Figure 3E,H)

while 21% had 9+0 (Figure 3F,H) and 67% had a 9+1 structure

(Figure 3G,H). Therefore, the loss of PbPF16 results in increased

numbers of abnormal microgametes with the majority lacking one

central microtubule (9+1) and a significant number lacking both

central microtubules (9+0) (Figure 3E–H).

This observation is consistent with an important role of PbPF16

in axoneme formation in Plasmodium, with its absence affecting

formation of the central apparatus. The result suggests that PF16’s

function in promoting the stability/assembly of a single microtubule

of the central apparatus is conserved between Plasmodium and

Chlamydomonas despite their evolutionary divergence and differences

in the way flagella are formed in the two species. It is interesting to

note that in Chlamydomonas, mutations in pf16 result in the failure of

assembly of three axonemal proteins including PF16; however,

upon demembranation of the flagella, the C1 microtubule is

unstable and disassembles [19]. This phenotype is similar to that in

Figure 1. PF16 gene deletion reduces male gamete flagellar motility and ookinete (zygote) formation. A. Differentiation of male
gametocytes to male gametes (as determined by quantifying exflagellation centres) is similar in both wild type Plasmodium (WT) and two pf16
mutant clones (pf16.3 and pf16.4) suggesting the emergence of male gametes is not affected (P = 0.3699 and P = 0.3789 for clones 3 and 4
respectively). Three independent replicates are plotted (established on 10 independent fields on a slide, with a 40x objective). B. Average number of
motile gametes after emergence is reduced in both mutant clones (pf16.3 and pf16.4) compared to wild type (WT) P = 0.0019 for both clones. Three
independent replicates of 50 microgametes each were counted. C. Quantification of ookinete conversion (ratio of ookinetes to round cells expressed
as a percentage). There was a decrease in the frequency of ookinete formation in both mutant clones when compared to wild type (WT). (P = 0.0017
and P = 0.0045 for clone 3 and 4 respectively). Three independent replicates of 100 events were counted (macrogametes + ookinetes). D, E, F. The
male gamete flagellum was analysed for speed (D; P,0.0001 for both clones), beat amplitude (E; P,0.0001 for both clones) and beat frequency (F;
P = 0.0180 and P,0.0001 for clones 3 and 4 respectively) in wild type and the two pf16 mutant clones. In all these analyses the values were
significantly lower (P,0.001) for both the mutant clones in comparison to wild type. See also Supplementary movie VS1and VS2. 30 male gametes
from three independent samples were quantified for each analysis.
doi:10.1371/journal.pone.0012901.g001

PF16 in Malaria Parasite
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pf16 mutants in other organisms such as mouse or Trypanosomes

where only 20–30% of mutant flagella exhibit the loss of the central

microtubules [4,11]. In contrast, our results show that in Plasmodium,

almost 90% of flagella lack one or two microtubules of the central

pair in the absence of detergent to remove the flagellar membrane.

This result may be explained by differential defects in the assembly

of these microtubules. In organisms such as Chlamydomonas, PF16

appears to only affect the assembly of two other central apparatus-

associated proteins, which in turn, affect the stability of the C1

central microtubule. In other organisms such as Plasmodium, PF16

may play a more significant role in assembly of the central

microtubules. Additional roles for PF16 in flagellar assembly are

suggested by the observation that PF16 localises to both the basal

body and the central apparatus in the ciliate Tetrahymena, and

undergoes dynamic exchange in the basal body [20,21].

Complementation studies with Plasmodium PF16 in
Chlamydomonas

To test whether or not the sequence similarity between the P.

berghei PF16 protein and Chlamydomonas PF16 would confer

functional similarity, we transformed a Chlamydomonas pf16 mutant

with the complete P. berghei PF16 cDNA using either the P. berghei

or Chlamydomonas 59 and 39 UTRs. For each experiment, the 59

UTR contained either the P. berghei PF16 promoter or the

Chlamydomonas PF16 promoter (supporting material text). No

rescue of the motility defect was detected in over 700

transformants from three independent experiments.

There are several explanations for the lack of complementation.

It is possible that Chlamydomonas was unable to efficiently express

the Plasmodium gene. The Chlamydomonas genome is highly GC-rich,

whereas the Plasmodium genome is AT-rich, which may affect

translation. One possibility for future experiemtns we would be to

use a codon-optimised P. berghei PF16 gene. Additional regulatory

elements may also be required for successful gene expression in

Chlamydomonas; for example, expression of foreign genes in

Chlamydomonas may be significantly improved by the introduction

of Chlamydomonas introns that possess enhancer elements [22].

Finally, it is possible that the Plasmodium protein is unable to

interact with additional Chlamydomonas components required for

assembly into the axoneme. This hypothesis was explored using

homology modelling.

Homology model structure analyses of Plasmodium
berghei PF16

In order to compare the structures of PbPF16 and Chlamydo-

monas PF16, both protein structures were determined using

homology modeling. Protein sequences were modeled using the

I-TASSER server, using robust alignment procedures followed by

simulation and refinement of subsequent models [46]. The models

for the two sequences clearly demonstrate the characteristic

architecture of ARM-repeat proteins [7,9]; Figure 4A) despite the

fact that Plasmodium berghei PF16 is AT-rich (24% GC) and the

amino acid sequence identity between PbPF16 and Chlamydomonas

PF16 is low (37%; Figure 4B). In each protein, nine tandem ARM-

repeats pack together to form a right-handed superhelix

(Figure 4A; ‘‘Figure S3’’.) Root mean square differences ranging

from 0.88 to 3.26 Å indicate structural conservation between the

target and template structures. Protein-protein interactions are

crucial to the cellular function of ARM-repeat proteins [7,9]. We

therefore compared the properties of the two structures to identify

differences in surface exposed residues. The Plasmodium PF16

modelled sequence has a significantly higher theoretical pI (8.1)

compared to either Chlamydomonas PF16 (5.69) or human SPAG6

(6.51), largely attributable to a significant increase in lysine (11.5%

of residues) compared with Chlamydomonas (5.3%). We calculated

the surface electrostatic potential for the models of P. berghei and

Figure 2. Plasmodium PF16 is expressed in the male gametocyte and gametes. Immunolocalisation of GFP in PF16-GFP-expressing
parasites, both in the male gametocyte (0 min) and during male gamete formation during the exflagellation process (5–15 min). The parasites were
co-stained with an anti tubulin antibody (red). Hoechst staining (blue) indicates the presence of DNA. Note the increase in the intensity of GFP
localisation with the increase in time, and at the end of exflagellation when motile gametes form (15 min). Scale bar, 5 mm.
doi:10.1371/journal.pone.0012901.g002

PF16 in Malaria Parasite
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Chlamydomonas PF16s, and this indicated a basic patch in the C-

terminal region of P. berghei PF16 not present in Chlamydomonas

(Figure 4A). Residues contributing to this patch are conserved in

all the Plasmodium species (P. falciparum, P. vivax, P. knowlesi, P.

chaubaudi, P. yoelii, P. berghei). Other species (Toxoplasma, mouse and

human) PF16s retain a number of the positively charged residues

Figure 3. Comparison of the microgametocytes and microgametes of wild type P. berghei and pf16 mutant P. berghei by electron
microscopy. A. Section through a wild type microgametocyte showing the large central nucleus (N) and longitudinal- and cross-sections of
axonemes (A) within the cytoplasm. Scale bar, 1 mm. Insert. Enlargement of an axoneme cross-section from a mutant microgametocyte showing the
presence of a single central microtubule (9+1). Scale bar, 100 nm. B. Detail of the cytoplasm of a wild type microgamete illustrating the variability of
the axoneme structure: some have two central microtubules (arrow), others have no central tubules (arrowhead), some peripheral duplet
microtubules form an ‘‘S’’ shaped structure (double arrowheads). Scale bar, 100 nm. C. Longitudinal section through a wild type microgamete
showing the undulating axoneme forming the flagellum (F) with the closely adhering electron-dense nucleus (N). Scale bar, 100 nm. D. Cross-section
through the central region of a wild type microgamete showing the nucleus and the normal 9+2 organisation of the axoneme. Scale bar, 100 nm. E-
G. Cross-sections through microgametes of the PF16 mutant showing the variable axonemal appearance with a few showing the normal 9+2
structure (E), the majority showing 9+1 (F) and a number with a 9+0 appearance (G). Scale bar, 100 nm. H. Quantification of microtubule
arrangements in the axonemes of wild type (WT) and pf16 mutant microgametes.
doi:10.1371/journal.pone.0012901.g003

PF16 in Malaria Parasite
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involved in this region and show an intermediate basic character

between the Plasmodium species and Chlamydomonas PF16s. A small

number of lysine residues are conserved in all species. The basic

nature of P. berghei PF16 may be refractory to at least some of the

protein-protein interactions required for the function of Chlamy-

domonas PF16, thereby preventing the P. berghei orthologue from

functioning in Chlamydomonas.

Bioinformatic analyses of putative PF16 homologues in
Apicomplexan parasites and other eukaryotic genomes

We determined how Plasmodium PF16s relate more widely to

other eukaryotic PF16s. Firstly, putative PF16 protein sequences

from different species were identified, aligned and a tree

constructed (Figure 4B).

Within the phylum Apicomplexa, there are numerous parasites

causing disease in humans and domestic animals, including the

genera Theileria, Babesia, Cryptosporidium, Plasmodium, Toxoplasma and

Eimeria. In the latter three genera there is a distinctive sexual phase

resulting in the production of sperm-like motile microgametes and

egg-like immotile macrogametes. The motility of these microga-

metes is based on the presence of flagella; two in Toxoplasma and

Eimeria and one in Plasmodium [16,17,23]. In Toxoplasma and Eimeria

flagella formation occurs by the axoneme budding from the

surface in a similar manner to most other organisms. In contrast,

Figure 4. Comparison of Structure and Sequence analyses of Plasmodium berghei PF16. A. Top view – cartoon representation of homology
models of Plasmodium and Chlamydomonas PF16, coloured by spectrum from N-terminus (blue) to C-terminus (red). Middle view – electrostatic surfaces
of the modelled proteins (view rotated 180u around the y axis with respect to top view). The accessible surface area is coloured according to electrostatic
potential calculated using APBS from -10kBT/e (red) to + 10kBT/e (blue) [47]. Bottom view – surface representation of Plasmodium PF16 displaying
exposed lysine residues. Those shown in green represent lysine residues conserved in Chlamydomonas PF16, with those in orange representing lysine
residues found only in Plasmodium PF16. Figures produced using PyMol (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC). B.
Maximum likelihood tree of proteins from 33 different species. Mouse SPAG6 (blue), P. berghei PF16 (red) and Chlamydomonas PF16 (green) are
highlighted. The accession number of each species is given in the supplementary material. The tree was made using the WAG model of protein evolution
with gamma distributed rates at sites and 1000 bootstrapped replicates implemented in PhyML [48]. Branches with bootstrap support less than 70% are
collapsed. Asterisk (*) signifies bootstrap support greater than 90%. The scale bar indicates 0.2 substitutions per site.
doi:10.1371/journal.pone.0012901.g004

PF16 in Malaria Parasite
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Plasmodium species’ flagellum only becomes associated with the

plasma membrane at the time of release as described earlier.

Putative PF16 homologues are present in Plasmodium, Toxoplasma

and Eimeria (Figure 4B; [16,17]). A PF16 homologue appears to be

absent from Babesia, Cryptosporidium and Thelieria, which lack

flagella. However, in Babesia, ray bodies, which resemble

microgametes but lack an axoneme are present [24,25]. Thus in

the Apicomplexa there is an association between the presence of

the PF16 homologue and flagellated gametes.

PF16 homologues are found in non-apicomplexan chromoal-

veolates (Figure 4B), including flagellated plant-pathogenic

oomycetes of the Phytophthora species, and the ciliated protists

Paramecium and Tetrahymena. The brown alga Aureococcus also has a

putative PF16 homologue but no known flagellum: Aureococcus may

have an undiscovered flagellated stage in its life cycle, due also to

the unexpected presence of other flagellar proteins [26]. Curiously,

PF16 homologues are apparently absent from flagellated diatoms,

which lack the central pair of microtubules ([27]; Figure 4B).

A PF16 homologue is present in the Trypanosomatids, where it

functions in the life cycle stages that possess a motile flagellum

[4,28]. We also find putative PF16 homologues in other flagellated

excavates, including the parasites Leishmania and Trichomonas, and

the non-pathogenic Naegleria gruberi, which has both flagellated and

amoeboid forms (Figure 4B). In Trichomonas vaginalis there are three

proteins divergent from proteins in other excavates and from each

other. T. vaginalis is reported to have undergone recent genome

duplication [29].

PF16 homologues were not detected in higher plants, which lack

flagella; however the moss Physcomitrella and the lycophyte

(spikemoss) Selaginella, which have flagellated male gametes, possess

putative PF16 homologues, as do a variety of flagellated green

algae including Chlamydomonas (Figure 4B). PF16 homologues also

appear to be present in the flagellated fungus Batrachochytrium, and

in the Choanoflagellate, Monosiga brevicollis. Thus, it appears that

PF16 homologues are found throughout flagellated eukaryotes.

However, it is interesting to note that PF16 is absent from C.

elegans, which possesses only sensory (non motile) cilia [16].

Plasmodium PF16: a starting point for understanding
Plasmodium flagellar biology?

In this study we demonstrate that the ARM-repeat protein, P.

berghei PF16, identified by similarity with Chlamydomonas PF16, is

important for male gamete flagellum biology in the malaria

parasite. Thus although the mechanism of flagellar assembly

differs between the two systems [15], PF16 has retained a

conserved function in regulating the pair of microtubules in the

central apparatus of the axoneme. In our earlier studies we have

shown that certain Plasmodium-specific kinases control exflagella-

tion, tubulin polymerisation and cytokinesis during male gameto-

genesis [30,31]. In light of these studies it will be interesting to

examine how PbPF16 relates to phosphorylation pathways that

control the process of flagellum formation.

Cilia and flagella are ancient organelles and have been widely

studied. They have been linked to number of human genetic

diseases, primarily in ciliary dyskinesias, abnormal epithelial cilia

and sperm flagella (for a review see [32,33]). What controls the

movement of cilia and flagella has been an interesting point of

study in theoretical physics [34]. Among unicellular protists,

elegant studies in Trypanosoma have dissected the function of the

flagellum and shown that it is a multifunctional organelle, having a

role at various stages during the life cycle of the parasite [3,4,5].

This contrasts with Plasmodium, where flagella are formed only

during male gametogenesis and are therefore essential only for

fertilisation and transmission. During our search for other

components of the central pair apparatus we found that there

are many other putative proteins in Plasmodium that are likely to

interact with PF16 and regulate the assembly of the axoneme as in

Chlamydomonas and other eukaryotes [4,27,35]. For example,

Plasmodium has a putative homologue of PF20, an important

component of the central apparatus that interacts with both PF16

and Fused kinase [27]. However, Fused kinase appears to be

absent from Plasmodium even though fused genes have been found in

Leishmania and Trypanosoma [27]. Our study in Plasmodium raises

various questions as to how the central apparatus is organised

during the formation of the flagellum in the malaria parasite. It

will be crucial to identify the partners interacting with Plasmodium

PF16. Investigating the role and function of various proteins in

Plasmodium flagellar biology will provide a unique way to

understand this ancient organelle, as well as the sexual

differentiation of male gametocytes, and hence design novel

intervention strategies to prevent the transmission of malaria.

Materials and Methods

For targeting and tagging constructs and genotype analyses of

transgenic parasite please see ‘‘Materials and Methods S1’’.

Ethics statement
All animal work has passed an ethical review process and was

approved by the United Kingdom Home Office. Work was carried

out in accordance with the United Kingdom ‘‘Animals (Scientific

Procedures) Act 1986’’ and in compliance with ‘‘European

Directive 86/609/EEC’’ for the protection of animals used for

experimental purposes. The permit number for the project licence

is 40/3344.

Exflagellation and male gamete motility assays
Mice were treated intraperitoneally (i.p.) with 0.2 ml of 6 mg/

ml phenylhydrazine (BDH Chemicals Ltd, UK) to induce hyper-

reticulocytosis two to three days prior to infection. Parasites were

harvested by heart-puncture at day 3 or 4 post-infection (p.i.). On

day three post-infection, tail blood was harvested and resuspended

in 1 volume of exflagellation medium (RPMI 1640 (Sigma, UK)

containing 100 mM xanthurenic acid (Sigma, UK), pH 7.4). For

the exflagellation assay, the number of exflagellation events was

recorded 14 minutes after activation, on 10 fields. For male

gamete motility assays, the suspension of blood was spun down at

500 g 15 minutes after activation; the supernatant containing male

gametes was then harvested and mounted on a slide. Male gametes

were visualized by phase contrast microscopy on a Leica DMR

microscope and 5-second videos were captured with the Zeiss

AxioCam HRC camera and Axiovision software. Videos were

taken at a speed of 16 images per second. Individual gametes were

tracked one at a time and analyses of beat frequency, amplitude

and speed were recorded manually from individual video frames.

Ookinete conversion assay
Parasite-infected mosquito blood was resuspended in ookinete

medium as described earlier [31,36]. After 24 hours, the samples

were resuspended and added at a 1:1 ratio to Cy3-conjugated 13.1

antibody (13.1 is an antibody specific to macrogametes and

ookinetes [31,37] The proportion of ookinetes to all 13.1-positive

cells (unfertilised macrogametes and ookinetes) was established.

Immunocytochemistry
Parasite-infected blood (as described above) was resuspended in

4% paraformaldehyde (PFA) (Novagen, UK). Immunocytochem-

istry was performed on the fixed parasite material using the
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primary antibodies rabbit anti-GFP (ABCAM, USA, used at 1 in

200dilution) and mouse monoclonal anti-alpha tubulin (Sigma,

UK, used at 1 in 500). Secondary antibodies used were Alexa 488-

conjugated anti-rabbit IgG and Alexa 547 conjugated anti-mouse

IgG (Molecular probes, UK, both used at 1 in 1000). The slides

were then mounted in Vectashield with DAPI (Vector Labs).

Parasites were visualized on a Leica SP5 confocal microscope and

data acquired and analysed with the LAS AF Lite software (Leica,

UK).

Statistical analyses
All statistical analyses were conducted with GraphPad Prism

(GraphPad Software, USA). Non-parametric t-tests were used to

compare exflagellation intensities, conversion rates and male

motility patterns.

Electron microscopy
Samples of wild type and pf16 microgametocytes and microga-

metes cultured as described above were fixed in 4% glutaralde-

hyde in 0.1M phosphate buffer and processed for routine electron

microscopy as described previously [38]. In summary, samples

were post fixed in osmium tetroxide, treated en bloc with uranyl

acetate, dehydrated and embedded in Spurr’s epoxy resin. Thin

sections were stained with uranyl acetate and lead citrate prior to

examination in a JEOL12EX electron microscope. To quantify

structural differences in the axonemal appearance, a random

sample of 100 cross-sectioned microgametes was examined.

Complementation studies in Chlamydomonas
For Chlamydomonas rescue experiments pf16C,arg- cells [6,39]

were co-transformed with the plasmid of interest with either P.

berghei coding sequence with its control element or containing

Chlamydomonas control elements as well as the pArg7.8 plasmid

containing a selectable marker (arginino-succinate lyase gene [40].

The details of plasmid construct are in the supplementary material

text ‘‘Method S’’.

Molecular sequence analyses
Similarity searches were made using BLASTP [41] against

NCBI databases and genome sequence protein databases [42,43];

www.jgi.doe.gov/genome-projects/). Putative homologues were

aligned using ClustalW [44] and minor manual adjustments were

made using SEAVIEW [45].

Homology modelling
Protein structure prediction was performed using the I-

TASSER server, submitting sequences for P. berghei PF16, human

PF16 (SPAG6) and Chlamydomonas PF16 (residues 1–463, 1–510

and 1–476 respectively). I-TASSER undertakes threading, utilising

profile-profile alignment, followed by structure assembly simula-

tion and refinement [46].

Supporting Information

Figure S1 Targeted disruption of PF16 gene in P. berghei. A.

Schematic representation of gene targeting construct used for gene

replacement by double homologous recombination. Position of

primers 1–4 is (used for diagnostic PCR) is indicated, along with

the restriction enzyme site EcoRI used for Southern hybridisation.

B. Diagnostic PCR verifying disruption of PF16 locus in mutant

clones pf16.3 (16.3) and pf16.4 (16.4). Primer set 1/2 was used to

detect the unique product across the integration site and primer set

3/4 was used to test the absence of PF16 gene. C. Southern

hybridisation of EcoRI-digested DNA using the 39UTR from

targeting construct as probe. Arrow indicates the diagnostic bands

for the mutant clones pf16.3 and pf16.4 (16.3 and 16.4

respectively). D. Pulse field gel electrophoresis blot hybridised

with P. berghei 39UTR that detects the endogenous locus at

chromosome 7 and the disrupted locus at Chromosome 10 in

clone 4 (16.4) (arrow).

Found at: doi:10.1371/journal.pone.0012901.s001 (0.47 MB TIF)

Figure S2 GFP Tagging of endogenous PF16 in P. berghei. A.

Schematic representation of gene tagging construct used for

endogenous GFP tagging by single homologous recombination.

Position of primers 1–4 is (used for diagnostic PCR) is indicated B.

Diagnostic PCR for integration of the transgenic construct for

generating endogenous PF16-GFP parasites. Primer 1/2 shows

integration across the region and 3/4 detects the template control.

W represents the wild type and transgenic PF16-GFP is

represented by (T) C. Correct integration of the transgenic

construct (T) at chromosome 10 as described above, compared to

the wild type locus (W). D. Western blot analyses using an anti-

GFP antibody on control wild type gametocytes/gametes

ubiquitously expressing soluble GFP (W) and transgenic male

PF16-GFP-expressing gametes (T).

Found at: doi:10.1371/journal.pone.0012901.s002 (0.47 MB TIF)

Figure S3 Structural Models of PF16. Comparison of the

modelled Plasmodium, human and Chlamydomonas PF16 proteins

with experimentally determined structures demonstrating the

conserved nature of the ARM repeat. Structures shown are

human b-catenin [PDB:1JDH], mouse importin a [PDB:1IAL]

and yeast karyopherin a [PDB:1EE4]. All structures are shown

in cartoon representation, coloured by spectrum from the N-

terminus (blue) to C-terminus (red).

Found at: doi:10.1371/journal.pone.0012901.s003 (0.97 MB

TIF)

Video S1 Wild type male gamete flagella movement

Found at: doi:10.1371/journal.pone.0012901.s004 (2.89 MB

MOV)

Video S2 pf16knockout male gamete flagella movement

Found at: doi:10.1371/journal.pone.0012901.s005 (3.31 MB

MOV)

Materials and Methods S1

Found at: doi:10.1371/journal.pone.0012901.s006 (0.06 MB

DOC)

References S1

Found at: doi:10.1371/journal.pone.0012901.s007 (0.02 MB

DOC)
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